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Abstract—System expandability becomes a major concern for
highly-parallel computers and datacenters, because their number
of nodes gradually increases year by year. In this context we
propose a low-degree expandable topology and its floor layout in
which a cabinet or node set can be newly inserted by connecting
short cables to a single existing cabinet. Our graph analysis
shows that the proposed topology has low diameter, low average
shortest path length and short aggregate cable length comparable
to existing topologies with the same degree. When incrementally
adding nodes and cabinets to the proposed topology, its diameter
and average shortest path length increase modestly. Flit-level
network simulation results show that the proposed topology has
lower latency for three synthetic traffic patterns as expected from
graph analysis. Our event-driven network simulation results show
that the proposed topology provides a comparable performance
to 2-D torus even for bandwidth-sensitive parallel applications.

Index Terms—Network expandability, network topologies,
small-world networks, interconnection networks, high-
performance computing.

I. INTRODUCTION

A large number of datacenters and supercomputers are
incrementally expanded year by year, because of the diffi-
culty in precisely estimating future user demands and finan-
cial/political nature. Indeed a large number of the TOP500
supercomputers have increased their computation power, e.g.
FLOPS (floating operation per second), not only by tuning
software/applications but also by increasing the number of
processors [1] after a supercomputer is initially deployed. In
addition, a large number of commercial datacenters have also
been expanded incrementally.

When increasing the number of nodes, a main design
concern is to minimize (i) the number of rewired cables, (ii)
the aggregate length of newly-introduced cables, and (iii) the
degradation of the network efficiency. The network efficiency
affects the execution time of communication-sensitive parallel
applications, because it may corresponds to the diameter and
the average shortest path length when their traffic patterns are
unpredictable or dynamic depending on input parameters.

In this context we propose a layout-aware expandable
topology and its efficient method to incrementally add nodes
or cabinets in a machine room. In the topology design we
use the small-world effect that does not rely on randomness
for low path lengths, efficient incremental expansion of nodes,
and short aggregate cable length on a floor. In the proposed

expansion method, each newly-added cabinet can be installed
only by connecting some short cables to the switches stored
in a single existing cabinet, given the switch degree and the
number of switches per cabinet are carefully selected.

The incremental expandability is not frequently considered
in recent design of interconnection networks. Other issues
including fault tolerance and routing updates still remain when
the interconnection network is expanded. To mitigate such
issues, however, we can apply existing research outputs, e.g.
dynamic or static network reconfiguration methods that update
routing tables and topology-agnostic deadlock-free routing [2],
which are taken from fault-tolerant or power-aware network
studies. Therefore, in this work we focus on the expandable
topology and its floorplan design.

The contribution of this work is as follows.

• We propose a new low-degree topology design, named
DSN-F (distributed shortcut network with flexible expan-
sion), which can easily be expanded up to twice the
number of nodes. Our incremental expansion method
maintains the switch degree and keeps the majority of
inter-cabinet cables untouched.

• Graph analysis shows that the diameter and the average
shortest path length of DSN-F increases gracefully as the
number of nodes increases. The average cable length of
DSN-F is close to that of the same-degree torus.

• Flit-level simulations show that DSN-F outperforms the
same-degree torus in terms of network latency for syn-
thetic traffics, while event-driven simulations show that
all the same-degree topologies have similar average per-
formances for bandwidth-sensitive parallel applications.

The rest of this paper is organized as follows. The related
work and background are described in Section II. In Section III
we introduce DSN-F and present an incremental expansion
method for it. In Section IV, we compare DSN-F to existing
non-random and random topologies, based on the cable length
when laid out in a machine room. In Sections V and VI, we
use flit-level and discrete-event simulations to compare them.
Section VII concludes our work.



(a) Topology DSN-F in size of 32 (b) Structure inside a super-node

Figure 1. The DSN-F topology. Red lines are Shortcuts. Black lines are Internal Links. Brown lines are Local Pred and Local Succ links. Blue lines are
Pred and Succ links.

II. RELATED WORK

A. Low-degree Topologies

Topology design has been excitingly discussed for low-radix
(e.g. 3-D torus) vs. high-radix (e.g. Dragonfly metatopology)
networks, especially for exascale computing systems. How-
ever, a low-radix network, which is our target in this work,
is historically used in a large number of supercomputers as
discussed in our prior work [3], because of (1) their simple
management mechanisms for faults, (2) easy integration of
network router/network interface and processors to a single
chip or to a board (it can be regarded as a “switchless”
network), (3) straightforward layout of switches with relatively
short cables in a machine room [4], and (4) easiness in
debugging custom communication protocol. There are a large
number of low-degree topologies that have good diameter-and-
degree properties, such as De Bruijn graph. Since De Bruijn
graph requires nk nodes for their structure, its expandability
is limited.

Our prior works attempted to design an empirical best
topology for arbitrary network sizes in terms of low diameter,
low average shortest path length and short aggregate cable
length in a machine room (e.g. random swapping for high-
radix era [5] and distributed shortcut network (DSN) for low-
radix era [3]). In this work we use DSN as baseline for our
proposed expandable topology that does not increase switch
degree and the number of newly introduced long cables when
the network is incrementally expanded. Below, we review the
basic topology DSN-x with n nodes, which is also called DSN
for short when the context is clear. The integer parameter x,
conditioned to be between 1 and p − 1 with p = dlog ne,
represents the size of the set of different length shortcuts.

• Ring Formation: n vertices are arranged in a ring and
each node has an ID number from 0 to n − 1. Each

node i shares two local undirected links with adjacent
neighbors (i−1) mod n and (i+1) mod n, which are
called predecessor (pred for short) and successor (succ
for short) links, respectively.

• Labeling: Each node also has a numeric label from 1 to p,
which is also called the level of this node. The levels are
assigned to nodes periodically: level i = 1..p is assigned
to nodes k × p + i− 1 where k = 0, 1, 2, . . . , bn/pc.

• Shortcut Addition: Each node that has level l ≤ x has
one shortcut link going to node j that has level l + 1
and has the minimum clockwise distance to i but at least
bn/2lc. We also call this type of shortcut as the level-l
shortcut, which has length at least n/2l. For a node with
level l we also say that it has height p + 1− l. Thus the
higher a node is the farther its shortcut goes.

B. Network Expansion

Incremental expandability is commonly required to a com-
mercial HPC and datacenter systems. Low-radix non-random
networks, such as 2-D or 3-D tori, can be incrementally
expanded in a straightforward manner. For example, k-ary
2-mesh can be expanded by each k-node increase with the
same custom routing algorithm, e.g. Duato’s protocol or
dimension-order routing. In this case the topology is still a
two-dimensional mesh. Its short-cable layout in a machine
room is also obvious.

By contrast, small-world and random topologies are easy to
add nodes while maintaining low diameter and low average
shortest path length, but introduce difficulties in achieving
short cable length and a constant switch degree. The JellyFish
work [6] discussed that random topology has high incremental
expandability. However the switch degree may increase and
the newly-introduced long cables may arise when adding nodes
to an existing random topology.



To our best knowledge, in this context we do not have an
efficient method to incrementally add nodes to small-world and
random topologies. This is our main challenge in this study.

III. DISTRIBUTED SHORTCUT NETWORK WITH FLEXIBLE

EXPANSION (DSN-F)

In the sections below, we present our new topology design,
named DSN-F, with some refinements to our precedent design,
called DSN [3], to make it easier to expand and still maintain
the low degree and the logarithmic diameter properties. We
also propose an expansion method that smoothly adds nodes
into the new topology. With this method, our new design has
arbitrary size and incremental expandability properties.

A. Basic Approach

Our new design is followed by a few observations.
Firstly, let us discuss about the incomplete super-node in

a basic DSN-x topology of n nodes. A super-node I is
incomplete if it does not have a complete set of x shortcut
links (its number of nodes is less than p = dlog ne). Let
r = n mod p. The existence of incomplete super-node raises
the overshoot issue during routing process. It can lengthen the
walk for finding the next k-level node, which I may not have,
by the extra r local links inside I . Therefore, the maximum
path length from any source node to any destination node is
up to 3p + r (mentioned in the facts 2 and 3 in [3]). In a
simple view, the maximum path length will be shorter if we
can avoid the incomplete super-node in terms of designing.

Secondly, we consider the expandability properties of DSN
topology. A simple expansion method is to add nodes sequen-
tially into the ring of nodes (between nodes 0 and n−1). Since
a basic DSN topology can be viewed as a DLN-x topology1

of super-nodes [3], this method is the same as adding one or
more new super-nodes and their shortcuts in DLN-x topology.
On the other hand, Section V-C of [3] raises an idea on
pushing new nodes into existing super-nodes. The additional
nodes only have local links to existing nodes and do not
come with shortcuts. In both ways, the expansion methods
work well with a small number of additional nodes. But in
case of adding many nodes, e.g. when doubling the size of
network, it will loosen the small-world effect in designing
shortcuts. Therefore, the average shortest path length and the
diameter of topology become large as the number of additional
nodes grows. Generally, expansion method needs to produce
the same type of topology for maintaining the small-world
effect.

Following the above observations, we learn the idea of
loosening the strict condition in constructing topology by
allowing each super-node to have a flexible size [3]. We also
standardize the number of super-nodes to be 2p. Now, topology
is a ring of 2p complete super-nodes that include at least p
nodes and p outgoing shortcuts. This design matches exactly

1A DLN-x topology [7] is constructed of a ring and x−2 additional random
shortcuts at each node.

to the best case of DLN-p topology. These refinements help to
reduce the maximum path length by avoiding the incomplete
super-node issue.

Inside a super-node, we arrange nodes into layers named
layer-{0, 1, 2, . . .}. Layer-0 includes p different-level nodes
that come with shortcuts. Each layer also has at most p nodes
without shortcuts. With this inside structure of a super-node,
we can easily add nodes to an existing topology without
rewiring the shortcuts (long and complicated cables) by push-
ing nodes into the layer of super-nodes. Furthermore, if the
number of additional nodes grows high, we propose a method
to transform the DSN topology from the view of DLN-p to
DLN-p+1, with an acceptable number of rewired cables. Since
the topology after transformation is still a DSN, we can use
the former method to add more nodes. This idea gains the
incremental expandability properties for our design.

B. Topology Description for DSN-F: New Design for Expan-
sion

Let us describe our new topology design in detail. Hereafter
n denotes the total number of nodes.

1) Labeling: Each node has a node ID i with 0 ≤ i ≤
(n− 1)}, which is determined by three numbers, namely l, k,
and s:

• Node level l with 1 ≤ l ≤ p, where an integer p with
p×2p ≤ n < (p+1)×2(p+1) denotes the maximum level
of all nodes. The level of the node i is l = i mod p+ 1.

• Node layer k with 0 ≤ k ≤ dn/Ne, where N = p× 2p

denotes the maximum number of nodes in each layer (p
nodes in each super-node). We say the node i is in layer-k
if bi/Nc = k.

• Super-node ID s with 0 ≤ s ≤ 2p−1. Nodes are grouped
into 2p super-nodes identified by the super-node ID s. A
super-node s is a group of nodes i with i/p mod 2p = s.
Since 0 ≤ i ≤ n − 1 and n ≥ p × 2p, each super-node
has at least p adjacent nodes.

2) Internal Links of Super-node: There are two types of
links inside a super-node.

• Nodes in the same layer are arranged in a ring. Each
node {l, k, s} has two links, called Local Pred and
Local Succ, which are connected to nodes {(l − 1
mod p), k, s} and {(l + 1 mod p), k, s}, respectively.

• Each node {l, k, s} with k ≥ 1 has another link, called
Layer Link, which is connected to the node {l, k−1, s},
i.e. the same-level node in the upper layer.

3) Succ and Pred Links: Super-nodes are also arranged in
a ring. In each super-node s, the node {p, 0, s} is connected to
the node {1, 0, (s+1 mod 2p)} by Succ link, while the node
{1, 0, s} is connected to the node {p, 0, (s− 1 mod 2p)} by
Pred link.

4) Shortcuts: In each super-node s, each node with level
l < p has one Shortcut link going to another node j that has
level l + 1 in the super-node with the minimum clockwise



distance of 2p/2l = 2p−l to s. Note that only nodes in layer-0
have shortcuts.

Figure 1 illustrates our topology construction in detail.
Fig.1(a) presents a full network for the case of n = 32
and p = 3. In this case, the topology is a ring of 23 = 8
super-nodes. Each super-node is constructed of two layers.
The nodes 0 to 23 are arranged in layer-0 and the rest are in
layer-1. Each node with level l < 3 has one Shortcut link. The
node 0 in the super-node 0 has a shortcut to the node 13 in the
super-node 4 with the clockwise distance ∆ = 4. We denote
the distance between the two super-nodes by ∆ij = sj − si.
By definition, this shortcut goes a distance that is greater than
or equal to 2p−l = 23−1. The Succ and Pred links connect
super-nodes together. Node 0{l = 1, k = 0, s = 0} and
23{3, 0, 7} are connected by the link that called Pred of node
0 or Succ of node 23. Fig.1(b) illustrates the structure inside
a full super-node with 2p + 2 nodes arranged into 3 layers.
The node 0{1, 0, 0} has two links Local Pred and Local Succ
which are connected to nodes 2{3, 0, 0} and 1{2, 0, 0}. It also
connects to the node 24{1, 1, 0} by Layer Link.

Our DSN-F topology uses a custom routing algorithm
presented in [3] with some small additional steps. Consider
the routing task from the node i with {li, ki, si} to the node j
with {lj , kj , sj}. We assume that 0 ≤ si < sj without loss of
generality. Our new routing algorithm proceeds in three steps:

1) Route to the node {li, 0, si}, which is in layer-0 in the
same super-node and the same level with the source i.

2) Route to the node {lj , 0, sj} using the algorithm men-
tioned in [3], which repeatedly finds a proper shortcut
to go a half of distance from the source super-node si
to the destination super-node sj .

3) Reach the destination node j following the Layer Links
inside the destination super-node sj .

The detailed algorithm is presented in Fig.2. For example,
consider a path from node 24{1, 1, 0} to node 7{2, 0, 2} in the
network represented in Fig.1(a). We need firstly route to node
0{1, 0, 0} that is in the same super-node and level with 24 but
in layer-0. Then, we route to node 1{2, 0, 0} that has proper
shortcut to go to destination super-node (PRE-WORK). We
reach destination super-node 2 by using this shortcut (MAIN-
PROCESS) and route to node 7{2, 0, 2} by Local Pred link
in FINISH. The routing path from node 24 to node 7 is (24,
0, 1, 8, 7).

C. Graph Properties of DSN-F

Remind that we arrange an n-node topology into 2p super-
nodes. Each super-node is constructed of some layers. The
number of layers in the topology is denoted by K = dn/Ne
where N = p× 2p. We consider the worst case of DSN-F in
terms of graph properties by the theorem below.

Theorem 1: On the properties of DSN-F:

a. The average degree of vertices is 4, and the maxi-
mum degree is 5.

DSN-F routing algorithm pseudo-code

1: procedure DSN-F-ROUTING(i, j)
2: u← i
3: l← blog 2p

∆uj
c+ 1

4:
5: PRE-WORK PHASE ———————————
6: while ku > 0 do . ku = layer of u
7: u← u.Layer Link
8: end while
9: while lu 6= l do . lu = level of u

10: u← u.Local Succ or u.Local Pred
11: end while
12: MAIN-PROCESS PHASE ————————–
13: repeat
14: if lu = p− 1 then
15: u← u.Succ
16: else if lu = l then
17: u← u.Shortcut
18: else
19: u← u.Local Succ
20: end if
21: l← blog 2p

∆uj
c+ 1

22: until su = sj
23: FINISH PHASE —————————————
24: repeat
25: u← u.Local Succ or u← u.Local Pred
26: until lu = lj
27: repeat
28: u← u.Layer Link
29: until u = j
30: end procedure

Figure 2. Our custom routing algorithm for DSN-F. The notation of “u.Link”
indicates the adjacent node of node u connected by Link.

b. The maximum routing diameter is 2× (p + K − 1)
and is logarithmic.

Proof of theorem 1:
a. By definition, a node can have four types of links, namely

Pred/Succ, Shortcut, Local Pred/Local Succ, and Layer Link.
Fig.1(b) illustrates the links. Clearly, the maximum degree of
the layer-0 nodes is 5, while it is 4 for the nodes in layer-1 or
higher. Therefore, the maximum degree of the network is 5.

Moreover, most of the nodes in layer-1 or higher has
minimum degree 3 (namely Local Pred, Local Succ, and
Layer Link). In fact, for any node with degree 3, we can
find a corresponding layer-0 node with degree 5, which is
in the same super-node and the same level. In other words,
the number of nodes with degree 3 is equal to the number of
nodes with degree 5. Thus, the average degree is 4.

b. Let us consider a path from the source node i to the
destination node j. In the PRE-WORK phase, we first route
from i to an corresponding layer-0 node using Layer Links.
It takes at most K − 1 hops. Then we route to a proper



(a) Before splitting (b) After splitting

Figure 3. Illustration of our transformation method. Red lines are additional
links. Green lines are removed links.

node that is high enough to look down at the super-node sj
by successively taking Local Succ or Local Pred links. This
action needs at most p

2 hops (along the local ring of layer-0).
In conclusion, the PRE-WORK phase needs p

2 +K − 1 hops.
The MAIN-PROCESS phase also takes at most p hops because
we always go down in terms of the height of the nodes (going
up with the levels).

In the FINISH phase, we take Local Succ link to reach
the node {lj , 0, sj} and route to the destination node j using
Layer Link. The fact is that we are at a node in the same
super-node with j when the MAIN-PROCESS phase just
finished. Therefore, the maximum path length for the former
action in the FINISH phase is p

2 . Clearly, the later action needs
at most K − 1 hops.

Overall, using our DSN-F routing algorithm, the path from
any source node i to any destination node j takes at most
2 × (p + K − 1) hops. By definition, p is an integer number
that satisfies p× 2p ≤ n < (p + 1)× 2p+1, and thus log n ≤
(p+1)+log p + 1. In the other words, we can say p = log n+
Constant , which means that the maximum routing diameter
is logarithmic.

From this theorem, the degree-diameter factor of DSN-F
is nearly the same as the basic DSN topology. The average
degree of DSN-F is a bit higher but the maximum degree is
still 5. Thus, we can say that DSN-F is a low-degree topology.
In terms of routing diameter, DSN-F is significantly better.
Note that the diameter of DSN is about 3 log n + r with r <
log n, whereas that of DSN-F is 2 × (p + K − 1). By the
definition of p, we can proof that (p+K−1) is approximately
equal to log n. Therefore, the routing diameter of DSN-F is
about a half of the basic DSN. This value is equal to the
improved diameter version mentioned in Section V-B of [3].

D. Incremental Expansion Method

Section III-C proves that our new design has low degree and
logarithmic diameter properties. The following section provide
an insight into its arbitrary size and incremental expandability
properties.

The size of a shortcut set p is an important parameter for
labeling and topology construction. For any number of nodes

n, we can always find a corresponding integer p. Therefore, we
can say that DSN-F has arbitrary size properties. Moreover, the
inside structure of super-nodes makes it easy to add new nodes
while maintaining the advantages on degree and diameter.

As an example, consider adding one node to an n-node
DSN-F topology with p levels and K layers. Generally, we add
the new node into the layer-(K−1) which has r = n mod N
nodes in it (r < p). If the layer-(K − 1) has full p nodes,
we will firstly create a new layer-K, and then add the new
node to it. In both cases, since nodes are added into a super-
node based on the labeling scheme of construction method,
the structure inside the super-node is maintained. Hence, the
maximum/average degree does not change, and the diameter
increase at most 1 hop (for the new layer) when compared
to the original topology. From the cabling point of view, this
method has an advantage that it avoids rewiring, i.e. it only
add new cables for the new node.

Moreover, if the number of additional nodes grows high, we
propose a method to transform the structure of super-nodes
from DLN-p to DLN-(p + 1), with an acceptable number
of cables rewired. The main idea is (i) we add nodes to
the topology using the above-mentioned method; and (ii)
whenever the numbers of nodes inside all the super-nodes
reach 2p + 2, we firstly split each super-node into two new
smaller ones with size of p + 1, then add shortcuts to the
new super-nodes to ensure that each of them has a full set
of p + 1 shortcuts. As a result, the topology produced by
the transformation method is still DSN-F but its argument
integer p changes to p+1. We say that DSN-F has incremental
expandability properties since we can continue adding more
nodes into the new topology by applying the transformation
method repeatedly.

In the rest of this section we provide a more detailed
description of our transformation method. Let us consider a
transformation of DSN-F topology from argument p to p+ 1.
Before transforming, the topology is a ring of 2p super-nodes,
each with a full set of p shortcuts. Inside each super-node,
2p + 2 nodes are arranged into 3 layers. Without loss of
generality, we use ID number from 0 to 2p+1 to identify those
nodes, as shown in Fig.3(a). After transforming, a super-node
S is spitted into two smaller super-nodes SA and SB . Each of
them has p + 1 nodes, and is constructed of only one layer.
The super-node SA is a combination of p layer-0 nodes and
one layer-3 node, i.e. node 2p at layer-3, level-1. Clearly, now
this node can be considered as a level-(p + 1) node of SA.
Similarly, the rest of nodes are pushed to the super-node SB .
In the view of links, we remove/add links following the steps
below:

• All the Layer Links are removed (p links between layer-0
and layer-1, and two links between layer-1 and layer-2).

• In each super-node, most of the local links are not
affected. We add the node level (p + 1) into the ring
of layer-0 in the position between the node level 1 and



the node level p. This action remove one link and add
two links inside each super-node.

• In the super-node SA:
– Keep all the shortcuts (both incoming and outgoing)

from nodes level 1 to nodes level p− 1.
– Remove the Succ link of the node level p and then

add new outgoing shortcuts from it to the node level
(p + 1) in the super-node (S + 1)A.

– Add a new Succ link from the node level p + 1 of
SA to the node level 1 of SB .

• In the super-node SB :
– Add p outgoing shortcuts. From the node level l ≤ p

of SB , add one shortcut to the node level l + 1 in
the super-node (S + 2p+1−l)B .

– Add a new Succ link from the node level p + 1 of
SB to the node level 1 of (S + 1)A.

Figure 3 illustrates our transformation method. Fig.3(a)
shows a super-node S before splitting, and Fig.3(b) presents
two smaller super-nodes after splitting. Clearly, the inside
structure of the super-node SA (or SB) looks like DSN-F
topology with the size of the shortcut set changed from p to
p+1. On the other hand, the distance between SA and (S+1)A
is 2 because SB is in the middle of them. Similarly, the
distance between SA and (S+2p−l)A is 2×2p−l = 2(p+1)−l.
Therefore, the length of a typical shortcut from the node i
with {l, 0, SA} to the node j with {l + 1, 0, (S + 2p−l)A} is
as far as it is in the design of topology. The two points above
prove that the topology after transforming is still an instance
of DSN-F.

E. Practicality of DSN-F

Because of arbitrary size and expandability properties, the
DSN-F topology can be used in supercomputer and datacenter
networks, where the interconnection networks are required to
gradually be expanded to meet their growing demands. The
expansion method of DSN-F perfectly fits these requirements.
Most of time, adding new switches requires a little effort with
the simple actions as described in the previous section. We
only have to connect the new switch to an existing topology
without any rewiring.

The managing and expanding efforts become simpler when
we carefully select the number of switches per cabinet. For
example, we choose the number of switches in each layer as
p = 4 and we use the cabinet that stores 16 switches. Naturally,
the four layers are installed into one cabinet. Therefore, all
the switches in the same layer are arranged in the same
cabinet. All the local links in logical design now are installed
inside only one cabinet. With this arrangement, we can easily
manage the working with switches in terms of labeling and
maintenance (i.e. replacement of old switches). Moreover,
from the expansion point of view, the newly-added cabinet
can be installed by connecting its cables to switches that in a
single existing cabinet.

When the number of switches in the network becomes
huge, we still take the above advantages by rearranging some
cables to keep the network simple. From the description in
the previous section, we analyze that the transformation needs
p + 7 cables rewired at each super-node (i.e. (p + 7) × 2p

cables for the whole network). Each super-node has 4p + 4
links with 2p+2 Local Link, p+2 Layer Link, and p for both
Shortcut and Succ. Therefore, the number of rewired cables of
our transformation method is (p+7)/(4p+4). It may be high
in case of small value of p. But for the future design where
the number of nodes and p value are very high, the rewired
cables rate can be acceptable (from 25% to 30%).

Transformation requires the change of node ID and labeling.
In the general view, we renumber the ID of nodes after each
splitting action. More detail, each node is presented by a tuple
of three number label l, layer k and super-node s. It is easy
to update the level and layer of nodes inside one super-node.
The challenging action is renewing the super-node ID number
that nodes belong to because we separate one super-node into
two smaller ones. As a simple approach, we label super-node
ID using binary numbers. For example, a supper-node S can
be named by a binary number, e.g. 000. After transformation,
super-node S is splitting into SA and SB which are labeled
by two binary numbers 0000 and 0001.

The renumber and rewire cables action mentioned above
may take some effort but the transformation does not fre-
quently occurs. Instead, the action of adding nodes into layers
of super-nodes is used usually. Therefore, we conclude our
proposed expansion method is practical enough.

IV. GRAPH AND LAYOUT ANALYSIS

In this section, we compare our topology generated by the
incremental network expansion with typical topologies that has
the same low average degree (a non-random topology Torus,
a random topology DLN-4 [7], and our precedent topology
DSN [3]). First, we compare them in terms of diameter and
average shortest path length by means of graph analyses.
Next, we compute the average cable length considering their
floorplan in a machine room, using parameters of recent
interconnect technology.

A. Diameter and Average Shortest Path Length vs. Number of
Added Nodes

Figure 4 shows the diameter and the average shortest
path length of 1,024-node DSN-F topology and its expanded
variations. The x axis indicates the number of added nodes, i.e.
x = 0 means the baseline 1,024-node network and x = 1024
means the expanded 2,048-node network. Not surprisingly, the
diameter and the average shortest path length slightly increase
as the number of nodes increases. When 1,024 nodes are
added, i.e. the network grows twice as large as the baseline,
each original super-node set also grows twice as large. Due to
this regularity, the diameter at x = 1024 is slightly lower than
at x = 768.



Figure 4. Diameter and average shortest path length (ASPL) vs. the number
of added nodes over 1,024-node DSN-F topology.

Figure 5. Diameter vs. network size.

B. Diameter and Average Shortest Path Length vs. Network
Size

The average degree of DSN-F is 4. We thus compare it
with the same-degree topologies, namely 2-D torus, DLN,
and DSN, with the same number of nodes. Figures 5 and 6
show the diameter and the average shortest path length of each
topology. Lower values are considered better.

In all the network sizes, DLN achieves the lowest while
2-D torus leads to the highest. DSN-F maintains the main
characteristics of DSN. Specifically, the diameter and the
average shortest path length of DSN-F are at most 16.7% and
4.6% lower than those of DSN. Therefore, we expect that
DSN-F leads to almost the same performance with DSN.

C. Average Cable Length and Layout

We estimate the cable length required to deploy the topolo-
gies over a physical layout of cabinets. The parameters and
the optimization method are the same as those in our previous
work [5]. We assume a physical floor that is sufficiently large

Figure 6. Average shortest path length vs. network size.

Figure 7. Average cable length vs. network size.

to align all cabinets on a 2-D grid. Formally, assuming c
cabinets, the number of cabinet rows is x = d

√
c e and

the number of cabinets per row is y = dc/xe. We assume
that each cabinet is 0.6m wide and 2.1m deep including
space for the aisle, following the recommendations in [8].
The distance between the cabinets is computed using the
Manhattan distance. We estimate average cable length in a
more conservative way than in [9]: 2m intra-cabinet cables
and a 2m wiring overhead added to the length of inter-
cabinet cables at each cabinet. We ignore cables between
compute nodes and switches, since their lengths are constant.
We assume that each cabinet stores 16 switches.

The average cable length of each topology2 is computed and
shown in Fig. 7. Lower values are considered better. Our DSN-
F topology features an average cable length that is similar to

2Notice that the layout of 2-D torus is well studied, e.g. folded method for
uniform link length. However, the average cable length of folded torus is the
same as that of the corresponding original torus in which only wraparound
links are long. Thus we fairly compare 2-D torus, DSN and DSN-F in terms
of cable length.



Figure 8. Throughput and latency for 128-switch networks in uniform traffic.

DSN and 2-D torus topologies in most of the network sizes
(except for 210 and 211). It reduces the average cable length
by up to 17.72% and 24.82% where the network size is 27

and 212, respectively. This improvement illustrates the best
cases where we carefully select the number of switches per
cabinet. In this case, all the switches in the same layers are
in the same cabinet and all the local links in logical design
are installed inside only one cabinet. As the network size
become larger, the cable length of DSN-F with 16 switches
per cabinets becomes closer to the best case, where one super-
node is mapped exactly to one cabinet.

V. NETWORK LATENCY

A. Flit-level Simulation

To evaluate the latency and the throughput of our topologies,
we use a cycle-accurate network simulator written in C++ [7].
Every simulated switch is configured to use virtual cut-through
switching. A header flit transfer requires over 100ns including
the routing, virtual-channel allocation, switch allocation, and
flit transfer from an input channel to an output channel through
a crossbar. We use the topology-agnostic adaptive routing
scheme with the escape paths described in [10].

We simulate two synthetic traffic patterns that determine
each source-destination pair: random uniform, and matrix
transpose. In the random uniform traffic a random source-
destination pair is sampled from a uniform distribution for
each message. In the matrix transpose traffic each endpoint
is also assigned a binary address and communicates with the
endpoint with the binary address that is shifted by n/2 bits.
The hosts inject packets into the network independently of
each other. In each synthetic traffic the packet size is set to 33
flits (one of which is for the header). Each flit is set to 256
bits. Effective link bandwidth is set to 96 Gbps.

Figure 9. Throughput and latency for 128-switch networks in matrix
transpose traffic.

B. Simulation Results

Figures 8 and 9 show the simulation results for 128-switch
networks for uniform traffic and matrix transpose traffic,
respectively. Our main finding is that all the latency results
match the observations in the graph analysis on diameter
and average shortest path length. This is expected since the
network latency is correlated to the hop count. By contrast,
all the topologies have similar throughput, i.e. the maximum
amount of accepted traffic, since they have almost the same
number of links. Since this simulation assumes short packets,
i.e. less than 3 KB, we conclude that a latency-sensitive short-
packet traffic fit DSN-F, DSN, and DLN topologies.

VI. APPLICATION PERFORMANCE

A. Event-driven Simulation

We use SimGrid as a parallel-computer simulator [11]. The
network size is set to 128 switches that is the same as the
flit-level simulation in the previous section. The network link
bandwidth is set to 40 Gbps, and switch delay is set to 200
nsec. Whereas the processor power is set to 1 GFLOPS. We
measured the performance of NAS Parallel Benchmarks (Class
A, MPI version) and Himeno Benchmark for each topology
generated by our expansion method. We take a minimal
routing.

B. Simulation Results

Figure 10 plots the results of DSN-F, DSN, 2-D torus,
and DLN topologies. The y axis indicates the Mop/s relative
to 2-D torus. Higher values are considered better. Network
bandwidth rather than network latency affects the performance
under these parallel applications on SimGrid environment. For
example, there are a few inter-process communications, i.e.
AllReduce operations, in EP application. However, the AllRe-
duce operations take a major proportion of the execution time
in our simulation environment. Multiple topologies thus have
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Figure 10. Performance evaluation results using NAS Parallel Benchmarks
and Himeno Benchmark. “Ave” means the average over all the benchmarks.
Values are normalized to those of 2D-Torus.

different Mop/s for EP application in our evaluation results.
Overall, our main finding is that there is no almighty topology
for a variety of bandwidth-sensitive parallel applications. All
the evaluated topologies have the similar average performance
over the benchmarks, because they have a similar number of
network links that leads to a similar network throughput in
average, as shown in the previous section.

VII. CONCLUSIONS

In this study we proposed an expandable low-degree topol-
ogy, named DSN-F, for supercomputers and datacenter net-
works in which the number of nodes gradually increases
year by year. Since their interconnection networks recently
become latency-sensitive to support various massively-parallel
applications [12], the network topology that exploits small-
world effect, e.g. DSN [3], is attractive for those systems.
Unlike conventional “regular” topologies (e.g. k-ary n-cubes),
those “small-world” topologies have no intuitive way to add
nodes once the topology is deployed. In this context we
extended the precedent DSN topology design so as to easily be
expanded while maintaining the switch degree and keeping the
majority of cables untouched. We theoretically illustrated that
a cabinet or node set can be newly inserted by connecting some
short cables to a single existing cabinet. We evaluated DSN-
F in comparison with the same-degree torus, DLN, and DSN
topologies in terms of diameter, average shortest path length,
cable length, throughput/latency, and parallel application per-
formance. Our evaluation results demonstrated that DSN-F has
similar diameter, average shortest path length, and average
cable length to that of DSN and DLN. The cable length is close
to that of 2-D torus, whereas the diameter and the average
shortest path length are close to those of DLN. As expected

from the graph analysis results, the flit-level simulation results
showed that DSN-F has a better latency than that of 2-D torus.
The event-driven simulation showed that there is no almighty
topology for bandwidth-sensitive parallel applications. From
various practical quantitative aspects we conclude that DSN-F
is a promising alternative to make future supercomputers and
datacenter networks flexibly expandable.
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