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Abstract—Research and development of deep learning (DL)
applications often involves exhaustive trial-and-error, which de-
mands that shared computational resources, especially GPUs, be
efficiently allocated. Most DL tasks are moldable or malleable
(i.e., the number of allocated GPUs can be changed before or
during execution). However, conventional batch schedulers do not
take advantage of DL tasks’ moldability/malleability, inhibiting
speedup when some GPU resources are unallocated. Another
opportunity for speedup is to run multiple tasks concurrently on
one GPU, which may improve the overall throughput because a
single task does not always fully utilize the GPU’s computational
resources. We propose designing a batch scheduling system that
exploits these opportunities to accelerate DL tasks. As a first
step, this study conducts an extensive case study to evaluate the
speedup of DL tasks when a scheduler treats them as moldable
or malleable. That is, the scheduler adjusts the number of
GPUs to be (or already) allocated to a task in response to
the fluctuating availability of GPUs. Simulations using our real
workload trace show that if the scheduler can allocate 1–4 GPUs
to a task or assign 1–4 tasks to a GPU, then the average flow
time of moldable/malleable DL tasks is shortened by at least
15.1%/42.5%, respectively, compared to a Rigid FCFS schedule
in which one GPU is allocated to each task.

I. INTRODUCTION

Herein we explore ways to utilize our in-house shared
GPU cluster more efficiently to accelerate our research and
development of deep learning (DL) applications. DL has
recently realized breakthroughs in diverse fields, including
computer vision, speech recognition, and language processing.
Researchers at our institute study natural language processing
technologies. Often constructing a good neural network (NN)
is costly due to training with vast data and/or numerous
hyperparameters. Consequently, researchers employ GPUs to
obtain outcomes of their DL tasks as quickly as possible.
However, GPUs need to be utilized efficiently because they
are expensive resources. A promising yet unexplored way to
improve the efficiency is to add smart mechanisms for resource
allocation to a task scheduler.

DL tasks often have two properties that are not exploited in
conventional batch scheduling systems. First, DL tasks have
inherent flexibility in the degree of parallelism. A DL task
can be implemented so that is can change the amount of used

resources without modifying the program because DL tasks are
usually built on top of a scalable framework. Second, DL tasks
have some predictability during their execution. For example,
the runtime of a DL task can be estimated because it usually
iterates a definite set of computation over given data and each
iteration consumes almost the same amount of time.

We propose designing a batch scheduling system that imple-
ments two categories of mechanisms to exploit the flexibility
and predictability of DL tasks. The first category includes
moldability and malleability [1]. Moldability allows the sched-
uler to alter the amount of resources allocated to a task prior to
execution (e.g., via a command line option), while malleability
enables the scheduler to alter the allocated resources even in
the middle of execution (e.g., via a suspend/resume mech-
anism). The second category is clairvoyance, which enables
the scheduler to predict the remaining runtime of a task prior
to execution (e.g., via the execution history of similar tasks)
or during execution (e.g., via an extrapolation). To the best
of our knowledge, this is the first attempt to explicitly exploit
flexibility and predictability of DL tasks in a batch scheduling
system.

As a first step towards the goal of designing a DL-aware
moldable/malleable task scheduler, we conduct a case study
to evaluate the effectiveness of each mechanism once imple-
mented in a scheduler. Extensive simulations based on our
real-world GPU workload reveal the following observations:

• Moldability improves scheduling quality. For example,
the average flow time per task shortens by 15.1%–96.7%
when a scheduler can allocate up to four GPUs to a task
or assign up to four tasks to a GPU.

• Malleability can further improve scheduling quality given
a moderate overhead for preemption.

• Clairvoyance does not improve scheduling quality if
moldability or malleability is available.

The rest of this paper is organized as follows. Section II
describes our motivation to use GPUs more efficiently. Section
III formulates our problem. Section IV defines the scheduling
algorithms that exploit moldability and malleability. Sections



0

1

2

3

4

0 1 2 3 4

RE
LA

TI
VE

 S
PE

ED
U

P

#GPUS

MCNN (60)
OpenNMT (256)

(batch size)  

#GPUs Speedup
4 3.00
3 2.37
2 1.63
1 1.00

1/2 0.70
1/3 0.52
1/4 0.42
1/5 0.36
1/6 0.31
1/7 0.27
1/8 0.24

Fig. 1. Speedup curve observed in our benchmark. #GPU = 1/n means
concurrent execution of n tasks on one GPU.

V and VI present our case studies with those algorithms.
Section VII reviews related works. Section VIII concludes this
paper.

II. BACKGROUNDS AND MOTIVATING EXAMPLES

It is a common practice to use hardware accelerators (e.g.,
GPUs) to speedup training in DL. GPUs are typically shared
by multiple users via a batch scheduler because they are
expensive resources. Users often submit a series of tasks that
compute the same NN with different initial parameters as
the initial parameter may significantly impact the learning
results. When users simultaneously submit many tasks, the
load of the GPU cluster can be high. In addition, users
also experimentally explore the network structure because
the effect of the network structure on the learning results
is unpredictable. Unlike the survey of the initial parameters,
reforming the network structure requires time. When some
users are too busy to implement their networks, the cluster can
become idle. The implementation and training cycle of NNs
often leads to significant fluctuations in the load, especially
when the number of users is small. However, it is impossible
for users to predict the available number of GPUs when
submitting their tasks.

To deal with the GPUs in our cluster, we are currently using
a conventional batch scheduler, namely PBS Pro. PBS Pro
can handle a GPU as a custom resource and can allocate the
exact number of GPUs specified by the user. However, PBS
Pro cannot automatically adjust the number of GPUs to be
allocated in response to fluctuations in the system load. We
are unaware of a batch scheduler product that controls resource
allocation in order to leverage the flexibility of parallelism in
DL tasks. In the following sections we investigate the source
of the flexibility in DL tasks on GPUs.

A. Automatic Distributed Deep Learning

When some GPUs in a cluster are idle, they can be exploited
to speed up training. Distributed DL using multiple GPUs
has attracted attention from both researchers and practitioners.
There are two major approaches for distributed learning:
data parallelism and model parallelism. Data parallelism is

currently the dominant approach to distributed DL. Although
a program requires a significant implementation effort to run
on a distributed environment in general, most modern DL
frameworks such as Keras1, Chainer [2], Torch2, PyTorch3,
and TensorFlow [3] allow users to employ data parallelism
easily.

The scalability of distributed DL depends on the type of
NN. For data parallelism, distributed GPUs communicate with
each other to synchronize the network parameters. This syn-
chronization is a major limiting factor of scalability. Therefore,
NNs with a limited number of parameters (e.g., ResNet and
Inception-v4 for image classification) can be almost linearly
scaled. Recently, data parallelism has been used to scale
the training of an image classification network with up to
thousands of compute nodes [4]. On the other hand, the
scalability of NNs with more parameters such as for language
processing is limited.

To evaluate the scalability of our language processing tasks,
we have conducted a benchmark using OpenNMT, which is
a typical implementation of natural language translation with
Torch. As shown in Fig. 1, we have found that the speedup
curve of OpenNMT is sublinear and non-decreasing. This is
an important property when choosing an algorithm for task
scheduling.

B. Fractional Allocation of GPUs

In our environment, users submit many tasks for parameter
surveys. Most of these tasks are for training neural networks
with complicated structures like Multi-column Convolutional
NN (MCNN) [5] and Sequence-to-sequence [6] extended for
language processing [7], [8]. A profile of their execution
processes shows that a GPU’s computational resources (e.g.,
streaming multiprocessors in NVIDIA’s GPUs) have idle time
due to the execution time of the host code and data exchange
between the host and the GPU. Additionally, execution pro-
cesses typically consume only around 20% of a GPU’s device
memory. Therefore, it is possible to run multiple tasks on
one GPU, which may increase the utilization of the GPU’s
processors.

To confirm these assertions, we have conducted a bench-
mark using MCNN where the same n tasks are simultaneously
executed on the same GPU. Figure 1 plots the average pro-
cessing speed as #GPUs = 1/n. The concurrent execution of
n tasks leads to a relative processing speed of each task higher
than 1/n. In other words, a task that processes n units of data
per unit time when executed alone on a GPU will process
more than one unit of data when executed together with n−1
other tasks on a GPU. Hence, the speedup curve of MCNN is
also non-decreasing sublinear in the sense that increasing the
fraction of GPUs (e.g., from 1/3 to 1/2) does not increase the
speed linearly (e.g., by 3/2 times).4

1https://keras.io/
2http://torch.ch/
3http://pytorch.org/
4This might be considered “subadditive”, but we also use “sublinear” in

this sense in this work.



III. PROBLEM STATEMENT

A. System Model

Our target is a homogeneous cluster of compute nodes under
the control of a centralized resource manager or scheduler. The
nodes are connected via a standard network (e.g., Ethernet or
InfiniBand). Network-attached storage is accessible from any
node. Each node is equipped with one or more GPUs. Tasks
are submitted by users at arbitrary times and are queued in the
scheduler. The arrival times of future tasks are unknown. When
a new task arrives or a running task completes, the scheduler
allocates the available GPUs to the tasks in the queue. If the
available GPUs are insufficient, tasks remain queued. This
configuration is classified as a batch-style online scheduling
problem.

In addition to those of conventional batch scheduling sys-
tem, users give their tasks extended attributes:
• pmax

k ∈ N: Maximum number of GPUs to be allocated
to task k.

• pmin
k ∈ { 1n | n ∈ N}: Minimum fraction of GPUs to

be allocated to task k. Fractional number 1/n means the
task is allowed to run concurrently with n−1 other tasks
on a GPU.

• mreq
k ∈ N: Amount of GPUs device memory in bytes

that task k task requires.
Given these attributes, the scheduler allocates GPUs to each
task so that the allocated number of GPUs is between pmax

k

and pmin
k , and the total amount of device memory required by

the allocated tasks on a GPU does not exceed the amount of
device memory provided by the GPU.

B. Task Model

We focus on DL tasks that train NNs. Depending on the
number of GPUs used, a DL task typically takes several hours
or days to train an NN. The exact runtime of a task may or may
not be predicted prior to execution. (Herein both scenarios are
tested.) The number of GPUs a task runs on can be adjusted
just before execution (e.g., via a command-line option). This
type of task is referred to as moldable. Additionally, a task
may be suspended and resumed later on a different number
of GPUs or even on a different group of nodes. This type of
task is referred to as malleable. When suspended/resumed, the
intermediate results are saved/loaded to/from shared storage.

C. Performance Metrics

Our goal is to identify an effective scheduling mechanism to
obtain task results as quickly as possible. One user may train
a predefined NN with huge data by running a task for several
days, whereas another user may perform a parameter survey
by running a bag-of-task consisting of thousands of smaller
tasks. To capture those varying users’ happiness, we employ
the following metrics:
• Flow time (or turnaround time) tflok : The time between a

task’s arrival and its completion. Shorter is better.

tflok = tcmp
k − tarrk

• Stretch (or slowdown) sk: The task’s flow time divided
by its computational volume. Smaller is better.

sk =
tflok

vk

• System utilization u: Total computational volume of
all the tasks divided by the number of GPUs and the
makespan. Larger is better.

u =

∑
k vk

|G|(maxk(t
cmp
k )−mink(tarrk ))

Notations: tarrk denotes the arrival time (when submitted
by a user) of task k, tbgnk denotes the start time of task k,
tcmp
k denotes the completion time of task k, vk denotes the

computational volume of task k representing the task’s runtime
when run alone on a single GPU, and G denotes the set of
GPUs.

As the majority of tasks in our workload belong to some
bag-of-task, we introduce the notion of a job. A job consists of
tasks that start during or within one minute after finishing the
execution of another task of the same user. We will calculate
flow time and stretch in both per-task and per-job manner.

IV. SCHEDULING ALGORITHMS

As our purpose of this work is not to propose a novel
scheduling algorithm, we employ four simple algorithms that
exploit tasks’ moldability/malleability in a straightforward
manner. The four algorithms are classified into two categories:
non-clairvoyant and clairvoyant. The non-clairvoyant algo-
rithms do not use any knowledge about the runtime of each
task. In contrast, the clairvoyant algorithms use the runtime
of each task as prior knowledge, which can be obtained from
the history of similar tasks or from user-defined walltimes.

A. Non-clairvoyant Algorithms

For the non-clairvoyant setting, we adopt the principle of the
Equipartition strategy [9], which distributes available resources
equally to all tasks. The rationale is that Equipartition max-
imizes the overall throughput when the tasks’ speedup curve
is non-decreasing and sublinear, which is the case for our DL
tasks. (See Section 2.)

Equipartition assumes a continuous amount of resources,
which can be arbitrarily partitioned like CPU cycles or mem-
ory capacity in a single node. This is not the case for GPUs
because the amount of computational resource allocated to
each task is not externally controllable5. For example, when
three processes are running on one GPU, each process receives
approximately 1/3 of the streaming multiprocessors due to the
GPUs warp scheduler, which cannot be controlled externally.
On the other hand, when a single task uses multiple GPUs,
it is desirable for the task to use these GPUs exclusively. For
example, if Task #1 uses GPU #1 and GPU #2 while Task #2
simultaneously uses GPU #2, then it is difficult for Task #1
to synchronize its processes on both GPUs.

5We assume NVIDIA’s Maxwell and Pascal architectures.



To support the fractional allocation mentioned above, we
treat a GPU’s computational resource as if it is continuously
partitionable. We then modify the Equipartition algorithm so
that each task receives either 1/n shared GPU or n dedicated
GPUs, where n ∈ N. “A task receives 1/n shared GPU” means
that the task runs on a GPU together with up to n − 1 other
tasks running on the same GPU. Hereafter we use two terms
“processor” and “the number of GPUs” interchangeably. Both
mean the amount of computational resources of GPU(s). For
example, “2 processors” means 2 dedicated GPUs and “0.25
processors” means 1/4 of a shared GPU. We also consider
the amount of GPUs’ device memory as a constraint so that
the total amount of allocated memory does not exceed the
physical capacity. Resources other than GPUs (e.g., CPUs,
host memory, etc.) can also be considered. However, other
resources are beyond the scope of this study because GPUs
are the most competitive resource in our environment.

Notations: Let F = { 1n | n ∈ N} be the set of unit
fraction, Q be the set of queued tasks, G be the set of all
GPUs, and A be the set of vacant GPUs without running tasks.
For each task k, let pmax

k and pmin
k be the maximum and

minimum amount of processor requested, respectively, palck be
the amount of processor allocated, and mreq

k be the amount
of device memory requested. Recall that pmax

k ∈ N and
pmin
k ∈ F . For each GPU i, let Ri be the set of running tasks,

pavli = 1−
∑

k∈Ri
palck be the available amount of processor,

and mavl
i be the available amount of device memory.

The algorithms are defined as follows.
• Moldable Equipartition:

In the moldable setting, at each scheduling event when
a new task arrives or a running task terminates, the
scheduler scans the queued tasks in the arrival order and
allocates available resources to each task as described
below. Running tasks and already-allocated resources
remain intact. Unless stated in the context, “allocate”
implies that a specified amount of processor is allocated
to task k from the first-found GPU i that meets mreq

k ≤
mavl

i .
– If

∑
k∈Q pmin

k ≥
∑

i∈G pavli , then allocate pmin
k to

each task k ∈ Q.
– If

∑
k∈Q pmax

k ≤ |A|, then allocate pmax
k to each

task k ∈ Q.
– If |Q| ≤ |A|, then:

1) First, allocate 1 vacant GPU to each task k ∈ Q.
2) Next, distribute the remaining vacant GPUs us-

ing the D’Hont method, regarding the available
GPUs as parliamentary seats and the tasks as
candidates, assuming each task k has pmax

k votes.
– Otherwise:

1) For each task k, choose GPU i that has the
smallest number of running or pre-assigned tasks,
and pre-assign k to i if pmin

k ≤ pavli .
2) Let R′i be the set of pre-assigned task on GPU i.
3) For each task k pre-assigned on GPU i, choose

the largest possible value pk ∈ F that meets pk ≤

pavli /|R′i|, and allocate pk from i.
• Malleable Equipartition:

In the malleable setting, at each scheduling event, the
scheduler (re-)assigns both queued and running tasks
to all resources, including already allocated ones. The
algorithm is identical to that of the moldable setting,
except that both queued and running tasks are considered.
To see the maximum effect of malleability, re-allocation
is unrestricted so that the scheduler can re-allocate a
different amount of processors in a different set of nodes
from where a task was once assigned. For example, a
running task is suspended if the scheduler re-allocates
zero processor or a running task shrinks/expands if the
scheduler re-allocates less/more amount of processor.
Moreover, a suspended task resumes if the scheduler re-
allocates some processors and a running or suspended
task migrates if the scheduler re-allocates processors in
a different node. Hereafter we collectively call such re-
allocations preemption.

B. Clairvoyant Algorithms
For the clairvoyant setting, we adopt a proportional alloca-

tion strategy, which allocates each task an amount of processor
in proportion to the computational volume of the task, where
the computational volume is the runtime of the task when
run alone on one GPU. The rationale is that the proportional
allocation can achieve the shortest makespan because all
the tasks should complete simultaneously, provided that they
have linear speedup curves and the resource is continuously
partitionable. Although our system does not exactly meet these
conditions, we try to allocate GPUs as proportional as possible.

Notations: Let vremk be the remaining computational volume
of task k and f(v, p) be a mapping function from a task’s
computational volume v and an allocated amount of processor
p to its runtime.

The algorithms are defined as follows.
• Moldable Proportional:

In the moldable setting, at each scheduling event, the
scheduler allocates available resources to queued tasks
as described below. Running tasks and already-allocated
resources are kept intact.

– If
∑

k∈Q pmin
k ≥

∑
i∈G pavli , then allocate pmin

k to
each task k ∈ Q.

– If
∑

k∈Q pmax
k ≤ |A|, then allocate pmax

k to each
task k ∈ Q.

– Otherwise, calculate a target makespan ttrg as

ttrg =

∑
k∈Q vk∑
i∈G pavli

.

Then for each task k ∈ Q in a descending order of
vremk , choose a value pk ∈ N∪F so that f(vremk , pk)
becomes the closest value to ttrg, and allocate pk.

• Malleable Proportional:
In the malleable setting, the scheduler (re-)assigns both
queued and running tasks to all resources using the same
algorithm as above.
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V. EXPERIMENTS WITH OUR GPU WORKLOAD

A. Workload

We use a real-world workload trace of our in-house Linux
cluster system with 42 NVIDIA Tesla M40 GPUs, where each
GPU has a 12 GB device memory, observed for six months
(from August 2017 through January 2018). Observations are
performed by a daemon program that collects the information
about each process running on each GPU every 15 seconds.
A process observed on a GPU for more than 300 seconds is
regarded as a task. Task k is described by start time tbgnk , com-
pletion time tcmp

k , concurrency ck, and memory consumption
mk. ck and mk represent the number of processes observed
concurrently with the task on a GPU and the maximum amount
of GPU device memory consumed by the task, respectively.
The computational volume vk = (tcmp

k − tbgnk )/ck, which
represents the runtime of task k when run alone on one GPU,
is calculated for each task. The workload includes 14 unique
users and 77677 tasks (2317 jobs). The concurrency is 16 at
maximum and 3.95 on average. No task uses more than one
GPU. Figure 2 shows the runtime and memory consumption
distributions.

B. Simulator

We have developed a discrete-event simulator that im-
plements the moldable/malleable scheduling algorithms. The
simulator takes as input a number of nodes and a workload.
The smaller the number of nodes, the more congested the
system is. For all the tasks we set (pmin, pmax) = ( 14 , 4) for
the moldable/malleable algorithms and (pmin, pmax) = (1, 1)
for the rigid algorithms. When allocating more or less than one
GPU to a task k, the simulator calculates the task’s remaining
runtime f(vremk , palck ) according to the speedup curve of our
real applications obtained by our benchmarks (Fig. 1). Though
our benchmark includes only two applications, it is sufficient
for our experiments because 97% of the total computational
volume in our workload is generated by either MCNN-based
or OpenNMT-based programs, and the latter may not share
a GPU because it usually requires more than 90% of GPU’s
device memory.
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Fig. 3. Simulated system utilization for our GPU workload.

With the malleable algorithms the scheduler may preempt
task k and add a fixed amount of time tpmp to its remaining
runtime. We assume tpmp = 0 in Sections V-D and V-E, and
tpmp ∈ {0, 150, 300} seconds in Section V-F. We allow the
scheduler to preempt task k only if vremk > 300 seconds in
order to prevent excessive preemptions.

As a baseline for comparison, the scheduler also implements
two rigid scheduling algorithms that allocate the exact number
of GPUs as requested.
• Rigid FCFS:

A first-come-first-serve algorithm that allocates pmax
k to

each task k ∈ Q in the arrival order.
• Rigid Shortest:

A shortest-task-first algorithm that allocates pmax
k to each

task k ∈ Q sorted by vk in an ascending order.

C. System Utilization

Figure 3 shows the system utilization as a reference in the
following discussions. Only the results for the non-clairvoyant
algorithms are shown because the clairvoyant algorithms yield
almost identical results to their non-clairvoyant counterparts.
The simulated system becomes saturated with six GPUs and
the rigid algorithms keeps the system at 100% utilized with
less GPUs. On the other hand, the moldable/malleable algo-
rithms exploit the system beyond 100% because the fractional
allocation of GPUs improves the overall throughput due to
the sublinear speedup of our tasks. In the following figures
we omit the plots for |G| < 6 as such a congested system is
impractical.

D. Results for Non-clairvoyant Scenarios

First, let us focus on the solid lines in Fig. 4, which represent
the non-clairvoyant scenarios where the scheduler does not
use prior knowledge about the tasks’ runtime. We compare
the schedules generated by the Moldable Equipartition and
Malleable Equipartition algorithms to that by the Rigid FCFS
algorithm.

The upper half of Fig. 4 shows the flow time in seconds. The
results for the per-task flow time indicate that moldability and
malleability improve the average flow time up to 96.7% and
97.2% over the rigid schedule, respectively, when the system
is fully loaded (|G| = 6) (Fig. 4a). These improvements are
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Fig. 4. Simulation results for our GPU workload.



at least 15.1% and 42.5%, respectively. Although moldability
does not improve the maximum flow time in most cases,
malleability improves it by up to 66.6%. The reason is that
once task k is assigned to a lesser amount of processors than
pmax
k , only the malleable scheduler allows the task to expand

to pmax
k as more processors become available.

The per-job flow time displays a smaller difference between
the algorithms (Fig. 4b). However, moldability and malleabil-
ity still improve the average per-job flow time at least 6.7%
and 17.5%, respectively. The maximum per-job flow time is
almost the same for all schedules.

The lower half of Fig. 4 shows the stretch. Figure 4c
clearly shows the advantage of moldability and malleability.
Both equally improve the maximum stretch by 50.0% through
62.5% over the rigid schedules when the system is modestly
loaded (12 ≤ |G| ≤ 48). The results for the average stretch
are consistent with those for the flow time. The minimum
improvement brought to the average stretch by moldability
and malleability is 26.7% and 36.2%, respectively. Note that
a stretch can be less than 1.0, which indicates that more than
one processor is allocated to a task. The per-job stretch is the
jobs’ runtime divided by the jobs’ total computational volume
(Fig. 4d). Moldability/malleability improves the maximum
per-job stretch by around 90% when the system is fully loaded
(|G| = 6). Remarkably, Malleable Equipartition achieves a
maximum per-job stretch comparable or better than that of
Rigid Shortest, which uses prior knowledge about the tasks’
runtime. Furthermore, both Moldable Equipartition and Mal-
leable Equipartition achieve better average per-job stretches
than their clairvoyant counterparts when the system is not fully
loaded (|G| ≥ 12).

In summary, moldability provides undoubted improvements
over rigid schedules to minimize stretch and average flow time.
Its advantage is particularly noticeable when the system load is
low or very high. Malleability may yield even better schedules,
but we withhold judgment since the simulations herein assume
that preemption lacks overhead. We refer the reader to Section
V-F for a discussion on the effect of preemption overhead.

E. Results for Clairvoyant Scenarios

The dotted lines in Fig. 4 represent the clairvoyant scenar-
ios, where the scheduler uses prior knowledge about the tasks’
runtime. We speculated that the use of more information would
improve the schedules. However, the results do not support
this hypothesis. Schedules with the Moldable Proportional
and Malleable Proportional algorithms are inferior or almost
identical to their non-clairvoyant counterparts. For example,
the average per-task flow times at |G| = 12 are 3820 seconds
with Moldable Proportional and 3636 seconds with Moldable
Equipartition. The difference is more noticeable when compar-
ing the stretch. The reason is that our proportional algorithms
often allocate a tiny fraction of processor to small tasks when
the system is highly loaded. This behavior can be understood
as the goal of our proportional algorithm is not to minimize
the flow time but to minimize the makespan. In fact, the per-
job flow time (which best represents the users’ happiness)
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Fig. 5. Simulation results with preemption overhead for our GPU workload.

is almost identical with the Equipartition algorithms and the
Proportional algorithms.

One may notice an outstanding advantage of Rigid Shortest
in terms of the per-task stretch (Fig. 4c). This is not surprising
because the shortest-task-first algorithm minimizes the max-
imum stretch of interactive tasks by prioritizing small tasks.
In our use cases, however, most of the short-running tasks
belong to a long-running parameter survey job, and we seldom
care about the stretch of an individual task. Consequently, we
introduce the per-job stretch (Fig. 4d). When comparing the
maximum per-job stretch, Rigid Shortest is no longer outstand-
ing and is often worse than the Equipartition algorithms, which
do not use information about the tasks’ runtime.

F. Overhead for Preemption

Preemption of a DL task involved by the malleable sched-
ulers may take a long time especially when a task is moved
from one node to another. To clarify the trade-off between
the benefit of malleability and the penalty of preemption,
we conducted additional simulations with varying preemption
overheads.

Fig. 5 shows the per-task flow time with the Malleable
Equipartition algorithm assuming tpmp ∈ {0, 150, 300} sec-
onds. The results with the Moldable Equipartition algorithm
is also shown for comparison. As far as the system is lightly
loaded (|G| ≥ 24), the merit of the malleable algorithm is
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preserved in terms of maximum flow time. However, when
the system is heavily loaded (|G| ≤ 12), the task suffer
from frequent preemptions and the benefit of malleability
disappears. Therefore, a malleable scheduling algorithm must
be designed with explicit consideration of empirical overhead
for preemption.

There is a broad design space between non-preemptive
scheduling and arbitrarily preemptive scheduling, and explor-
ing the design space should be our future work. We refer
the reader to Edmonds’ work [10] for theoretical analysis of
scheduling with different levels of preemption.

VI. EXPERIMENTS WITH A STANDARD WORKLOAD

The previous section showed that our DL tasks would
certainly profit from moldability/malleability. To evaluate the
effectiveness of moldability/malleability in case of general
tasks, we also perform experiments with the HPC2N workload
from the Parallel Workloads Archive [11]. The reason for
choosing this workload is that it contains almost complete
information and many previous studies have used it. It contains
202871 tasks observed for 3.5 years (from July 2002 through
January 2006) in a Linux cluster with 240 CPUs. Each task k is
described by a start time tbgnk , a finish time tcmp

k , and a number
of CPUs preqk . We calculate a volume vk = (tcmp

k − tbgnk )preqk

for each task. Figure 6 shows the distribution of the runtime,
the volume and the number of CPUs.

Simulation is performed by our in-house simulator treat-
ing a CPU in the workload as a GPU in the simulator.
We set (pmin

k , pmax
k ) = (1, 240) for the moldable/malleable

algorithms and (pmin
k , pmax

k ) = (preqk , preqk ) for the rigid
algorithms. We assume a linear speedup and no overhead for
preemption as we do not have a reliable estimation of these
values. Other settings and scheduling algorithms are the same
as described in the previous section.

A. Results for online scheduling

Figure 7 shows the system utilization. All the scheduling
algorithms (including those not shown in the figure) yields
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Fig. 7. Simulated system utilization for the HPC2N workload.

almost identical values. As the simulated system saturates with
120 CPUs, we omit the plots for 60 CPUs in the following
plots.

Figure 8 shows the flow time in seconds and the stretch.
When the system is lightly loaded, we reach the same conclu-
sion as before: moldability and malleability improves the aver-
age flow time compared to the rigid schedules. However, when
the system is modestly or heavily loaded (#CPUs ≤ 240), the
average per-task flow time of the moldable schedules become
worse than that of the rigid schedule. The reason is that the
tasks could not benefit from fractional allocations since we set
pmin
k = 1. For example, assume a heavily loaded system and

two tasks with preq1 = preq2 = 2 and v1 = v2 = 4. With the
Rigid algorithm they run one after another using two CPUs
and the average flow time would be 2+4

2 = 3; while with the
Equipartition algorithm they run in parallel each using one
CPU and the average flow time would be 4+4

2 = 4. This is an
inherent disadvantage of the Equipartition algorithm in terms
of average flow time. If we allow a fractional allocation and
the tasks have a sublinear speedup curve, then the disadvantage
could be offset by the sublinear speedup of tasks assigned to
one CPU.

Overall, through the experiments with the HPC2N workload
we confirmed that the schedule of general CPU tasks can also
be improved by leveraging the tasks’ moldability/malleability.

B. Results for offline scheduling

So far we only considered online scheduling scenarios,
where the tasks arrive at their observed arrival time and the
scheduler processes each task in a timely manner. To see the
effect of moldable/malleable scheduling from a broader view-
point, we also conducted an offline scheduling simulations.
Herein we set tarrk = 0 for all k, i.e, all the tasks arrive at
once.

Fig. 9 shows the results for the offline scheduling sim-
ulations for the HPC2N workload. Makespan indicates the
maximum completion time of all the tasks. Plots for the
clairvoyant algorithms are omitted because they yield identical
results to their non-clairvoyant counterparts. As shown in the
figures, the Rigid and Malleable algorithms result in similar
performance. Malleable Equipartition achieves at most 2.7%
shorter makespan than that of Rigid FCFS. In contrast, the
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Fig. 8. Simulation results for the HPC2N workload.

Moldable algorithm results in worse performance than the
other two. The reason is that, in the offline scenarios, there are
so many tasks in the queue that the Moldable Equipartition
scheduler allocates pmin

k = 1 processor to every task. This
causes some large tasks remain running slowly in the end.

VII. RELATED WORK

A. Online Scheduling

Our work is related to the theory of online scheduling
problem, where a scheduler must deal with arrived tasks at
hand without knowing future tasks. While the majority of
traditional online scheduling studies aims at minimizing the
makespan [12], we consider the flow time and its stretch as
more relevant performance metrics to our use cases. In terms
of average flow time, Edmonds [9] revealed that if all the tasks
have a strictly sublinear speedup curve, then the Equipartition
algorithm yields a 2-competitive schedule6. This is the reason
why we employed the Equipartition approach in our non-
clairvoyant scenarios. In terms of makespan, it is proven that
one may compose a 2-competitive batch-style online algorithm
by performing an offline algorithm repeatedly [12]. We might

6A σ-competitive online schedule is at most σ times worse than an offline
schedule using perfect knowledge.

improve the scheduling quality of our clairvoyant scenarios
by employing a more sophisticated algorithm in place of our
naive proportional algorithm.

B. Moldability/malleability-aware Scheduling

Several scheduling techniques for moldable/malleable tasks
have recently been proposed with the goal of minimizing
makespan [13]–[15] or stretch [16]–[18]. The key issue in
designing a moldability/malleability-aware scheduler is the
interface between the scheduler and tasks, which is essential
for the scheduler to monitor and control the tasks. A note-
worthy implementation based on Torque and Charm++ has
been developed by Prabhakaran et al. [19]; however, their im-
plementation is not available to the public. Unfortunately, we
are not aware of such a scheduling product that leverages the
inherent moldability/malleability of emerging DL applications
built on top of high-level DL frameworks.

VIII. CONCLUSION

This study aims to realize an effective design for a batch
scheduling system that accelerates DL tasks by exploiting
their inherent flexibility (i.e., moldability and malleability).
A moldable DL task can change the number of GPUs just
prior to beginning its execution, while a malleable DL task can
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Fig. 9. Offline scheduling simulation results for the HPC2N workload.

change the number of GPUs during execution. A scheduler that
supports moldability/malleability may accelerate a DL task by
allocating more GPUs than required for the task when some
GPUs are vacant. Even if all GPUs are tasked, a scheduler
may improve the utilization of computational resources by
assigning more than one task concurrently to the same GPU.

To evaluate the speedup of a DL task due to
moldability/malleability-aware scheduling, we conducted ex-
tensive simulations using our GPU workload trace. The re-
sults demonstrate that moldability-aware scheduling using a
simple Equipartition algorithm can significantly improve the
scheduling quality. For instance, if a scheduler can allocate 1–4
GPUs to a task or assign 1–4 tasks to a GPU, then the average
flow time of DL tasks is shortened by 15.1%–96.7% compared
to a rigid FCFS schedule in which one GPU is allocated to
each task. The benefit of malleability-aware scheduling may be
offset by the overhead for preemption. With our proportional
allocation algorithm, the use of prior knowledge about the
tasks’ runtime does not improve the scheduling quality when
moldability or malleability is available.

Our future goal is to establish a computing environment that
accelerates DL tasks as much as possible by maximizing the
use of GPUs without users’ effort. Our next step is to co-design
a scheduler and DL framework so that they can exchange the
necessary information for the moldability/malleability-aware
scheduling such as the supported minimum/maximum number
of GPUs, estimated runtime on different number of GPUs,
etc.
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