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Abstract. We show that assuming ZF+AD++“V = L
(
℘(R)

)
”, any poset which increases

Θ does not preserve the truth of AD. We also show that in ZF+ AD, any non-trivial poset
on R does not preserve the truth of AD. This answers the question of Chan and Jackson [2,
Question 5.7]. Furthermore, we show that under the assumptions ZF+AD++“V = L

(
℘(R)

)
”

+“Θ is regular”, there is a poset on Θ which adds a new subset of Θ while preserving the
truth of AD. This answers the question of Cunningham [3, Section 5].

1. Introduction

In this paper, we discuss the relationship between forcing and the Axiom of Determinacy
(AD), especially on the question what kind of forcings preserve the truth of AD.
Forcing was introduced by Cohen to prove the independence of the Continuum Hypothesis

from Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC). Using forcing, he also
proved that the Axiom of Choice is independent of Zermelo-Fraenkel set theory (ZF). Since
then, forcing has been a basic tool of constructing models of set theory, and it has been used
to obtain various results on independence or unprovability of some mathematical statements
from set theory as well as to analyze various kinds of models of set theory.

The Axiom of Determinacy (AD) was introduced by Mycielski and Steinhaus to consider
a situation where every set of reals has good properties that simple sets (such as Borel sets
and analytic sets) enjoy, and examples of those good properties are Lebesgue measurability
and the Baire property. While AD contradicts the Axiom of Choice in ZF, it has many
beautiful consequences on sets of reals. Furthermore, it has been shown that there are deep
connections between models of ZF + AD (or models of ZF + AD+) and models of ZFC with
Woodin cardinals, and AD has been playing an important role not only in descriptive set
theory to analyze the properties of sets of reals, but also in the theory of large cardinals and
inner model theory.

Let us mention how we got interested in the relationship between forcing and AD, especially
on the question what kind of forcings preserve the truth of AD. By the result of Kunen, there
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is no non-trivial elementary embedding j : V → V such that (V,∈, j) is a model of ZFC.1

Furthermore, Hamkins, Kirmayer, and Perlmutter proved that for any set generic G over V ,
there is no non-trivial elementary embedding j : V → V [G] such that (V [G],∈, j) is a model
of ZFC.

One can then ask questions such as what if the structure (V,∈, j) or (V [G],∈, j) is a model
of ZF or ZF + AD instead of ZFC. Using the method of symmetric models, Woodin proved
that there are a set generic G over V and a non-trivial elementary embedding j : V → V [G]
such that (V [G],∈, j) is a model of ZF+AD. However, in his example, j ↾ Ord is the identity
map, so there is no critical point of j.
As far as we know, it is still open whether there are a set genericG over V and an elementary

embedding j : V → V [G] such that (V [G],∈, j) is a model of ZF + AD and j ↾ Ord is not
the identity map. We are especially interested in the case when the critical point of j is ω1

in V because if the critical point of j is ω1 in V , then the forcing to obtain V [G] must add
new reals to V and AD has influence on reals and sets of reals. To obtain such a j, one needs
to have a poset P to produce such a model V [G], and the poset P must add new reals while
preserve the truth of AD from V to V [G]. Hence we have a test question: Is there any poset
which adds a new real while preserving the truth of AD? This is how we got interested in
the relationship between forcing and AD.

We still do not know if there is any poset which adds a new real while preserving the truth
of AD. Considering this question, we have observed that many forcings adding a new real do
not preserve the truth of AD. A typical example is Cohen forcing. It is well-known that if G
is V -generic for Cohen forcing, then in V [G], the set of reals in V does not have the Baire
property. In particular, AD must fail in V [G]. On the other hand, there are posets which
add a new set while preserving the truth of AD. By the result of Woodin [6, Section 3], if we
assume ZF + AD + “V = L(R)” and let κ be a sufficiently big cardinal and P be the poset
for adding a Cohen subset of κ in HOD, the class of hereditarily ordinal definable sets, then
the poset P adds a new set while preserving the truth of AD. Actually, the poset P does not
add any set of reals to V in this case.

We have been wondering what kind of forcings preserve the truth of AD. Our intuition
was such a poset P would not be able to change the structure of sets of reals drastically.
The intuition was partially justified using the ordinal Θ, the supremum of ordinals which are
surjective images of R, by the following theorem:

Theorem 3.1. Assume ZF + AD+ + “V = L
(
℘(R)

)
”. Suppose that a poset P increases Θ,

i.e., ΘV < ΘV [G] for any P-generic filter G over V . Then AD fails in V [G] for any P-generic
filter G over V .

However, the assumption “V = L
(
℘(R)

)
” is essential in Theorem 3.1:

1Here V is the class of all sets, j in the structure (V,∈, j) is considered as the interpretation of a binary
predicate on the universe, and the structure (V,∈, j) satisfies Comprehension and Replacement for first-order
formulas with the binary predicates for ∈ and j.
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Theorem 3.2. It is consistent relative to ZF+ADR that ZF+AD holds and there is a poset P
increasing Θ while preserving AD, i.e., for any P-generic filter G over V , we have ΘV < ΘV [G]

and that AD holds in V [G].2

In particular, there is a poset which adds a new set of reals (but does not add a new real)
while preserving the truth of AD.

After we announced Theorem 3.1 and Theorem 3.2, Chan and Jackson [2] worked on the
question what kind of forcings do not preserve the truth of AD. They proved that assuming
ZF + AD, if a non-trivial poset P is a wellorderable forcing of cardinality less than Θ, then
P does not preserve the truth of AD ([2, Theorem 3.2]). They also proved that assuming
ZF+AD+“Θ is regular”, if a non-trivial poset P is a surjective image of R, then P does not
preserve the truth of AD ([2, Theorem 5.5]). Then they asked whether ZF + AD only (i.e.,
without assuming the regularity of Θ) implies that if a non-trivial poset P is a surjective
image of R, then P does not preserve the truth of AD ([2, Question 5.7]). We give a positive
answer to their question:

Theorem 4.1. Assume ZF+AD. Let P be any non-trivial poset which is a surjective image
of R and G be any P-generic filter over V . Then AD fails in V [G].

We now turn to positive results on the question what kind of forcings preserve the truth of
AD. As was mentioned in a previous paragraph, By the result of Woodin [6, Section 3], if we
assume ZF+AD+“V = L(R)” and let κ be a sufficiently big cardinal and P be the poset for
adding a Cohen subset of κ in HOD, the class of hereditarily ordinal definable sets, then the
poset P adds a new set while preserving the truth of AD. A natural question would be how
small one can take κ for this result. Cunningham [3] worked on this question. He proved
that κ can be taken as any regular cardinal larger than Θ+ ([3, Subsection 4.1]). Then he
asked whether κ can be taken as Θ ([3, Section 5]). We answer his question positively. In
fact, we prove a more general theorem as follows:

Theorem 5.1. Assume ZF+AD++“V = L
(
℘(R)

)
”. Suppose that Θ is regular. Then there

is a poset P on Θ which adds a subset of Θ while preserving AD, i.e., for any P-generic filter
G over V , there is a subset of ΘV which belongs to V [G] \ V and AD holds in V [G].3

Notice that ZF+AD+ “V = L(R)” implies the assumptions of Theorem 5.1 including the
regularity of Θ. Also, in case of “V = L(R)”, the poset P is the one for adding a Cohen
subset of Θ in HOD as in Case 1 in the proof of Theorem 5.1. Therefore, the arguments for
Theorem 5.1 answer the question of Cunningham [3, Section 5].

We also note that Theorem 5.1 is optimal in the following two senses: In one sense, the
size of the poset P cannot be smaller than Θ. As was mentioned in a previous paragraph,
by the result of Chan and Jackson [2, Theorem 3.2], any wellorderable forcing of cardinality
less than Θ cannot preserve the truth of AD. Also, by Theorem 4.1 (or by the result of Chan
and Jackson [2, Theorem 5.5] in case Θ is regular), any poset on R (or a surjective image of
R) cannot preserve the truth of AD. In the other sense, unless the poset P adds a new real,

2For an expert on determinacy, the assumption ZF+ ADR is an overkill. The proof of Theorem 3.2 shows
that the assumption ZF+ AD+ + “Θ > Θ0” is enough.

3The proof of Theorem 5.1 shows that in both Case 1 and Case 2, the poset P does not add any new set
of reals to V . In particular, the poset P preserves the truth of AD+ as well.
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the poset P cannot add a new bounded subset of Θ while preserving the truth of AD. This
is because if P does not add any real and both V and V [G] are models of AD, then by the
Moschovakis Coding Lemma, V and V [G] have the same bounded subsets of Θ, leading to
the situation that the poset P cannot add a bounded subset of Θ.

After looking at Theorem 5.1, it is natural to ask whether the assumption “Θ is regular” is
essential there. We do not know the answer to this question. However, in case Θ is singular,
we have ADR under the assumptions of Theorem 5.1. In case ADR holds, which is Case 2 in
the proof of Theorem 5.1, the poset P in Theorem 5.1 is for adding a Cohen subset of Θ in
HOD. We show that this particular poset cannot preserve the truth of AD if Θ is singular:

Theorem 5.2. Assume ZF+ AD+ + “V = L
(
℘(R)

)
”. Suppose that Θ is singular and let P

be Add(Θ, 1) in HOD, where Add(Θ, 1) = {p | p : γ → 2 for some γ < Θ}. Then AD fails in
V [G] for any P-generic filter G over V .

2. Basic definitions, theorems, and lemmas

In this section, we introduce basic definitions, theorems, and lemmas we will use in later sec-
tions of the paper. We assume that readers are familiar with the basics of forcing and descrip-
tive set theory. For basic definitions not given in this paper, see Jech [4] and Moschovakis [9].
When we say “reals”, we mean elements of the Baire space ωω or of the Cantor space 2ω.
We start with some basic definitions which will be used throughout the paper:

Definition 2.1.

(1) The ordinal Θ is the supremum of ordinals which are surjective images of R.
(2) A set x is OD from sets y1, . . . , yn if x is definable by a first-order formula with an

ordinal and y1, . . . , yn as parameters.
(3) Let Y be a set. We say a set x is hereditarily ODY if any element of the transitive

closure of {x} is OD from some elements of Y .
(4) For a set Y , we write HODY for the collection of sets which are hereditarily ODY .

When Y is the empty set, we simply write HOD for HODY .

Definition 2.2. Let A and B be sets of reals (or subsets of the Baire space ωω). We say A
is Wadge reducible to B if there is a continuous function f : ωω → ωω such that A = f−1(B).
When A is Wadge reducible to B, we write A ≤W B. The order ≤W is called the Wadge
order on sets of reals.

Lemma 2.3 (Wadge’s Lemma). Assume ZF+ AD. Then for any sets A,B of reals, we have
either A ≤W B or B ≤W ωω \ A.

Proof. See e.g., [14, Lemma 2.1]. □

The following theorems will be used in Section 3.

Theorem 2.4 (Woodin). Assume ZF+ AD+ + “V = L
(
℘(R)

)
”. Then the model HOD is of

the form L[Z] for some subset Z of Θ, and there are a poset Q in HOD and a Q-generic filter
H over HOD such that HOD ⊆ V ⊆ HOD[H].

Proof. See e.g., [13, Theorem 3.1.9]. □

Theorem 2.5 (Moschovakis). Assume ZF+ AD. Then Θ is a limit of measurable cardinals.
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Proof. For a proof without assuming DCR, one could first prove that Θ is a limit of strong
partition cardinals under ZF+AD as in [7] and then verify that every strong partition cardinal
is measurable under ZF as in [5, 28.10 Theorem]. □

Theorem 2.6 (Solovay). Assume ZF+ADR. Then for any set A of reals, there is a set B of
reals which is not OD from A and any real.

Proof. See [10, Lemma 2.2]. □

The following theorem will be useed in Section 4:

Theorem 2.7 (Chan and Jackson). Assume ZF + AD and Θ is regular. Then for any non-
trivial poset P on R and any P-generic filter G over V , the axiom AD fails in V [G].

Proof. See [2, Theorem 5.5]. □

The following theorems will be used in Section 5:

Theorem 2.8 (Moschovakis). Assume ZF+AD. Then for any non-zero ordinal γ < Θ, there
is a set A of reals such that there is a surjection from R to ℘(γ) which is OD from A.

Proof. For any surjection ρ : R → γ, the arguments in [5, 28.15 Theorem] give us a surjection
from R to ℘(γ) which is OD from ρ. If A is a prewellordering on R of length γ, then the
surjection ρ : R → γ induced from A is clearly OD from A. Hence there is a surjection from
R to ℘(γ) which is OD from A, as desired. □

Theorem 2.9 (Woodin). Assume ZF+AD++“V = L
(
℘(R)

)
”. Suppose also that ADR fails.

Then there is a set T of ordinals such that V = L(T,R).
Proof. By the results of Woodin [7], the axiom AD+ and the failure of ADR imply that the
set of Suslin cardinals is closed below Θ while not cofinal in Θ. Hence there is a largest
Suslin cardinal in Θ. By the result of Woodin [12, Corollary 6], the assumptions AD+ and
“V = L

(
℘(R)

)
” imply that the ultrapower V D/µ is well-founded where D is the set of Turing

degrees and µ is the Martin measure on D. Using the result of Woodin [7], it follows that
there is a set T of ordinals such that ℘(R) ⊆ L(T,R). Since we assume V = L

(
℘(R)

)
, we

have V = L(T,R), as desired. □

Theorem 2.10 (Woodin). Assume ZF + AD+ + “V = L(T,R)” for some set T of ordinals.
Then

(1) for some subset Z of Θ, we have HOD{T} = L[T, Z], and
(2) for any real x, we have HOD{T,x} = HOD{T}[x].

Proof. For (1), one can argue in the same way as in [1, Corollary 7.21].
For (2), see [7]. □

We next introduce Vopěnka algebras and their variants we will use in this paper:

Definition 2.11. Let γ be a non-zero ordinal and T be a set of ordinals.

(1) Let n be a natural number with n ≥ 1 and On be the collection of all nonempty
subsets of (γω)n which are OD from T . Fix a bijection πn : η → On which is OD from
T , where η is some ordinal. Let Qn be the poset on η such that for each p, q in Qn, we
have p ≤ q if πn(p) ⊆ πn(q). We call Qn theVopěnka algebra for adding an element
of (γω)n in HOD{T}.
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(2) For all natural numbers ℓ and m with 1 ≤ ℓ ≤ m, let iℓ,m : Qℓ → Qm be the inclusion
map induced from πℓ and πm, i.e., for all p ∈ Qℓ, πm

(
iℓ,m(p)

)
= {x ∈ (γω)m | x ↾ ℓ ∈

πℓ(p)}. Then each iℓ,m is a complete embedding between posets. Let
(
Qω, (in : Qn →

Qω | n < ω)
)
be the direct limit of the system (iℓ,m : Qℓ → Qm | 1 ≤ ℓ ≤ m < ω).

We call Qω the finite support direct limit of Vopěnka algebras for adding an element
of γω in HOD{T}.

The following lemmas will be useful in Section 5:

Lemma 2.12. Assume ZF+ AD+ + “V = L(T,R)” for some set T of ordinals.

(1) Let Q1 be the Vopěnka algebra for adding an element of 2ω in HOD{T}. Then the
poset Q1 is of size at most Θ and Q1 has the Θ-c.c. in HOD{T}.

(2) Let Qω be the finite support limit of the Vopěnka algebras for adding an element of
2ω in HOD{T}.Then Qω has the Θ-c.c. in HOD{T}.

(3) (Woodin) There is a Qω-generic filter H over HOD{T} such that V = L(T,R) ⊆
HOD{T}[H] and the set RV is countable in HOD{T}[H].

Proof. For (1), we first show that the poset Q1 is of size at most Θ in HOD{T}. Recall from
Definition 2.11 that Q1 is a poset on some ordinal η and π1 is a bijection from η to O1 which
is OD from T , where O1 is the collection of all subsets of 2ω which are OD from T . We will
argue that the ordinal η is at most Θ. For each α < Θ, let Wα be the collection of sets of
reals in O1 of Wadge rank α. Then we have O1 =

⋃
α<Θ Wα and each Wα is a surjective

image of R. Since the set O1 is well-ordered, so is each Wα and there is a surjection from Θ
to Wα which is OD from T . Hence there is a surjection from Θ×Θ to O1 which is OD form
T , and therefore the set Q1 is of size at most Θ in HOD{T}, as desired.
We next show that the poset Q1 has the Θ-c.c. in HOD{T}. To derive a contradiction,

suppose that there is an antichain (pα | α < Θ) in Q1 in HOD{T}. Then the family {π1(pα) |
α < Θ} is a pairwise disjoint family of nonempty subsets of 2ω, which would easily induce a
surjection from R to Θ, contradicting the definition of Θ. Therefore, the poset Q1 has the
Θ-c.c. in HOD{T}, as desired.

For (2), we first note that for all natural numbers n with n ≥ 1, the poset Qn has the
Θ-c.c. in HOD{T} by the same argument as in (1). Then using the facts that Θ is regular
in V = L(T,R) and that Qω is the direct limit of Qns, it follows that the poset Qω has the
Θ-c.c. in HOD{T} as well.
For (3), one can argue in the same way as in [11, Lemma 3.4 and Lemma 3.5] by replacing

M with V , and H with HOD{T}. □

Lemma 2.13. Assume ZFC. Let λ be a regular uncountable cardinal, P be a <λ-closed
poset, and Q be a λ-c.c. poset. Then for any P-generic filter G over V , the poset Q still has
the λ-c.c. in V [G]. Furthermore, if H is a Q-generic filter over V , then H is Q-generic over
V [G] as well.

Proof. Let G be a P-generic filter and A be an antichain in Q in V [G]. We will show that A
is of size less than λ in V [G].
Towards a contradiction, we assume that A is of size at least λ in V [G].
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Let Ȧ be a P-name with ȦG = A. Let p be a condition in G with p ⊩P “Ȧ is an antichain
in Q̌ of size at least λ̌”. Using the <λ-closure of P in V , one can construct a decreasing
sequence (pα | α < λ) in P and a sequence (aα | α < λ) in P with the following properties:

(1) p0 = p,
(2) for all α, β < λ with α ̸= β, we have aα ̸= aβ, and

(3) for all α < λ, pα ⊩P “ǎα ∈ Ȧ”.

Since p ⊩P “Ȧ is an antichain in Q̌”, by (1), (2), and (3) above, for all α, β < λ with
α < β, the condition pβ forces that aα and aβ are incompatible in P. Therefore, the set
B = {aα | α < λ} is an antichain in Q of size λ in V . This contradicts the assumption that
Q has the λ-c.c. in V . Therefore, the antichain A is of size less than λ in V [G], as desired.

Let H be a Q-generic filter over V . We will verify that H is Q-generic over V [G] as well.
Let A be a maximal antichain in Q in V [G]. We will see that H ∩A ̸= ∅. By the arguments
in the previous paragraphs, A is of size less than λ in V [G]. Since G is P-generic over V and
P is <λ-closed in V while Q is in V , there is no subset of Q of size less than λ in V [G] \ V .
Hence the antichain A is in V as well. By the genericity of H over V , we have that H∩A ̸= ∅,
as desired. □

Lemma 2.14. Assume ZF + AD+ + ADR. Then for any set C of reals, there is an s ∈ Θω

such that C is OD from s and that C is in HOD{s}(R).

Proof. Let C be any set of reals. By the result of Woodin [7], under ZF+AD+ +ADR, every
set of reals is Suslin. By the result of Martin and Steel [8], every Suslin and co-Suslin set of
reals is homogeneously Suslin. In particular, the complement 2ω \C is homogeneously Suslin
witnessed by the sequence (µu | u ∈ 2<ω) of measures on κ<ω for some κ < Θ. By the result
of Kunen [5, 28.21 Corollary], each measure µu is OD. Using the Moschovakis Coding Lemma
and ADR, one can show that each measure µu is definable from an ordinal below Θ. Hence
there is an s ∈ Θω such that the sequence (µu | u ∈ 2<ω) is definable from s. Now from the
sequence (µu | u ∈ 2<ω), one can construct a Martin-Solovay tree T such that C = p[T ]. By
the construction of T , it follows that T is OD from (µu | u ∈ 2<ω). Hence T is OD from s,
which easily implies that the set C is OD from s and C is in HOD{s}(R), as desired. □

Lemma 2.15. Assume ZF+ ADR. Let γ < Θ and Q1 be the Vopěnka algebra for adding an
element of γω in HOD. Also let Qω be the finite support limit of the Vopěnka algebras for
adding an element of γω in HOD.

(1) The posets Q1 and Qω are of size less than Θ in HOD.
(2) Let s ∈ γω and hs = {p ∈ Q1 | s ∈ π1(p)}, where π1 : Q1 → O1 is as in Definition 2.11.

Then the set hs is a Q1-generic filter over HOD such that HOD[hs] = HOD{s}.
(3) (Woodin) There is aQω-generic filterH over HOD such that the set (γω)V is countable

in HOD[H].

Proof. For (1), we first show that the poset Q1 is of size less than Θ in HOD. Recall from
Definition 2.11 that π1 : Q1 → O1 is a surjection which is OD, where O1 is the collection
of all subsets of γω which are OD. Since γ < Θ, by Theorem 2.8, there is a set A of reals
such that there is a surjection from R to ℘(γ) which is OD from A. In particular, there is a
surjection σ : R → γω which is OD from A. Hence for each b ∈ O1, the set σ−1(b) of reals is
OD from A. Since we assume ADR, by Theorem 2.6, there is a set B of reals which is not



8 D. IKEGAMI AND N. TRANG

OD from A. By Wadge’s Lemma under ZF + AD, for each b ∈ O1, the set σ−1(b) is Wadge
reducible to B. In particular, there is a surjection from R to the family {σ−1(b) | b ∈ O1}.
Hence the family O1 is also a surjective image of R and the poset Q1 is of size less than Θ in
V . Since Θ is a cardinal in V , it follows that the poset Q1 is of size less than Θ in HOD as
well.

We next show that the poset Qω is of size less than Θ in HOD. Let C = A⊕B = {x ∗ y |
x ∈ A and y ∈ B}, where x ∗ y(2ℓ) = x(ℓ) and x ∗ y(2ℓ + 1) = y(ℓ) for all ℓ < ω. Then
the argument in the last paragraph shows that there is a surjection from R to Q1 which is
OD from C. Similarly, one can argue that for each natural numbers n with n ≥ 1, there is
a surjection from R to Qn which is OD from C. Since all such surjections are OD from C,
one can pick a sequence (ρn : R → On | n ≥ 1) of surjections, which would readily give us a
surjection from R to Qω. Therefore, the poset Qω is of size less than Θ in V . Since Θ is a
cardinal in V , it follows that the poset Qω is of size less than Θ in HOD as well.

For (2), for the Q1-genericity of hs over HOD, see e.g., [4, Theorem 15.46].
We will show the equality HOD[hs] = HOD{s}. The inclusion HOD[hs] ⊆ HOD{s} is easy

because hs is OD from s and hs is a set of ordinals. We will argue that HOD{s} ⊆ HOD[hs].
Since HOD{s} is a model of ZFC, it is enough to see that every set of ordinals in HOD{s} is
also in HOD[hs]. Let X be any set of ordinals in HOD{s}. We will verify that X is also in
HOD[hs]. Let δ be an ordinal such that X ⊆ δ. Since X is in HOD{s}, the set X is OD from
s. So there is a formula ϕ such that for all α < δ, we have that α ∈ X if and only if ϕ[α, s]
holds. For each α < δ, let bα = {x ∈ γω | ϕ[α, x]}. Then each set bα is a subset of γω which
is OD. So each bα is in O1. Now we have the following equivalences: For all α < δ,

α ∈ X ⇐⇒ ϕ[α, s] ⇐⇒ s ∈ bα ⇐⇒ π−1
1 (bα) ∈ hs.

Hence X = {α < δ | π−1
1 (bα) ∈ hs}. Since the sequence

(
π−1
1 (bα) ∈ Q1 | α < δ

)
is OD

and Q1 is in HOD, the sequence
(
π−1
1 (bα) ∈ Q1 | α < δ

)
belongs to HOD. Hence the set

{α < δ | π−1
1 (bα) ∈ hs} is in HOD[hs]. Therefore, the set X is in HOD[hs], as desired.

For (3), one can argue in the same way as in [11, Lemma 3.4 and Lemma 3.5] by replacing
R with γω, M with V , and H with HOD. □

3. On forcings increasing Θ

In this section, we prove the following theorems:

Theorem 3.1. Assume ZF + AD+ + “V = L
(
℘(R)

)
”. Suppose that a poset P increases Θ,

i.e., ΘV < ΘV [G] for any P-generic filter G over V . Then AD fails in V [G] for any P-generic
filter G over V .

Theorem 3.2. It is consistent relative to ZF+ADR that ZF+AD holds and there is a poset P
increasing Θ while preserving AD, i.e., for any P-generic filter G over V , we have ΘV < ΘV [G]

and that AD holds in V [G].

Proof of Theorem 3.1. Let G be a P-generic filter over V . We will show that AD fails in
V [G]. Towards a contradiction, we assume that AD holds in V [G].

Since we have AD+ and V = L
(
℘(R)

)
, by Theorem 2.4, the model HOD is of the form

L[Z] for some subset Z of Θ, and there are a poset Q in HOD and a Q-generic filter H over
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HOD such that HOD ⊆ V ⊆ HOD[H]. In particular, Z# does not exist in HOD. Since any
poset does not add Z#, it follows that Z# does not exist in V either.

We will argue that Z# exists in V [G], which would contradict the fact that Z# does not
exist in V . Since P increases Θ, we have ΘV < ΘV [G]. By assumption, we have AD in
V [G], so by Theorem 2.5, it follows that ΘV [G] is a limit of measurable cardinals in V [G].
In particular, there is a measurable cardinal κ in V [G] such that ΘV < κ. Let U be a <κ-
complete nonprincipal ultrafilter on κ in V [G]. Then letting M = L[U,Z], the cardinal κ is
measurable also in M witnessed by U ∩M . Since M is a model of ZFC and Z is a bounded
subset of κ in M , it follows that Z# exists in M . By absolutness of Z#, we have Z# in V [G],
contradicting the fact that Z# does not exist in V .

Therefore, the assumption that AD holds in V [G] was wrong, and AD fails in V [G].
This completes the proof of Theorem 3.1. □

Proof of Theorem 3.2. We assume ZF + ADR and will show that there is an inner model M
of ZF+ AD satisfying that there is a poset P increasing Θ while preserving AD.

Let M = HODR, the class of all sets hereditarily ordinal definable from some real. We will
show that M is the desired inner model.

First notice that M is a model of ZF. Also since M contains all the reals and V satisfies
AD, we have that M is a model of AD as well. Since we have ADR in V , by Theorem 2.6,
there is a set B of reals which is not definable from any ordinal and any real. Hence the set
B is not in M .

We will show that M satisfies that there is a poset P increasing Θ while preserving AD.
The idea is to consider a variant of Vopěnka algebra in M adding the set B to M . Let
O = {b ⊆ ℘(R) | b is nonempty and OD from some real} ordered by inclusion. Then O is a
poset which is OD. Let η be a sufficiently large ordinal and let π : η×R → O be a surjection
which is OD such that if a set b is in O and OD from a real x, then there is some α < η such
that π(α, x) = b. Let P = π−1(O) and for p1, p2 ∈ P, we set p1 ≤ p2 if π(p1) ⊆ π(p2). Then
since π is OD, the poset P is in M . For an r in P, let P ↾ r = {p ∈ P | p ≤ r}.

We will show that there is some P-generic filter G over M such that ΘM < ΘM [G] and
M [G] is a model of AD. This is enough to end the arguments for the theorem because then
there is some r ∈ P forcing the desired two statements for M [G] over M , and the poset P ↾ r
is the desired poset in M .
Let H = {b ∈ O | B ∈ b} and G = π−1(H). We will see that G is the desired filter.
We first verify that G is P-generic over M . Let D be a dense subset of P in M . We will

argue that G∩D ̸= ∅. Let E = π[D] and bE =
⋃
E. By the definition of P, the set E is dense

in O. We claim that bE = ℘(R). Suppose not. Then since D is in M and π is OD, the set
bE is OD from some real. So bE is in O. But then ℘(R) \ bE is a nonempty set which is in O
incompatible with any element of E, contradicting that E is dense in O. Hence bE = ℘(R).
Since B is in ℘(R), we have that B is in bE, so there is a b′ in E such that B is in b′. By
the definition of H, the condition b′ is also in H. Hence H ∩ E ̸= ∅. Since G = π−1(H) and
E = π[D], it follows that G ∩D ̸= ∅, as desired. Therefore, G is P-generic over M .
We next verify that M [G] is a model of AD. Since B is in V , H = {b ∈ O | B ∈ b}, and

G = π−1(H), it follows that G is in V and M [G] is a submodel of V . Since M contains all
the reals, so does M [G]. Finally, since V is a model of AD, it follows that M [G] is also a
model of AD, as desired.
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Finally, we verify that ΘM < ΘM [G]. Since both M and M [G] are models of AD containing
all the reals, by the Wadge lemma under ZF + AD, it is enough to see that there is a set of
reals in M [G] \M . Since B is not in M , it suffices to argue that B is in M [G]. For each real
x, let bx = {A ∈ ℘(R) | x ∈ A}. Then bx is OD from x, so bx is in O. By the choice of π,
for each real x, there is an ordinal α such that π(α, x) = bx. For each real x, let αx be the
least ordinal with π(αx, x) = bx. Then since π and O are OD, the sequence (αx | x ∈ R) is
OD and is in M = HODR. From the sequence (αx | x ∈ R) and G, one can compute the set
B as follows: for any real x,

x ∈ B ⇐⇒ B ∈ bx ⇐⇒ bx ∈ H ⇐⇒ (αx, x) ∈ G.

Therefore, the set B is in M [G], as desired.
We have verified that G is the desired filter, and this completes the proof of Theorem 3.2.

□

4. On forcings on the reals

In this section, we prove the following theorem which answers a question by Chan and
Jackson [2, Question 5.7]:

Theorem 4.1. Assume ZF+AD. Let P be any non-trivial poset which is a surjective image
of R and G be any P-generic filter over V . Then AD fails in V [G].

Proof of Theorem 4.1. Let P be any non-trivial poset which is a surjective image of R and
G be any P-generic filter over V . We will show that AD fails in V [G]. Since P is a surjective
image of R, there is a poset on R which is forcing equivalent to P. Hence we may assume P
is a poset on R.
Towards a contraction, we assume that AD holds in V [G].

Case 1. When the set RV is uncountable in V [G].

Here is the key point:

Claim 1. There is a real r0 in V [G] such that RV [G] ⊆ L(RV , r0).

Proof of Claim 1. Since V [G] satisfies AD, the set RV has the perfect set property in V [G].
Since RV is uncountable in V [G], the set RV contains a perfect set C in V [G]. Let r0 code a
perfect tree T on 2 = {0, 1} with [T ] = C in V [G].

We will show that RV [G] ⊆ L(RV , r0). Let x be any element of 2ω in V [G]. We will see
that x is in L(RV , r0).
We say a node t ∈ T is splitting in T if both t⌢⟨0⟩ and t⌢⟨1⟩ are in T . Let {ts ∈ T |

s ∈ 2<ω} be the set of all splitting nodes in T such that if s1 is a subsequence of s2 in 2<ω,
then ts1 is a subsequence of ts2 in T . Let y =

⋃
{tx↾n | n < ω}. Then y is in [T ]. Since

[T ] = C ⊆ RV , the real y is in RV . However, for all n < ω and k ∈ 2 = {0, 1},
x(n) = k ⇐⇒ t(x↾n)⌢⟨k⟩ ⊆ y.

Hence x can be simply computed from y and T . So x ∈ L[y, T ]. Since L[y, T ] ⊆ L[y, r0] ⊆
L(RV , r0), the real x is in L(RV , r0), as desired.
This completes the proof of Claim 1. □
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Continuing to argue in Case 1, let r0 be a real in V [G] such that RV [G] ⊆ L(RV , r0) as
in Claim 1. Since the poset P is on RV , there is a P-name ẋ such that ẋG = r0 and ẋ
is coded by some set A of reals in V . Then setting M = L(RV ,P, A), we have that M
is an inner model of V satisfying AD and the statement “Θ is regular”. However, since
RV [G] ⊆ L(RV , r0) ⊆ M [G] ⊂ V [G] and we assumed that V [G] satisfies AD, the model M [G]
also satisfies AD, contradicting Theorem 2.7. Therefore, the assumption that V [G] satisfies
AD was wrong and AD must fail in V [G], as desired.

This finsihes the arguments for Theorem 4.1 in Case 1.

Case 2. When the set RV is countable in V [G].

Since RV is countable in V [G], any ordinal α below ΘV is countable in V [G] as well. Hence

ΘV ≤ ω
V [G]
1 .

We will show that ΘV [G] ≤ (Θ+)V , which would contradict the assumption that AD holds

in V [G], because AD in V [G] would imply that ΘV [G] > ω
V [G]
2 ≥ (Θ+)V since ΘV ≤ ω

V [G]
1 .

To see that ΘV [G] ≤ (Θ+)V , let f : RV [G] → (Θ+)V be any function in V [G]. We will show
that f is not surjective. As in the arguments in Case 1, since P is on R, any real in V [G] can
be coded by a set of reals in V . Hence we may assume that f : ℘(R)V → (Θ+)V . Also, since
P is on RV , there is a function g : ℘(R)V × RV → (Θ+)V in V such that rng(f) ⊆ rng(g).
Therefore, it is enough to see that g is not surjective in V .
We now work in V . To see that g is not surjective, for each α < Θ, let Wα = {B ∈ ℘(R) |

|B|W = α}, where |B|W is the Wadge ordinal of B. Then each Wα is a surjective image of
R and so is the set Rα = {g(B, x) | B ∈ Wα, x ∈ R}. Hence, for every α < Θ, the order
type of Rα is less than Θ, and rng(g) =

⋃
α<ΘRα is a surjective image of Θ×Θ. Therefore,

rng(g) is of cardinality at most Θ which is smaller than Θ+. Hence g is not surjective in V ,
as desired.

This finishes the arguments for Theorem 4.1 in Case 2.
This completes the proof of Theorem 4.1. □

5. On forcings adding a subset of Θ

In this section, we prove the following theorems:

Theorem 5.1. Assume ZF+AD++“V = L
(
℘(R)

)
”. Suppose that Θ is regular. Then there

is a poset P on Θ which adds a subset of Θ while presering AD, i.e., for any P-generic filter
G over V , there is a subset of ΘV which belongs to V [G] \ V and AD holds in V [G].

Theorem 5.2. Assume ZF+ AD+ + “V = L
(
℘(R)

)
”. Suppose that Θ is singular and let P

be Add(Θ, 1) in HOD, where Add(Θ, 1) = {p | p : γ → 2 for some γ < Θ}. Then AD fails in
V [G] for any P-generic filter G over V .

Proof of Theorem 5.1. Throughout the proof of the theorem, we write λ for ΘV .
We prove the theorem by considering the two cases whether ADR holds or not.

Case 1. When ADR fails.

Since ADR fails while we assume AD+ and V = L
(
℘(R)

)
, by Theorem 2.9, there is a set T

of ordinals such that V = L(T,R). We fix such a T throughout the arguments for Case 1.
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Let P be Add(λ, 1) in HOD{T}, where Add(λ, 1) = {p | p : γ → 2 = {0, 1} for some γ < λ}.
Since P is computed in HOD{T} and λ = ΘV is inaccessible in HOD{T}, the poset P can be
considered as a poset on λ.

We will show that P is the desired poset in Case 1, i.e., P adds a subset of λ = ΘV while
preserving AD in Case 1.

Let G be any P-generic filter over V . Then the function
⋃

G : λ → 2 can be considered as
a subset of λ and by the genericity of G over V , the subset is not in V . Hence the poset P
adds a new subset of λ to V .

We will show that AD holds in V [G]. We start with showing that the poset P does not
add any bounded subset of λ:

Claim 1. For any γ < λ, we have ℘(γ)V = ℘(γ)V [G]. In particular, RV = RV [G].

Proof of Claim 1. Let γ be an ordinal less than λ and f : γ → 2 in V [G]. We will show that
f is in V .

Let ḟ be a P-name with ḟG = f . Since P can be seen as a poset on λ and f : γ → 2, we
may asssume that ḟ is a subset of λ×γ×2. Since V = L(T,R) and ḟ is in V , we have that ḟ

is OD{T,x} for some real x. Then since ḟ is essentially a set of ordinals, ḟ is in HOD{T,x}. By
Theorem 2.10, we have that HOD{T,x} = HOD{T}[x] and HOD{T} = L[T, Z] for some subset

Z of λ. Since f = ḟG, it follows that f is in HOD{T,x}[G] = HOD{T}[x][G].
Let Q1 be the Vopěnka algebra for adding an element of 2ω in HOD{T}. Then the real x

induces a Q1-generic filter hx over HOD{T} such that x ∈ HOD{T}[hx]. Since G was chosen
to be P-generic over V , it is also P-generic over HOD{T}[hx]. Hence the filter G × hx is
P×Q1-generic over HOD{T} and HOD{T}[x][G] ⊆ HOD{T}[hx][G] = HOD{T}[G][hx].

Since ḟ is in HOD{T}[x] ⊆ HOD{T}[hx], there is a Q1-name τ in HOD{T} such that τhx = ḟ .
Let ν be a sufficiently big cardinal in HOD{T}[G] and let N be Vν in HOD{T}[G]. By the
<λ-closure of P in HOD{T}, the ordinal λ is regular in HOD{T}[G]. Since HOD{T}[G] is a
model of ZFC, there is an elementary substructure X of N in HOD{T}[G] such that γ+1 ⊆ X,
X∩λ ∈ λ, X is of size less than λ, and T, Z,G,P,Q1, τ ∈ X. Let M be the transitive collapse
of X and let π : M → X be the inverse of the collapsing map. Then letting κ = X ∩ λ, we
have that κ is the critical point of π and π(κ) = λ. For any a ∈ X, we write ā for π−1(a),
i.e., π(ā) = a.

We claim that M is in HOD{T}. Let g =
⋃
G. Then by the genericity of G, we have

g : λ → 2. Since G is simply definable from g, we have HOD{T}[G] = HOD{T}[g]. Recall
that HOD{T} = L[T, Z], so HOD{T}[G] = L[T, Z][G] = L[T, Z][g]. Hence the model M is of
the form Lµ[T̄, Z̄][ḡ] for some µ. Since Z is a subset of λ, we have Z̄ = Z ∩ κ and hence
Z̄ ∈ HOD{T}. Since T̄ is a set of ordinals of size less than λ in HOD{T}[G], by the <λ-closure
of P in HOD{T}, the set T̄ is in HOD{T}. Since g : λ → 2, we have ḡ = g ↾ µ, which is in P.
So ḡ is in HOD{T}. Since M = Lµ[T̄, Z̄, ḡ], the model M is in HOD{T}, as desired.

Let h̄x = {q̄ | q ∈ hx ∩X}. We claim that h̄x is Q̄1-generic over M . Recall that Q1 is the
Vopěnka algebra for adding an element of 2ω in HOD{T}. By Lemma 2.12, we may assume
that Q1 is on ΘV = λ and Q1 has the λ-c.c. in HOD{T}. Let A be a maximal antichain in
Q̄1 such that A is in M . We will verify that A ∩ h̄x ̸= ∅. Since P is <λ-closed and Q1 has
the λ-c.c. in HOD{T}, by Lemma 2.13, the poset Q1 still has the λ-c.c. in HOD{T}[G]. By
elementarity of π, the poset Q̄1 has the κ-c.c. in M . In particular, the antichain A is of size
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less than κ in M . Since Q1 is on λ, the poset Q̄1 is on κ in M . So the antichain A is a
bounded subset of κ. Since κ is the critical point of π, we have that π(A) = A.

By elementarity of π, the antichain π(A) = A is maximal in Q1 in HOD{T}[G]. Since M
is in HOD{T} and A is in M , the antichain A is maximal in Q1 in HOD{T} as well. By the
genericity of hx over HOD{T}, the set A ∩ hx is nonempty. Let q be an element of A ∩ hx.
Since A is in M and M is transitive, the condition q is in M . Since Q1 is on λ, π(κ) = λ,
and q ∈ hx ∩M , we have that π(q) = q and hence q ∈ h̄x. Therefore, q ∈ A ∩ h̄x and the set
A ∩ h̄x is nonempty, as desired.

Since the poset Q̄1 has the κ-c.c. inM , by a standard argument, one can lift the embedding
π : M → N to an elementary embedding π̂ : M [h̄x] → N [hx] such that π̂(h̄x) = hx.

We now argue that the function f is in V . It is enough to verify that f is in M [h̄x] because
M is in HOD{T}, HOD{T} ⊆ V , and h̄x = {q̄ | q ∈ hx ∩X} = {q | q ∈ hx ∩X} = Q̄1 ∩ hx.

Recall that τ is aQ1-name in HOD{T} such that τhx = ḟ and that ḟ is a P-name in HOD{T}[hx]

such that ḟG = f . Since τ is in X, letting ġ = τ̄ h̄x and g = ġḠ, we have that π̂(g) = f .
By elementarity of π̂, the set g is a function from π−1(γ) to 2. We now verify that f = g,
which would imply that f is in M [h̄x] because g is in M [h̄x]. Since γ + 1 ⊆ X, we have that
π ↾ (γ + 1) = id. Hence π−1(γ) = γ and g : γ → 2. Also, since π̂(g) = f , by elementarity of
π̂, for any α < γ and i < 2, we have that g(α) = i if and only if f(α) = i. Therefore, f = g,
as desired.

This completes the proof of Claim 1. □

By Claim 1, we know that RV = RV [G]. So we simply write R for RV or RV [G]. Recall that
we write λ for ΘV .
We now show that P does not add any set of reals to V :

Claim 2. The equality ℘(R)V = ℘(R)V [G] holds.

Proof of Claim 2. Let A be any set of reals in V [G]. We will show that A is in V as well.
We first claim that λ is regular in V [G] and λ = ΘV [G]. Let Qω be the finite support direct

limit of Vopěnka algebras for adding an element of 2ω in HOD{T}. Then by Lemma 2.12,
the poset Qω has the λ-c.c. in HOD{T} and there is a Qω-generic filter H over HOD{T}
such that V = L(T,R) ⊆ HOD{T}[H] and the set R is countable in HOD{T}[H]. Since P
is <λ-closed in HOD{T} and Qω has the λ-c.c. in HOD{T}, by Lemma 2.13, the poset Qω

still has the λ-c.c. in HOD{T}[G] and the filter H is Qω-generic over HOD{T}[G] as well.
Hence λ is still regular uncountable in HOD{T}[G][H], the filter G×H is P×Qω-generic over
HOD{T}, and HOD{T}[G][H] = HOD{T}[H][G]. Therefore, λ is still regular uncountable in
HOD{T}[H][G]. Since V [G] ⊆ HOD{T}[H][G], the ordinal λ is regular in V [G] as well. Also,

since R is countable in HOD{T}[H] and RV = RV [G] while V [G] ⊆ HOD{T}[H][G], the ordinal

ΘV [G] is at most ω1 in HOD{T}[H][G]. Since λ is regular uncountable in HOD{T}[H][G], we

have that ΘV [G] ≤ λ. Since V ⊆ V [G] and λ = ΘV , the inequality λ ≤ ΘV [G] also holds.
Hence λ = ΘV [G], as desired.

Let ν be a sufficiently large cardinal in V [G] and let N be Vν in V [G]. Since V = L(T,R),
the model N is of the form Lν(T,R)[G]. Since every element of N is definable from T,G, an
ordinal, and some real while λ is regular in V [G] and λ = ΘV [G], one can find an elementary
substructure X of N in V [G] such that R ⊆ X, λ ∩X ∈ λ, the structure X is a surjective
image of R, and T,P, G,A ∈ X. Let M be the transitive collapse of X and let π : M → X
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be the inverse of the collapsing map. Then letting κ = λ∩X, the critical point of π is κ and
π(κ) = λ. For any a in X, we write ā for π−1(a), i.e., π(ā) = a.
We will finish arguing that the set A is in V . Since R is contained in M and π(Ā) = A,

we have Ā = A and the set A is in M . Hence it is enough to verify that the model M is in
V . Recall that g =

⋃
G and g : λ → 2. Since G is simply definable from g, we have that

N = Lν(T,R)[G] = Lν(T,R)[g]. Since N is of the form Lν(T,R)[g], X is a surjective image
of R in V [G], and λ = ΘV [G], it follows that M is of the form Lµ(T̄,R)[ḡ] for some ordinal
µ < λ. Since µ < λ, the set T̄ is a bounded subset of λ in V [G]. By Claim 1, the set T̄ is in
V as well. Since g : λ → 2 and π(κ) = λ, we have that ḡ = g ↾ κ and ḡ is in P. So ḡ is in V
as well. Since M = Lµ(T̄,R)[ḡ], the model M is in V , and the set A is in V , as desired.

This completes the proof of Claim 2. □

By Claim 1 and Claim 2, we have that RV = RV [G] and ℘(R)V = ℘(R)V [G]. Since we
assume AD in V , the axiom AD holds in V [G] as well.

This finishes the arguments for Theorem 5.1 in Case 1 when ADR fails.

Case 2. When ADR holds.

Recall that we write λ for ΘV . Let P be Add(λ, 1) in HOD, where Add(λ, 1) = {p | p : γ →
2 = {0, 1} for some γ < λ}. Since P is computed in HOD and λ = ΘV is inaccessible in
HOD, the set P can be considered as a poset on λ. Let G be a P-generic filter over V . We
will show that AD holds in V [G].

Claim 3. The forcing P does not add any new set of reals, i.e., ℘(R)V = ℘(R)V [G].

Proof of Claim 3. We will show that for any f : RV → 2 in V [G], the function f is also in V .
Since any real in V [G] can be simply coded as a subset of RV in V [G], this will show that
RV = RV [G] and ℘(R)V = ℘(R)V [G] as well.

From now on, we write R for RV .

Subclaim 1. For some sequence s ∈ λω, the function f is in HOD{s}(R)[G].

Proof of Subclaim 1. Let ḟ be a P-name with ḟG = f . Since P can be considered as a poset
on λ, we may assume that ḟ can be considered as a subset of λ×R× 2. To make it simpler,
we regard ḟ as a subset of λ× R.

Since V = L
(
℘(R)

)
, there is a set A of reals such that ḟ is OD from A. For each α < λ,

let Xα = {x ∈ R | (α, x) ∈ ḟ} and let ξα be the least ordinal ξ < λ such that Xξ = Xα. For
α, β < λ, we write α ⪯ β if ξα ≤ ξβ. Then the structure (λ,⪯) is a prewellordering. Let
π : (λ,⪯) → (γ,≤) be the Mostowski collapsing map. For each δ < γ, let ηδ = min π−1(δ)
and Yδ = Xηδ . Set Y = (Yδ | δ < γ).

Since ḟ is OD from A, so is π. Also π is essentially a set of ordinals, so π is in HOD{A}.
We next verify that there is a set B of reals such that Y is in L(B,R). Since we have

ADR in Case 2, by Theorem 2.6, there is a set B0 of reals which is not OD from A and any
real. Since ḟ is OD from A, so is Y . So each set Yδ of reals is OD from A. By the Wadge
Lemma under ZF+AD, each Yδ is Wadge reducible to B0. In particular, there is a surjection
from R to {Yδ | δ < γ} in L(B0,R). Since the sequence Y = (Yδ | δ < γ) is injective,
there is a surjection ρ : R → γ in L(B0,R) as well. Let B1 = {x ∗ y | x ∈ Yρ(y)}, where



PRESERVATION OF AD VIA FORCINGS 15

x ∗ y (2n) = x(n) and x ∗ y (2n+1) = y(n) for all n ∈ ω. Then Y is in L(ρ,B1,R). So letting
B = B0 ⊕B1 = {x ∗ y | x ∈ B0 and y ∈ B1}, we have that Y is in L(B,R), as desired.

We now argue that for some sequence s ∈ λω, the P-name ḟ is in HOD{s}(R). Since π is
in HOD{A} and Y is in L(B,R), letting C = A⊕ B, we have that π is in HOD{C} and Y is
in L(C,R). Since we have ADR in Case 2, by Lemma 2.14, there is an s ∈ (ΘV )ω = λω such
that C is OD from s and that C is in HOD{s}(R). Hence both π and Y are in HOD{s}(R).
Since ḟ is simply definable from π and Y , we have that ḟ is in HOD{s}(R), as desired.
Since f = ḟG and ḟ is in HOD{s}(R), we have that f is in HOD{s}(R)[G].
This completes the proof of Subclaim 1. □

Since we assume that λ = ΘV is regular in V and s ∈ λω ∩ V , we can pick an ordinal
γ < λ such that s ∈ γω. Let Q1 be the Vopěnka algebra for adding an element of γω in HOD
and let hs = {p ∈ Q1 | s ∈ π1(p)}, where π1 : Q1 → O1 is as in Definition 2.11. Then by
Lemma 2.15, we have that hs is a Q1-generic filter over HOD such that HOD[hs] = HOD{s}.

Subclaim 2. The ordinal λ is regular in HOD{s}(R)[G] and there is no surjection from RV

to λ in HOD{s}(R)[G].

Proof of Subclaim 2. Let Qω be the finite support limit of the Vopěnka algebras for adding
an element of γω in HOD. Since Q1 is a complete suborder of Qω, by Lemma 2.15, there is
a Qω-generic filter H over HOD such that hs ∈ HOD[H] and that the set (γω)V is countable
in HOD[H]. In particular, HOD{s}(R) ⊆ HOD[hs](R) ⊆ HOD[H] and RV is countable in
HOD[H]. Since we have ADR in Case 2, by Lemma 2.15, the poset Qω is of size less than
ΘV = λ. Since P is <λ-closed in HOD and G is P-generic over HOD, we have that any subset
of Qω in HOD[G] is also in HOD. Hence the filter H is Qω-generic over HOD[G] as well.
We now argue that λ is regular in HOD{s}(R)[G]. Since P is <λ-closed in HOD and G is

P-generic over HOD, the ordinal λ is still regular in HOD[G]. Also, since Qω is of size less
than λ in HOD andH is Qω-generic over HOD[G], the ordinal λ is also regular in HOD[G][H].
Since HOD{s}(R)[G] ⊆ HOD[H][G] = HOD[G][H], the ordinal λ is regular in HOD{s}(R)[G],
as desired.

We next show that there is no surjection from RV to λ in HOD{s}(R)[G]. Since RV is
countable in HOD[H] while λ is regular uncountable in HOD[H][G], there is no surjection
from RV to λ in HOD[H][G]. Since HOD{s}(R)[G] ⊆ HOD[H][G], there is no surjection from
RV to λ in HOD{s}(R)[G], as desired.
This completes the proof of Subclaim 2. □

Recall that Q1 is the Vopěnka algebra for adding an element of γω and hs is the Q1-generic
filter over HOD derived from s with HOD[hs] = HOD{s}. Since we have ADR in Case 2, by
Lemma 2.15, the poset Q1 is of size less than ΘV = λ in HOD. So the filter hs is essentially
a bounded subset of λ. Since we assume ZF+AD++“V = L

(
℘(R)

)
”, by Theorem 2.4, there

is a set Z ⊆ ΘV = λ such that HOD = L[Z]. So the model HOD{s}(R)[G] is of the form
L(Z, hs,R)[G] where Z is a subset of λ and hs is a bounded subset of λ. By Subclaim 1, the
function f is in the model HOD{s}(R)[G].
We are now ready to finish the arguments for Claim 3, which are similar to those for

Claim 2. Let ν be a sufficiently big cardinal in HOD{s}(R)[G] and let N be Vν in V [G]. Let
g =

⋃
G. Then by the genericity of G, we have g : λ → 2. Since G is simply definable from
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g, we also have HOD{s}(R)[G] = HOD{s}(R)[g]. Since HOD{s}(R) = L(Z, hs,R), the model
N is of the form Lν(Z, hs,R)[G] = Lν(Z, hs,R)[g]. Since every element of N is definable
from Z, hs, g, an ordinal, and some real while λ is regular in HOD{s}(R)[G] and there is
no surjection from R to λ in HOD{s}(R)[G] by Subclaim 2, one can find an elementary
substructure X of N in HOD{s}(R)[G] such that R ⊆ X, λ ∩ X ∈ λ, the structure X is a
surjective image of R, and Z,P, hs, G, f ∈ X. Let M be the transitive collapse of X and let
π : M → X be the inverse of the collapsing map. Then letting κ = λ ∩X, the critical point
of π is κ and π(κ) = λ. For any a in X, we write ā for π−1(a), i.e., π(ā) = a.
We will finish arguing that the function f is in V . Since R is contained in M and π(f̄) = f ,

we have f̄ = f and the set f is in M . Hence it is enough to verify that the model M is
in V . Since N is of the form Lν(Z, hs,R)[g], the set M is of the form Lµ(Z̄, H̄s,R)[ḡ] for
some ordinal µ. Since Z is a subset of λ, we have Z̄ = Z ∩ κ, which is in V . The filter hs

is essentially bounded subset of λ and hs is in X. So by elementarity of X, we have that
hs ⊆ X and it follows that h̄s = hs, which is also in V . Since g : λ → 2, we have ḡ = g ↾ κ
and so ḡ is in P. Hence we have ḡ ∈ V . Since M = Lµ(Z̄, h̄s,R)[ḡ], the model M is in V ,
and hence the function f is in V , as desired.
This completes the proof of Claim 3. □

By Claim 3, we have ℘(R)V [G] = ℘(R)V . Since AD holds in V , so does in V [G], as desired.
This finishes the arguments for Theorem 5.1 in Case 2 when ADR holds.
This completes of the proof of Theorem 5.1. □

Proof of Theorem 5.2. Let G be any P-generilc filter over V . We will show that AD fails in
V [G]. To derive a contradiction, we assume AD in V [G].

Since we have ZF + AD+ + “V = L
(
℘(R)

)
” in V , by Theorem 3.1, it is enough to show

that P increases Θ, i.e., ΘV < ΘV [G].
Let γ be the cofinality of Θ in V . Since Θ is singular in V , we have that γ < Θ.
We will show that there is an injection from ΘV to ℘(γ)V [G] in V [G], which would imply

ΘV < ΘV [G] as follows: Since we assumed AD in V [G], by Theorem 2.8, there is a surjection
from RV [G] to ℘(γ)V [G] in V [G]. By the existence of an injection from ΘV to ℘(γ)V [G], there
would be a surjection from RV [G] to ΘV in V [G]. By the definition of ΘV [G], we would have
that ΘV < ΘV [G], as desired.

We will construct a function ι : ΘV → ℘(γ)V [G] in V [G] which is verified to be injective.
Since P = Add(Θ, 1) in HOD and G is P-generic over V , the set g =

⋃
G is a function from

ΘV to 2 = {0, 1}. Since γ is the cofinality of Θ in V , we can fix a cofinal increasing sequence
(βα : α < γ) in Θ in V . For each δ < ΘV , let aδ be the sequence (βα + δ | α < γ) in Θ in V .
Now let ι(δ) = {α < γ | g

(
aδ(α)

)
= 1}. Then ι(δ) is a subset of γ for each δ < ΘV .

We will verify that the function ι : ΘV → ℘(γ)V [G] is injective. Let δ, ϵ be distinct ordinals
less than ΘV . We will see that ι(δ) ̸= ι(ϵ). First notice that the functions aδ and aϵ are
different everywhere: For all α < γ, we have aδ(α) = βα + δ ̸= βα + ϵ = aϵ(α). Now since aδ
and aϵ are different everywhere and both are in V , by the genericity of G, there is an α < γ
such that g

(
aδ(α)

)
̸= g

(
aϵ(α)

)
, and hence α ∈ ι(δ)△ ι(ϵ). Therefore, we have ι(δ) ̸= ι(ϵ), as

desired.
This completes the proof of Theorem 5.2. □
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6. Questions

We close this paper by raising two questions.

Question 6.1. Assume ZF + AD. Let P be a poset which adds a new real and let G be
P-generic over V . Then must AD fail in V [G]?

To answer ‘No’ to Question 6.1, one would need to find a poset which changes the structure
of cardinals below Θ drastically as follows: Woodin proved that if there is a poset which
adds a new real while preserving the truth of AD, then the poset must collapse ω1. Also, by
Theorem 3.1, if such a poset exists in a model of ZF+AD++“V = L

(
℘(R)

)
”, then the poset

must preserve Θ. Furthermore, by the arguments for [2, Lemma 2.10] by Chan and Jackson,
if a poset adds a new real while preserving the truth of AD, then any weak partition preperty
of a cardinal in its generic extension cannot be witnessed by a club in the ground model.
Hence, if such a poset preserves Θ as well, then for cofinaly many cardinals κ below Θ, the
poset must shoot a club in κ which does not contain any club in κ in the ground model.

There are many things we do not know on forcings over ZF + AD especially when Θ is
singular. One of them is whether the assumption “Θ is regular” in Theorem 5.1 is essential
or not:

Question 6.2. Assume ZF + AD+ + “V = L
(
℘(R)

)
”. Suppose that Θ is singular. Then is

there any poset which adds a new subset of Θ while preserving AD?
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