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The Case for Network Coding for Collective Communication on
HPC Interconnection Networks

Ahmed SHALABY†, Nonmember, Ikki FUJIWARA††a), and Michihiro KOIBUCHI††, Members

SUMMARY Recently network bandwidth becomes a performance con-
cern particularly for collective communication since bisection bandwidths
of supercomputers become far less than their full bisection bandwidths. In
this context we propose the use of a network coding technique to reduce
the number of unicasts and the size of data transferred in latency-sensitive
collective communications in supercomputers. Our proposed network cod-
ing scheme has a hierarchical multicasting structure with intra-group and
inter-group unicasts. Quantitative analysis show that the aggregate path hop
counts by our hierarchical network coding decrease as much as 94% when
compared to conventional unicast-based multicasts. We validate these re-
sults by cycle-accurate network simulations. In 1,024-switch networks, the
network reduces the execution time of collective communications as much
as 70%. We also show that our hierarchical network coding is beneficial
for any packet size.
key words: interconnection networks, collective communication, network
coding, high-performance computing

1. Introduction

As the scale of HPC systems —such as supercomputers,
custom massively-parallel computers, and PC clusters— in-
creases, the network bandwidth per flops (floating-point
operations per second) becomes low. It will be more
difficult for network bisection bandwidth to reach full-
bisection bandwidth in future parallel computers [1], [2].
One study recommended that the aggregate link bandwidth
per flops for internal networks be greater than or equal to
0.2 bytes/sec/flops, and the bisection bandwidth per flops
be greater than or equal to 0.1 bytes/sec/flops [1]. However,
the link bandwidth per flops is expected to be 0.005–0.03
bytes/sec/flops in 2015 [2]. Such relatively-low bisection
bandwidth affects the performance of collective communi-
cations.

Recent interconnects such as InfiniBand and Ethernet
usually use unicast-based multicasts as they use commodity
switches that do not support hardware multicasting, unlike
the prior products such as QsNET and QsNET II, which sup-
port hardware multicasts in a fat-tree topology [3]. To im-
plement collective communication, a large number of uni-
casts are simultaneously generated in such commodity in-
terconnection networks [4]. The unicasts may introduce a
large number of packet contentions that are likely to lead to
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Fig. 1 (i) Unicast-based multicast and (ii) that with network coding.

Fig. 2 Sum of unicast path hop counts of conventional broadcast vs. that
with network coding in k-ary 2-mesh.

a high latency in a multicast.
In this study, we use a network coding technique to re-

duce the number of unicasts and the transfer data size in
collective communication primarily for k-ary n-cubes.

Figure 1 shows an example of collective communica-
tion in which two sources, S1 and S2, multicast data A and
B to destinations, D1 and D2, in a 3 × 2 2-D mesh with
dimension-order routing. Figure 1 (i) shows a conventional
unicast-based multicast. The two shared links may cause
packet contention. In the case of network coding, as shown
in Fig. 1 (ii), each source sends a unicast to a single destina-
tion. Intermediate node (IS) makes a unicast whose packet
contains the results obtained by computing the XOR bit op-
eration to two arrived unicast data. The shared link be-
tween IS and ID is used once to send the encoded packet
(A ⊕ B). Once the encoded packet is received at the desti-
nations D1 and D2, the original data is restored by simply
applying the XOR operation again with the other packet,
namely A = (A ⊕ B) ⊕ B and B = (A ⊕ B) ⊕ A.

Figure 2 illustrates the aggregate unicast path hop
counts for the conventional broadcast (i.e., tree-based, as
discussed in the next section) versus the same with network
coding. The benefit of network coding increases exponen-
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tially as the network size increases. For example, the net-
work coding only consumes 0.67 million aggregate unicast
hop counts of packets in a 32-ary 2-mesh. When compared
to the original multicast (2.7 millions), it reduces the unicast
hop counts by 75%.

We propose hierarchical network coding for collec-
tive communication to reduce the number of unicasts and
the transfer data size primarily for k-ary n-cube networks.
This study is an extension of our prior work [25]. Our pro-
posed network coding scheme has a hierarchical multicas-
ting structure that consists of intra-group and inter-group
multicasts so as to reduce the number of unicasts and the
size of transferred data.

Our findings of this paper are as follows.
• Through our quantitative analyses, the hierarchical net-
work coding efficiently improves the performance in various
network designs. In a 4,096-switche network, this technique
improves the aggregate number of unicast path hops by 94%
(Sect. 4).
• Through our cycle-accurate network simulations, the hi-
erarchical network coding constantly obtains good perfor-
mance gain in (1) all the transfer data (packet) sizes eval-
uated and (2) various overhead latencies to compute XOR
data at intermediate nodes (Sect. 5).
• We consider the design space of the hierarchical network
coding as well as practical issues. As the number of multi-
cast nodes increases, the performance gain by the hierarchi-
cal network coding becomes large (Sect. 6).

This paper is organized as follows. Section 2 describes
related work. Section 3 describes our hierarchical network
coding. Section 4 illustrates the network coding perfor-
mance on path hop counts by using quantitative analyses.
Section 5 shows the performance of broadcasts with the
hierarchical network coding by using cycle-accurate net-
work simulations. Section 6 discusses practical issues and
the design space of the hierarchical network coding. Sec-
tion 7 draws conclusions of our findings and states our fu-
ture work.

2. Related Work

2.1 Multicast Communications

Hardware-, path-, and unicast-based algorithms are typi-
cal methods for multicasts in interconnection networks [7].
Hardware multicasts, e.g., QsNET II [3], duplicate packets
at an intermediate switch for a multicast. Since it reduces
the aggregate packet hop counts in a multicast, it efficiently
sends data to multiple destinations. A path-based multicast
sends data along a path that includes all destinations, and
thus requires an efficient multicast-path search, e.g., Hamil-
tonian cycle. Theoretically, this is an interesting topic; how-
ever, current conventional interconnects do not always sup-
port a hardware- and path-based multicast [8], [9].

A conventional way to support a multicast is to do a
large number of unicasts. This is called a unicast-based
multicast. In a simple unicast-based multicast, each source

sends packets to all destinations. This paper refers to this
as an “all-at-once” multicast. It is applicable for all the
multicasts occurring in a parallel programming, including
MPI Alltoall, in which a source sends different data to des-
tinations.

When a source scatters the same data to all destina-
tions, a tree-based multicast is practical for reducing both
the number of packet contentions and the aggregate packet
hops [10]. In a tree-based multicast, first a source sends data
to a single destination. Then these two nodes send data to
four nodes. For d destinations, log2(d + 1) unicast steps
are required [11]. The impact of the tree-based multicast
algorithms on the execution time is evaluated in a high-
performance computing (HPC) interconnect prototype [1].
In this work, we assume to use unicast-based multicasts.

2.2 Efficient Communication Methods

Network design, especially for collective communication,
has been traditionally constrained by the bandwidth in su-
percomputers. Message combining has been proposed to
avoid tree saturation in multistage interconnection networks
(MINs) [13]. Message combining merges multiple pack-
ets to the same destination at an intermediate node. A
similar approach is attempted in the N × 2N tori in the
IBM BlueGene/L [14]. In [14], it is reported that soft-
ware message concatenation improves the performance of
the MPI Alltoall function, when it is performed just before
packets are turned in a dimension.

Generally, a simple overall strategy to make the best
use of a limited link bandwidth is data compression.
Each sender compresses the contents of packets except for
their control information for routing, flow control, error-
correction etc. Although the decoding and encoding over-
head of nodes cannot be ignored in terms of latency, the data
compression is attractive for reducing the amount of trans-
fer data. Fortunately, in this work our network coding can
work together with compression, because our network cod-
ing only operates the XOR calculation for bits of any type
of contents to be transferred.

2.3 Network Coding Application

Network coding aims to optimize the data flow to improve
throughput and efficiency of the network. Network cod-
ing is associated with information theory and was first in-
troduced in 2000 [15]. Network coding has been applied
in many fields, e.g., distributed storage, wireless networks,
file sharing, and multimedia streaming in peer-to-peer net-
works [16]–[19].

Unquestionably, these applications have different char-
acteristics from those of supercomputer interconnects. Dif-
ferent characteristics affect the design of optimization. (1)
Supercomputer interconnects usually have a non-random
fixed topology of switches and custom deadlock-free rout-
ing, e.g., dimension-order routing on k-ary n-cubes, and
each cable usually has the same bandwidth. (2) Parallel
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applications explicitly generate multicasts at the program
level, e.g., using MPI functions. These unique features al-
low us to use the regularity of topologies and precisely es-
timate the number of packet hops for optimizing network
coding. (3) Another unique feature concerns low-latency
requirements, i.e., order of hundreds of nanoseconds. We
thus consider the simple XOR bit operation for network en-
coding in this paper.

To the best of our knowledge, no previous work has ex-
plored the use of network coding for efficiently use network
bandwidth in supercomputer interconnects.

3. Hierarchical Network Coding

We propose to apply the network coding technique to the
multicast communication scenario in supercomputers. Our
proposed method has a hierarchical structure with intra-
group and inter-group communications. In this section, we
focus on a broadcast. However, we can naturally apply
our hierarchical network coding for multicasts, or multiple
sources to multiple destinations. This topic is discussed in
Sect. 6.

The detailed procedure for hierarchical network coding
is as follows. Figure 4 provides the pseudo code.

a) Grouping: We divide a given network into a number
of groups. In the example of the 2-ary 2-mesh in Fig. 3,
the nodes are divided into two groups, depicted as shaded
nodes and non-shaded nodes. The details of the grouping
are quantitatively discussed in the next section.

b) Intra-group broadcasts: Every node inside a group
exchanges transfer data by an existing multicast algorithm,
e.g., a tree-based multicast. Every node then obtains all
the data of the other nodes in the group. In the example
in Fig. 3, data d1 and d2 are exchanged between two nodes
in the shaded group, whereas data d3 and d4 are shared in
the non-shaded group.

c) Network coding: We choose one of the nodes in each
group as an intermediate node that computes the XOR func-
tion to encode packets. Assume that M nodes, 1, 2, . . . ,M,
have broadcast data, d1, d2, . . . , dM , respectively. The inter-
mediate node then generates M − 1 encoded packets whose
contents are (d1 ⊕ d2), (d2 ⊕ d3), . . . , (dM−1 ⊕ dM).

d) Inter-group multicasts of encoded packets: The
intermediate nodes exchange all the encoded packets by
an inter-group multicast between all pairs of intermediate
nodes. As in step (B), an existing multicast algorithm is
used to deliver the packets. In the example, the encoded

Fig. 3 Hierarchical network coding in 2-ary 2-mesh.

packets (d1 ⊕ d2) and (d3 ⊕ d4) are exchanged between the
shaded and the non-shaded groups.

e) Intra-group broadcasts of encoded packets: The
intermediate node delivers the encoded packets to all the
nodes in its group. In the example, (d1 ⊕ d2) is sent to the
other nodes in the non-shaded group, while (d3 ⊕ d4) is dis-
tributed in the shaded group.

f) Inter-group unicasts: Every node sends its data to all
the other groups. One of the nodes in the destination group
receives the data. In the example, node 1 sends d1 to node 3
while node 3 sends d3 to node 1. Similarly, d2 is sent from
node 2 to node 4 and d4 is sent from node 4 to node 2.

g) Decoding: Every node receives (1) the data from
all the nodes in the same group (step B), (2) all the en-
coded packets from the other groups (step E), and (3) the
data from a node in each group (step F). Then it restores
the non-received data of the group by computing the XOR
bit operation. For example, a node obtains (d1 ⊕ d2), (d2 ⊕
d3), . . . , (dM−1 ⊕ dM) (step D) as well as d1 (step F); then it
restores data d2, d3 . . . , dM by computing the XOR bit op-
eration. Every node starts decoding packets as soon as the
required data are obtained.

Although the coded packets has a possibility to incur
deadlocks of the network when allowing to perform mul-
tiple steps simultaneously in arbitrary topologies, assign-
ing different virtual channels to communication steps essen-
tially breaks indirect channel dependencies in the hierarchi-
cal network coding. For instance, four virtual channels are
needed for four communication steps. This virtual-network
approach is a traditional way to avoid deadlocks in intercon-
nection networks and we can use it for the deadlock avoid-
ance in any topology.

Fig. 4 Pseudo-code of the hierarchical network coding.
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Note that the algorithm in Fig. 4 is an example of our
hierarchical network coding scheme. There are variations
of the algorithm for the hierarchical network coding. For
example, in the step C, each node in the group generates
encoded packets. Then, all nodes in the group has encoded
packet. In the step D every node in the group sends encoded
packet to each node in other groups. In the 2 × 2 mesh case,
node 1 sends to node 3, and node 2 sends to node 4. In
this variation the step E does nothing. The total number
of generated packets in the variation is equal to that in the
algorithm in Fig. 4. However, the packet hop count for inter-
group communication is naturally larger than that of intra-
group communication in our network-coding scheme, thus
the algorithm in Fig. 4 is better in most cases.

4. Quantitative Analysis

4.1 Setup

We quantitatively evaluate our hierarchical network coding
when applied to k-ary n-cube topologies with minimal rout-
ing.

In this section, we highlight such parameters of the hi-
erarchical network coding that benefit collective communi-
cations. First, we evaluate the impact of the network size
on aggregate path hop counts in a multicast. Second, we
investigate the influence of the group size on the aggregate
path hop counts. Third, we show that our approach improves
the multicast performance in both tree-based and all-at-once
multicasts. Finally, we evaluate our approach on several net-
work topologies.

We evaluate them on a low-radix topology. Topol-
ogy design has been discussed for low-radix vs. high-
radix networks, especially for exascale computing systems.
However, low-radix topologies have been historically used
in mainstream supercomputers, because of (1) their sim-
ple management mechanisms for faults [20], [21], (2) the
straightforward layout of switches with relatively short ca-
bles in a machine and (3) easiness in debugging the custom
communication protocol. In this work, we use low-radix
topologies, i.e., with degrees up to 6.

4.2 Network Size

We evaluate the performance of the hierarchical network
coding when applied to various k-ary n-mesh topologies.
Figure 5 plots the aggregate hop counts of unicasts of a tree-
based multicast and that with the hierarchical network cod-
ing in various network sizes. The y-axis is logarithmic. Fig-
ure 5 shows that the aggregate hop counts of unicasts drasti-
cally increase as the network size increases in both methods.
However, at each network size, we observe the benefit of the
hierarchical network coding. The hierarchical network cod-
ing reduces the aggregate path hop counts by as much as
94% when compared to the original tree-based multicast.

Fig. 5 Aggregate hop counts for tree-based multicast and that with hier-
archical network coding on k-ary 2-mesh.

Fig. 6 Aggregate hop counts of hierarchical network coding for different
group sizes in 16-ary 2-mesh.

Fig. 7 Different group sizes in 4-ary 2-D mesh.

4.3 Group Size

An important concern of our hierarchical network coding is
its group size, i.e., the number of nodes belonging to each
group. The best group size minimizes the aggregate hop
counts of unicasts. Figure 7 shows examples of group sizes
in a 4-ary 2-mesh. The black nodes are the intermediate
nodes. The coordinates of the intermediate nodes affect the
total hop counts of unicasts when multicasting the encoded
packets. We optimize the group size and the coordinates of
the intermediate nodes to reduce the number of unicasts and
their total hop counts in k-ary n-cubes.

Figure 6 shows the aggregate hop counts of hierarchical
network coding in a 16-ary 2-mesh with N = 256 nodes.
We varied the group size from 2 to 128. We observe that the
group size plays an important role in the performance of the
hierarchical network coding. The best group size is 32 nodes
per group. We use the best group size from the quantitative
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Fig. 8 Aggregate hop counts of all-at-once multicast and that with hier-
archical network coding in k-ary 2-mesh.

analysis in the rest of this paper, unless otherwise stated.
Concerning the topologies for a given group, our rec-

ommendation is to reduce the longest path count for the
communication inside the group (this usually leads to a
small average shortest path length of the generated pack-
ets) through our analysis (we omit it, because it is obvious).
For example with the group size of 32, our recommendation
configuration is 8 × 4 or 4 × 8.

4.4 Multicast Algorithm

Since the hierarchical network coding uses a multicast al-
gorithm for data exchange, we evaluate the influence of the
multicast algorithm on its performance by the comparison
of tree-based and all-at-once multicasts.

Figure 8 plots aggregate hop counts of an all-at-once
multicast and those with the hierarchical network coding in
various network sizes. Similar to the case of the tree-based
multicast, we can observe that the benefit of hierarchical net-
work coding increases as the network size increases. For ex-
ample, the hop counts required by network coding for this
all-to-all scenario in the 256-ary 2-mesh is 32 times less than
that of the all-at-once multicast. We thus assert that our hier-
archical network coding works well with any multicast algo-
rithms in all the network sizes attempted in this quantitative
analysis.

In particular, even when we apply our hierarchical net-
work coding to a tree-based multicast, the gain of the tree-
based multicast are obtained from the reduction of the num-
ber of inter-group and intra-group packet hop counts.

4.5 Topology

We finally evaluate the performance of the hierarchical net-
work coding when applied to different k-ary n-cube topolo-
gies. In the other subsections, we use k-ary 2-meshes. The
main difference between a mesh and a torus in our hierarchi-
cal network coding is the path hop counts in the inter-group
unicasts step, because each unicast uses the wraparound
links to reduce its path hop counts.

Figure 9 shows the hop ratios between all-at-once mul-
ticasts and those with the hierarchical network coding in the
k-ary 2-tori. A good performance gain similar to the case

Fig. 9 Aggregate hop count ratios for all-at-once hierarchical network
coding against all-at-once multicast on k-ary 2-torus.

for the k-ary 2-meshes is obtained, especially for the large
network sizes. We consequently consider that the hierarchi-
cal network coding is efficient to reduce the aggregate path
hop counts in k-ary n-cubes, especially for large networks.

5. Cycle-Accurate Simulation

Besides the quantitative analysis, we evaluate the perfor-
mance of the hierarchical network coding more precisely
by using the cycle-accurate network simulator called Book-
Sim [22]. The quantitative analyses in the previous section
attempt larger networks, whereas our cycle-accurate simu-
lation considers the details in moderate-sized networks.

5.1 Parameters

We implement tree-based and all-at-once multicast commu-
nication scenarios with dimension-order routing on k-ary n-
cube topologies. The number of virtual channels is set to
four. A header flit requires at least three clock cycles to
be transferred to the next router or host: one cycle for the
routing computation, one cycle for allocating a virtual chan-
nel and a crossbar, and the remaining cycles for transfer-
ring the flit to the next router or host. Virtual cut-through
switching is used as the switching technique on each router.
The nodes inject packets independently of each other. The
packet length is set to one flit as a default. Various packet
sizes are evaluated in Sect. 5.4.

The default overhead to compute XOR at an interme-
diate node is set to one cycle as a default; however, various
overheads are evaluated in Sect. 5.5. We evaluate the ex-
ecution cycles (maximum end-to-end latency) of all-to-all
broadcast in tree-based and all-at-once multicast algorithms.
The lower value of cycles is better.

We used two measures: average packet latency and ex-
ecution time of a broadcast. The average packet latency con-
siders all the packets in all the steps in Fig. 4. The execution
time of a broadcast is the sum of the maximum latency of
all sequential steps.

5.2 Network Size

Figure 10 plots the execution time of all-to-all broadcasts for
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Fig. 10 Execution time for tree-based multicast and that with hierarchi-
cal network coding on k-ary 2-mesh.

Fig. 11 Execution time for different combinations of groups compared
with tree-based multicast in 16-ary 2-mesh.

the tree-based multicast and the same with the hierarchical
network coding. The y-axis represents the simulation cy-
cles. The lower values are better. The hierarchical network
coding speeds up the all-to-all broadcast communications by
three times. Another finding is that the performance of the
tree-based multicast is better than that with the hierarchi-
cal network coding in small networks, while the hierarchi-
cal network coding achieves better performance in large net-
works. This is because the tree-based algorithm adds delays
to the multicast communications due to synchronizations.
The sum of the two overheads (the synchronizations of the
hierarchical network coding and of the tree-based multicast)
dominates the execution time in small networks. Thus, both
methods have similar performance in a small network. In
contrast, as the network size becomes larger, the synchro-
nization delay by the tree-based multicast (without network
coding) strongly affects the execution time, and thus the hi-
erarchical network coding improves the performance drasti-
cally.

5.3 Group Size

To show the impact of group size on the performance, we
implement all possible sizes of groups in a 16-ary 2-mesh.
Figure 11 shows the execution time for each group size. The
best group size is 32 nodes per group. These are the same
results obtained in the quantitative analyses.

Fig. 12 Execution time in cycles for all-at-once multicast and that with
hierarchical network coding on k-ary 2-mesh.

5.4 Multicast Algorithm

Figure 12 illustrates the execution time comparing between
the all-at-once multicast and that with the hierarchical net-
work coding. The performance tendency is consistent with
that in the graph analyses. The case for our hierarchical
network coding generates (N − 1)× (N − 1) packets simulta-
neously, where N is the network size. By contrast, the case
for our hierarchical network coding together drastically re-
duces the number of packets. The hierarchical network cod-
ing speeds up the multicast communications in the all-to-all
broadcast scenario by three times in the execution time for
a 32-ary 2-mesh. Another important finding is that the per-
formance is slightly improved by the hierarchical network
coding in small networks up to 8-ary 2-mesh. In contrast,
it achieves significantly good performance in 16-ary 2-mesh
and 32-ary 2-mesh networks. We see the graph shapes of
both methods in Fig. 12.

5.5 Packet Length

Generally long packets increase the possibility of incur-
ring packet contentions under a heavy traffic load. It may
seriously degrade the performance of the hierarchical net-
work coding. We investigate the performance under vari-
ous packet lengths. The hierarchical network coding with
the configuration of the best grouping (32 groups) in a 16-
ary 2-mesh with different packet lengths (1, 2, 4, 8, and 16
flits per packet) was evaluated. Figure 13 shows the exe-
cution time for each packet length when compared to the
original tree-based multicast. The network coding always
improve the execution time. As the packet length increases,
it becomes more beneficial, up to 53% for the case of 16-flit
packet transfer.

5.6 Latency Overhead in Network Coding

We finally evaluate the hierarchical network coding with dif-
ferent latency overheads to compute the XOR bit operation
at the intermediate nodes. Figure 14 shows the execution
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time, including the overhead for computing XOR at the in-
termediate node in a 16-ary 2-mesh. The x-axis represents
the overhead clock cycles. Surprisingly, the overhead only
marginally affects the end-to-end latency. We find that it is
not a bottleneck for the collective communications.

6. Discussion

6.1 Deciding Group Size

In the grouping step, the number of nodes inside each group
(M), that corresponds the number of groups (G), affects the
multicast performance, since our proposed network coding
scheme has a hierarchical multicasting structure with a num-
ber of intra and inter-group unicasts. Thus we carefully de-
cide group size by considering the balance between intra-
and inter-group communications. For example, if group size
is small, then the number of packets inside a group decreases
at the expense of the increase of the number of packets be-
tween intermediate nodes. In Fig. 6 the largest hop count is
the case for configuration 2M × 128G. By contrast, if the
group size is large, then the number of packets by interme-
diate nodes (Step D) and direct nodes (Step F) are small at
the expense of the increased number of packets inside the
group and the number of encoded packets to be delivered to
the groups.

We additionally calculate the longest path count for
group nodes (inside a group) and intermediate nodes (be-
tween groups) for 16-ary 2-D mesh network, as shown in
Fig. 15, where “M-d1” and “M-d2” are the dimensions of

Fig. 13 Execution time for various packet lengths for tree-based multi-
cast and that with hierarchical network coding in 16-ary 2-mesh.

Fig. 14 Execution time for various latency overhead at intermediate
nodes in 16-ary 2-mesh.

group, “M-hops” is the longest path count between nodes
inside the group. “G-d1” and “G-d2” are the number of
groups per 16 (1-D mesh network), “G-d1-hops” and “G-
d2-hops” is the hop count per dimension between interme-
diate nodes, and “G-hops” is the total longest path count for
the 2-D mesh groups. An example for “M-hops” and “G-
hops” is shown in Fig. 7 for different group sizes in 4-ary
2-D mesh.

Figure 16 and Fig. 17 show that group size 32, which
achieved the best results in quantitative analysis and cy-
cle accurate simulation, achieved the best balance between
longest path count for group nodes and intermediate nodes
and so on the balance between inter and intra-group com-
munication.

This criteria can be more generalized. For example, for

Fig. 15 Aggregate hop count for longest path inside and between groups,
H-hops and G-hops, for different group sizes configuration in 16-ary 2-D
mesh.

Fig. 16 Aggregate hop count for longest path inside and between groups,
H-hops and G-hops, for different group sizes configuration in 16-ary 2-D
mesh.

Fig. 17 Aggregate hop count ratios for longest path inside and between
groups, H-hops and G-hops, for different group sizes configuration in 16-
ary 2-D mesh.



668
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

4-ary 2-D mesh as shown in Fig. 7, the best group size is
4, which achieve the best balance between communications
for group nodes and intermediate nodes. The longest path
counts is 2 for both.

6.2 Latency Overhead at Intermediate Node in Real De-
ployment

The implementation of network coding is important [24],
since the implementation generally affects the multicast per-
formance. However, these implementation issues of net-
work coding assume to take complex calculation for coding
for different purposes, e.g. high reliability, supporting un-
known intermediate nodes, using unknown topologies. By
contrast, in our work we take a simplest XOR coding for
only two packets so that a software implementation over-
head does not affect the entire execution time of multicast-
ing.

We consider the latency overhead at an intermediate
node in real deployments of direct and indirect networks. In
direct networks, the recent technology of many-core chips
enables a router to be integrated with processors on a sin-
gle chip [20]. An intermediate node (i.e., a chip) performs
XOR bit computation on the same chip with a router. Its
communication overhead is much smaller than that of the
node-to-node hop delay. Therefore, the latency overhead
at an intermediate node in direct networks can be marginal
when compared to end-to-end communication latency.

In indirect networks including Gigabit Ethernet,
Myrinet and InfiniBand, a commodity switch is connected
to some hosts. An intermediate node (i.e., a switch and
one of its attached hosts) performs XOR bit computation
by transferring three packets between a switch and a host.
Specifically, a host receives two packets from a switch, com-
putes their XOR in parallel, and sends the result back to the
switch. To estimate the latency overhead of this process, we
consider the discussion on a mechanism proposed in [23]
to avoid the deadlock of packets. The mechanism ejects a
packet from a switch when it incurs a potential deadlock.
The packet is then sent to one of the attached hosts, held
there for a while, sent back to the switch, and re-injected
into the network. This process is identical to the XOR bit
computation process of the network coding. The overhead
of this mechanism is quantitatively evaluated in [23] by an
implementation based on Myrinet GM software. As a result,
the software overhead of 125 ns is reported. This is rela-
tively low when compared to the end-to-end communication
latency as of 2001. The Myrinet network interface has some
latency overhead to process a header and to start the direct
memory access (DMA). The relative overall overhead of this
process, including DMA, is 10% for short packets and 3%
for long packets in comparison to the end-to-end communi-
cation latency in a 2-switch network. The relative overhead
should be smaller in larger networks. Consequently, we ex-
pect that the latency overhead of the network coding at an in-
termediate node in indirect networks is marginal, especially
in large-scale networks.

Fig. 18 Aggregate hop count ratios of all-at-once hierarchical network
coding against all-at-once multicast from multiple source nodes to all on
16-ary 2-mesh.

We found that the latency overhead at intermediate
node hardly affects the execution time of all-to-all broadcast
with the hierarchical network coding, as seen in the simula-
tion results in Fig. 14.

Figure 14 shows that a trivial software implementation
of XOR operation will hardly affect the execution time of
the entire multicast when compared to the case for zero
XOR/memory copy overhead. This is our intention in
this proposal that our hierarchical network coding works
well with existing commodity network components with a
slightly software update, like [23].

In the simulation, we assume that the minimum router
hop delay is three cycles, whereas the overhead at an inter-
mediate node is set to 35 cycles or less. Since the hop delay
of current InfiniBand switch products reaches 100 ns, the
hierarchical network coding would be beneficial in real de-
ployment, even if its overhead is as large as some microsec-
onds.

6.3 Many-to-All Multicast

Our hierarchical network coding is efficient not only for
the all-to-all broadcast but also for the multicast in k-ary
n-cubes. We extend the evaluation for multicast commu-
nication and multiple sources to all destinations. Multicast
communication from 2, 4, 8, 16, 32, 64, 128, and 256 source
nodes to all destination nodes is implemented by an all-at-
once multicast with the hierarchical network coding in a 16-
ary 2-mesh. Figure 18 shows the aggregate hop counts by
hierarchical network coding relative to those by the all-at-
once multicast. We can observe that the benefits of the hier-
archical network coding increase as the number of sources
increases. Thus, the most beneficial case is the all-to-all
multicast scenario.

6.4 Recursively Applying Network Coding

Another optimization and improvement to the proposed
scheme is recursive network coding, which applies a net-
work coding one more time inside a group instead of broad-
casting (step B in the network coding procedure: intra-group
broadcast). With this optimization we can further reduce the
number of unicasts, network resource usage, and thus the
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Fig. 19 Aggregate hop count ratios of recursive hierarchical network
coding and hierarchical network coding on k-ary 2-mesh.

congestion inside a network. We extend our evaluation to
measure the benefits of the recursive hierarchical network
coding. We implement the recursive network coding for k-
ary 2-meshes.

Figure 19 illustrates the aggregate hop counts by the
hierarchical network coding and by the recursive hierarchi-
cal network coding relative to those by the all-at-once mul-
ticast without any network coding. We observe that the
recursive network coding achieves more reduction in the
aggregate hop counts; however, the reduction ratio varies
along network sizes. This is because the network size af-
fects the grouping size which plays an important role in the
performance as shown in Sects. 4.3 and 5.3. We found that
the advantage to recursively applying the network coding is
marginal.

6.5 Message Combining vs. Network Coding

In a message combining scenario, an intermediate node in
each group combines incoming multiple packets into one
message, and sends the combined message to the other in-
termediate nodes. In the hierarchical network coding sce-
nario, on the other hand, an intermediate node in each group
generates a packet by computing the XOR function for two
incoming packets. The hierarchical network coding gener-
ates a larger number of packets. However, the size of the
combined packet in the hierarchical network coding is the
same as the size of the incoming packets, whereas the size
of the combined message in the message combining is the
sum of the incoming packets to be combined. Furthermore,
in the message combining scenario, the intermediate nodes
must wait for all the incoming packets to start combining.
Obviously, the hierarchical network coding is expected to
have a lower end-to-end latency when using small packets.
We extend our evaluation to compare between the two sce-
narios, in which the network size is 16 and the group size is
32 (best group size). From the results we observe the end-
to-end latency for the hierarchical network coding is 1,276
cycles while it is 1,832 cycles for the message combining.
These results confirm our expectation.

7. Conclusions

In this work we proposed the use of network coding for re-
laxing the relatively low network bandwidth problem in col-
lective communication in HPC off-chip interconnects. Our
network coding has a hierarchical multicast structure with
intra-group and inter-group unicasts. Since it reduces both
the number of unicasts and the transfer data size in multi-
cast, good performance was obtained in various combina-
tions of the (unicast-based) multicast algorithm, the topol-
ogy, and the transfer data size when a proper group size is
set. Although our hierarchical network coding can be ap-
plied recursively into its (sub-) groups, its effect is marginal.

Quantitative analysis results show that the hierarchical
network coding is beneficial as the network size becomes
large. A 94% improvement is obtained in a 4,096-switch
network with a conventional tree-based multicast. Our net-
work coding improves the execution time of collective com-
munication by up to 70% in a 32-ary 2-mesh. Cycle-
accurate network simulation results validate the quantitative
analysis results in various topologies, multicast algorithms,
packet sizes and overhead latencies to compute the XOR in
intermediate nodes.

Our future work will attempt to analyze the case for
complex encoding computation instead of the XOR com-
putation at intermediate nodes in the hierarchical network
coding so that more than two packets are aggregated to the
resulting encoded packet. Since this may further reduce the
number of unicasts in a multicast, this is theoretically an in-
teresting topic. However, recent interconnects are definitely
latency-sensitive on the order of hundreds of nanoseconds.
We expect that the interconnection networks will impose an
impractically large latency overhead at intermediate nodes.
This extension is beyond the scope of this paper.
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