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Abstract—Cabling negatively affects not only the expandability
of HPC systems, but also the reliability of their communications.
In effect, the deployment of a supercomputer requires thousands
of kilometers of cables, which are generally buried under the
floor. Hence, moving or replacing these fibers is impossible once
a supercomputer is deployed. In this study, we propose to exploit
an efficient cabling method to enable multiple topologies in a
system expanded incrementally. This approach reduces the cost
of implementing an HPC system stage after stage, while requiring
a limited knowledge about the future target applications and the
final size of the system.

Index Terms—Cabling, interconnection networks, network
topology, high-performance computing

I. INTRODUCTION

A large number of data-centers and supercomputers are
incrementally expanded year after year, since precisely esti-
mating the future demands of users and securing the whole
HPC budget at once is often too complex. For example,
many supercomputers of the Top 500 [1] have increased their
computation power not only by optimizing the application
software, but also by installing more computing nodes after
the initial deployment. It is also described in [2] that a large
number of data-centers are expanded incrementally. Figure 1
illustrates such an HPC implemented in 3 stages. Each cabinet
consists of 4 switches, that are connected to several —not
shown— compute nodes, and other switches through cables
represented in yellow. At the interconnect level, cables are
installed when required, following Figure 2.

Before the supercomputer is deployed, cables are usually
installed under a floor (as in Figure 1) or on the cabinets side,
for an increasing the packaging density. As a consequence,
once cabinets have been assembled, the removal and/or addi-
tion of these cables becomes extremely tedious. Hence, cables
connecting different cabinets can be seen as darkfibers, since
operators cannot afford to manipulate them. Fortunately, a
sufficient slack at both cable end lets administrators with
the opportunity to select any switch within end cabinets.
Accordingly, the connection of two switches belonging to the
same cabinet requires little effort.

ω = 1 ω = 2 ω = 3

Figure 1: Representation of a HPC built in 3 stages (ω = 1,
ω = 2 and ω = 3). Each cabinet contains 4 switches (green)
bound together by an underlying darkfiber network (yellow).

When the expansion of a supercomputer is considered, by
adding compute nodes and/or storage, a primary concern is
the possibility to re-design the supercomputer architecture,
e.g. by using new GPUs. In this context, the upgrade of the
interconnection network is essential, to fully exploit novel
compute nodes. However, at present, the network is grace-
fully and conservatively updated without changing neither the
topology nor the routing algorithm; because the preexistent
cabling generally limits the re-design options regarding both
topology and routing.

Another key design aspect is the topology implemented by
the interconnection network. The family of fat-trees and k-ary
n-tori/meshes is commonly used for existing supercomputers,
thus various parallel algorithms are tuned to one topology of
choice. Alternatively, random topologies recently received a
fair attention for low-latency purposes [3]. These topologies
generally perform better than regular topologies when the
traffic patterns are unknown or unpredictable. Overall, an ideal
solution is to support all the above topologies on a single su-
percomputer. For example, three networks could be installed in
a supercomputer, with a threefold cabling cost though. Instead,



our method attempts to reuse cables as much as possible, and
limits the number of cables installed before a supercomputer
is expanded, hence reducing unused cables if a topology is
abandoned. Another interesting possibility is the choice of a
high-radix topology for the first implementation stages, and
the progressive diminution of radix as the interconnect grows,
which avoids the explosion of the aggregated cable length.

In this context, we propose a cabling method to allow
the change of the network topology after the supercomputer
is deployed, while limiting the cabling budget. Our main
contributions are:
• a formal description of the darkfiber planning process;
• the support of multiple topologies at once and its cost

estimation;
• the reduction of backup cables cost.
Background information and related works are discussed in

Section II. Our method is presented formally in Section III
and some experimental results are discussed in Section IV.
Section V concludes with a brief summary of our findings.

II. RELATED WORK

A. Network Topology

A few topologies, e.g. k-ary n-cubes and fat trees, are
traditionally used to interconnect compute nodes in most HPC
systems. Each topology leads to a different tradeoff between
degree and diameter; thus having different killer-applications.
Stencil communications, which are a frequent pattern in fluid
applications, fit well to k-ary n-cubes, whereas fat trees
support well all-to-all exchanges and shuffle communications.
All these topologies are regular, meaning that all switches
have the same degree (i.e., each switch has an identical number
of links to other switches).

Random topologies have better properties in terms of diam-
eter and average shortest path length [4], which is crucial when
every process needs to communicate to every other process at
some point during the execution of the application. Recently,
the advantage of random topologies has been reported for
various communication patterns [5]. In the present study, we
support the iterative implementation of above topologies, as
the supercomputer expands.

B. Cabling

The layout of cabinets on a floor-plan is a major concern
when designing large systems because it largely affects the
installation and exploitation costs [6]–[8]. The features of floor
layout include the cabinet footprint, the number of compute
nodes and switches per cabinet, and spacing between cabinets.
For instance, in the case of the Cray BlackWidow system, it
is estimated that each cabinet has a 0.57m × 1.44m footprint,
with 128 nodes per cabinet, and that the node density should
be close to 75 nodes/m2 [6]. A common way to view this
problem is to come up with specifications for the widths of the
aisles between cabinet rows. The ANSI/TIA/EIA-942 standard
recommends site layouts with alternating cold and hot aisles,
respectively with widths in excess of 4ft and 2ft. A similar

specification can also be found in [9]. In this study, we assume
that some 2-D physical layout of cabinets has been determined
to comply with the power/heat constraints of the system to
be deployed. Our approach can be readily parameterized to
comply with the specific layout constraints.

The other assumptions are listed as follows:
• A Manhattan cabling is assumed.
• All cabinets contain the same number of switches.
• All cables between switches in a same cabinet have the

same length.
• All cables below a certain length threshold are copper-

made, all others are optic fibers.

C. Routing Update

Custom routing implementations in large-scale HPC sys-
tems that use non-random topologies can exploit topological
regularity, such as dimension-order routing on k-ary n-cubes,
to make routing logic simple and small. By contrast, support-
ing the topology change or randomness makes it impossible
to rely on such schemes because the topology does not have
a simple structure. In this case, it is necessary to use source
routing or distributed routing that relies on routing tables. In
practice, a large number of recent supercomputers posted in the
Top500 list [1] use Ethernet or InfiniBand, both technologies
relying on routing tables. Hence, for all these supercomputers,
the size of routing tables is a scalability limitation regardless
of the topology in use.

III. METHOD

In this section, the proposed method is described generi-
cally. Our method consists in four steps. First, the layout of
topologies of interest and the expansion plan are defined in
Section III-A. Then, nodes of the considered topologies are
regrouped in clusters fitting accurately the resources of indi-
vidual cabinets in Section III-B. Third, clusters are allocated to
cabinets with respect to darkfiber constraints in Section III-C.
The planning of cabling is then detailed in Section III-D.

A. Topologies and cabinets layout

The proposed approach divides the implementation of the
complete supercomputer and its underlying network into ωmax

stages. At each stage ω, additional cabinets —each containing
multiple switches— are appended to the network, following
Figure 1. At the interconnect level, cables are installed at each
stage, following Figure 2. In the proposed example, a different
topology is utilized at each stage, in order to mitigate the rapid
increase of cabling costs when the network grows.

The computation of the solution depends on the current
stage of implementation of the supercomputer, namely ωnow.
In effect, the clusters allocated to cabinets during previous
stages cannot be displaced, for pre-existing cables may not
suffice anymore. Moreover, the computation of cable cost is
different whether cable must be installed immediately or if its
installation could be delayed to later stages, as we shall see
in Section III-D.
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(b) Stage 2: 3D-Mesh
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(c) Stage 3: 2D-Torus

Figure 2: Stage-by-stage implementation of an interconnect featuring different topologies. Cables exploited by the current
topology are colored, while gray cables were installed for supporting earlier or future topologies.

In this work, cabinets (as known as racks) will be denoted
r and switches s. The relation between switches and cabinets
is expressed by the membership relation proposed in Defini-
tion 1.

Definition 1 (Switch membership): For each switch s, func-
tion M(s) gives the containing rack (as known as cabinet)
r. Inversely, M−1(r) returns the ordered set of switches
belonging to cabinet r.

The installation stage of each rack r can be obtained through
the stage function Ω(r) defined in Definition 2, and its physical
position is denoted (xr, yr).

Definition 2 (Implementation stage): The stage ω when r
is implemented is given by function Ω(r). Inversely, the set
of cabinets installed during stage ω is Ω−1(ω).

Additionally, the corner rack function defined in Definition 3
retrieves the extreme cabinet for each stage. Finally, we denote
Rω the total number of cabinets installed at stage ω.

Definition 3 (Corner rack): For each implementation stage
ω, r(ω) denotes the rack which has the highest coordinates,
i.e. ∀r∈Ω−1(ω), xr(ω) ≥ xr ∧ yr(ω) ≥ yr.

Based on the previous definition, several assumptions are
made regarding the expansion of the supercomputer. During
each stage, the complete set of cabinets is placed in a rectangu-
lar —if not square— fashion, alike Figure 1 and according to
state-of-art practices discussed in Section II-B. Newer cabinets
are placed in increasing coordinates, respecting Equation 1.

∀r1,∀r2, Ω (r1)<Ω (r2) ⇒ xr1<xr2 ∨ yr1<yr2 (1)

This assumption allows us to guarantee that cables between
two cabinets implemented in later stages could be routed later
with a minimal length, following Figure 2.

Each considered network topology t is fully defined by
its symmetric connectivity matrix At between each pair of
network nodes n1 and n2, following Equation 2.

At =(atn1n2)n1,n2 , atn1n2 ∈{0, 1} (2)

For each stage ω, the set Tω contains all topologies that are
to be utilized for this stage. Of course, for each topology t ∈
Tω , the number of nodes card(t) shall be equal to Rω , which
is the total number of installed switches at stage ω. Though, if
topologies of inferior sizes should be considered, disconnected

nodes n∅ could be appended (i.e. ∀n1, n2, atn∅n2 = atn1n∅ =
0). Additionally, an utilization ratio θt is associated to each
topology t, following Definition 4. Its interpretation is twofold.
θt both represents the probability to actually implement t when
ω > ωnow and the expected time share when the supercomputer
will utilize the topology t. Hence, the relation

∑
t∈Tω

θt = 1 shall

hold for all stages ω.
Definition 4 (Topology utilization ratio): In our approach,

a ratio θt ∈]0, 1] is associated to each topology t implemented
at stage ω. This ratio enables designers to quantify the relative
impact of each topology on the system cost and power,
following Equations 6, 7 and 10.

B. Topologies clustering

For each topology t, the goal of our method is to assign each
node n to a different switch s. However, the complexity of the
considered problem demands to reduce the size of input data
(i.e. the size of considered topologies). Since cables connected
to switches belonging to the same cabinet could be exchanged
with little effort, a common approach is to group the nodes
into clusters that each fit accurately a cabinet. For instance,
if the supercomputer presented in Figure 1 is being designed,
the nodes of each topology will be grouped into clusters of 4
nodes, since each cabinet contains 4 switches. The clustering
function is presented in Definition 5.

Definition 5 (Node clustering): For each node n of a topol-
ogy t, the clustering function Γ(n) returns the containing
cluster c. Inversely, Γ−1(c) returns the ordered set of enclosed
nodes. The number of nodes in any cluster c must be strictly
equal to the number of switches per cabinets, which greatly
simplifies the cluster allocation.

At the cluster level, the connectivity of topology t is given
by the aggregated function of Definition 6.

Definition 6 (Aggregated connectivity): For each topology
t, the aggregated connectivity αt (c1, c2) between cluster c1
and cluster c2 is defined as the sum of connectivity between
nodes belonging to each cluster, following Equation 3.

αt(c1, c2) =
1

2

∑
n1∈Γ−1(c1)

n2∈Γ−1(c2)

atn1n2
(3)



Hence, the clustering step consists in grouping nodes into
clusters of fixed size. An optimal clustering would minimize
the aggregated connectivity following Equation 4, while re-
specting the cluster size constraint.

min
∑
c1,c2

αt (c1, c2) (4)

In [10], several heuristic approaches were tested, such as the
Ward and the Girvan-Newman methods. Empirically however,
a topology-specific heuristic approach is leading to a satisfying
solution for the most common cases. For example, toruses
and meshes usually have a dimension matching the number
of switches in a cabinet (e.g. 4 in Figure 1), and nodes are
clustered following this direction.

C. Clusters allocation

The third step of our method consists in allocating each
cluster c to a unique rack r, while reducing the cost and power
induced by darkfibers. Since there is a one-to-one relation
between clusters and racks, the solution can be modeled as
a set of cluster permutations Φt following Definition 7.

Definition 7 (Cabinet permutation): The allocation of each
cluster c of a topology t to a rack r of the network is
represented by a bijective function Φt(r) that returns the
assigned cluster c. Inversely, Φ−1

t (c) returns the allocated rack
r.

The objective of cluster allocation is to minimize the power
and cost of inter-cabinet cables (i.e. darkfibers), while includ-
ing the cost of backup cables, as shown in Equation 5.

min βpwr

∑
r1,r2

pwrr1r2 + βcost

∥∥∥∥∥∑
r1,r2

costr1r2

∥∥∥∥∥ (5)

The quantity to minimize is a linear aggregation of these
two objectives with respective weights βpwr and βcost, based
on the quantity pwrr1r2 defined in Equation 6 and the vector
costr1r2 = (costr1r2ω)ω described in detail later in Sec-
tion III-D. It worth noting that the cost vector contains one
dimension per implementation stage, hence providing a yearly
estimate of the cost of interconnect cables.

The power consumed by cables between racks r1 and r2

is expressed in Equation 6, based on the vendor-specific
Power(.) function that gives the power consumed by one cable
of the given length. In this work, we consider a stepwise linear
function to account for difference between optical and copper
cables. The cable length function Λ(.) represents the actual
length of cables, and will be later defined in Equation 8.

pwrr1r2 = Power (Λ(r1, r2))
∑
t

θt αt(Φt(r1) , Φt(r2)) (6)

Similarly to [10], the optimization of clusters allocation is
obtained by simulated annealing. At each step, two clusters
of a given topology t are swapped between racks r1 and
r2. The probability pswap(t) that a topology t is chosen for

swapping is described in Equation 7. This value depends on the
number of clusters that remain to be allocated either during the
current stage ωnow or later stages ω > ωnow, and the topology
utilization ratio presented in Definition 4. Accordingly, only
clusters that belong to cabinets not yet implemented can be
swapped during allocation, i.e. Ω(r1)≥ωnow ∧ Ω(r2)≥ωnow.

pswap(t) = θt max ( 0 , card(t)−Rωnow−1 ) (7)

D. Cabling planning

The planning of cables installation is a complex step, since
practical choices change significantly the cabling operation.
First, the actual length of cables requires some tuning com-
pared to the distance between end-racks. Second, the number
of cables must be increased to include backup cables, and
satisfy reliability constraints. At last, the switch-to-switch
cabling method is described, finalizing our approach.

The actual length of cables is affected by the Manhattan
cabling scheme and the predefined cable slacks. Indeed, cables
are routed following perpendicular aisles (Manhattan scheme),
which reduces the complexity of cable installation and allow
for cables to be added in latter stages of the implementation,
akin to Figure 2. The length of cables connecting switches
within a given rack is set to a constant value λintra-rack, while
inter-rack cables are augmented with a constant slack λinter-rack

at each end.

Λ (r1r2) =

{
λintra-rack if r1 = r2

2λinter-rack + ‖r1, r2‖ else (8)

The real number of cables νreal(r1, r2) installed between
racks r1 and r2 is given by Equation 9, as the maximum
amongst all topologies. The prospective number of cables
νprosp(r1, r2) given in Equation 10 is highly similar but the
requirement of each topology t is weighted by its utilization
ratio θt, following Definition 4. The generalized cable number
νω(r1, r2) is then proposed in Equation 11.

νreal(r1, r2) = max
t∈

⋃
Tω

αt(Φt(r1) , Φt(r2)) (9)

νprosp(r1, r2) =
∑

t∈
⋃

Tω

θtαt(Φt(r1) , Φt(r2)) (10)

νω(r1, r2) =

{
νreal(r1, r2) if ω ≤ ωnow

νprosp(r1, r2) else (11)

In our method, the installation process follows Figure 2.
Assuming that Ω(r1) ≤ Ω(r2), the complete cable is installed
at stage Ω(r1), generating the stage cabling cost presented in
Equation 12. The vendor-specific Cost(.) function represents
the cost of a single cable of given length. Similarly to the
Power(.) function, Cost(.) is a stepwise linear function.

costr1r2,ω =

{
Cost (Λ(r1, r2)) νω(r1, r2) if ω = Ω(r1)
0 else

(12)



Require: At: The connectivity matrix of topology t
Require: Φt(.): The cluster permutation of topology t

1: for all r1 ∈ Rωnow do
2: for all r2 ∈ Rωnow do
3: i← 0
4: for all (s1, n1) ∈M−1(r1),Γ−1(Φt(r1)) do
5: for all (s2, n2) ∈M−1(r2),Γ−1(Φt(r2)) do
6: if atn1n2 = 1 then
7: Connect switch s1 to cable i for rack r2
8: i← i + 1
9: end if

10: end for
11: end for
12: end for
13: end for

Figure 3: Procedure for switch-to-switch cabling of a chosen
topology t

Once cables and cabinets are installed, the final set-up for
the desired topology t only requires to connect each required
cable to the adequate end-switches, amongst switches from the
end-racks. The key issue is to connect each switch rigorously
with other switches according to the connectivity matrix At,
and not mixing cable ends. Assuming that for each pair of
racks (r1, r2), connecting cables are labeled with a unique
integer ranging from 0, a topology could be set up by following
the approach described in Figure 3.

IV. EVALUATION OF TOPOLOGIES COST

The proposed method is evaluated with a set of programs
developed in the laboratory. We consider the implementation
of an HPC containing up to 256 cabinets of 4 switches
each, totalling 1024 nodes. The considered topologies are tori
of different degrees (xD-Tor.), a random ring with random
shortcuts of node degree 6 (Rand.), and a sole ring (Ring).

The cost of implementing a network topology varies largely
with the nodes degree. In Figure 4, the cabling cost of several
topologies is displayed as a function of the number of nodes.
Topologies with high degrees, such as the 6D-torus, see the
cost raising rapidly, while topologies with lower degree, such
as the ring, remains linear. Hence, it seems more economical
to consider high-degree topologies for smaller interconnects,
and use topologies with decreasing degree as the network
increases.

Second, Figure 4 enables the comparison between naive
installation and the proposed method for all considered topolo-
gies. While both are clearly more expensive than individual
topologies, it is worth noting that our method is significantly
less costly than a naive approach, especially for small topolo-
gies (up to 33%). Improvement could be even more important
for use-cases that include only a few disparate topologies
with similar node degrees, while the presented configuration
features many topologies with different node degrees, which
tend to hide cabling reductions achieved on lower degree
topologies.

Table 1: Notations.

Notation Description
ω stage
ωnow current stage
ωmax stages total
n node
c cluster
s switch
r rack
R stage rack total
t topology
A topology connectivity
θ topology utilization ratio
T stage topology set
(x, y) physical position
pwr inter-rack cable power
cost inter-rack cable cost
Ω(.) implementation stage
M(.) switch membership
Γ(.) node clustering
α(.) aggregated connectivity
pswap(.) topology swapping probability
Φ(.) cluster permutation
ν(.) inter-rack cable number
Cost(.) unitary cable cost
Power(.) unitary cable power
βpwr objective power factor
βcost objective cost factor
λintra-rack intra-rack cable slack
λinter-rack inter-rack cable slack
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Figure 4: Cabling cost for different individual topologies, and
for the implementation of all of them following our proposal
or a naive approach



V. CONCLUSIONS

The high diversity of the scientific applications that are run-
ning in HPCs lead to many difficult design choices regarding
the interconnect network. In particular, the best topology to
adopt may be different depending on the traffic pattern of
target applications. In this context, an approach for planning
the installation of HPC interconnect darkfibers supporting
multiple topologies seems appropriate. Starting from loose
specifications on the interconnect topology, our method allows
designers to accurately model the cabling expenses, including
backup cables.

Beneath the support of a wide range of configurations,
our approach attempts to optimize the amount of installed
darkfibers through an heuristic cabinet allocation presented in
Section III-C. A rapid evaluation shown in Figure 4 illustrates
the impact of this optimization. While this technique achieves
a reduction of 33% for small interconnects, its potential is
limited for large interconnects. As a future work, we would
like to introduce optimization techniques during later planning
stages, which we believe could increase the cable savings and
hence the interest of this method.
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