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Abstract-As the scales of parallel applications and platforms 
increase the negative impact of communication latencies on 
performance becomes large. Random network topologies can be 
used to achieve low hop counts between nodes and thus low 
latency. However, random topologies lead to increased aggregate 
cable length and cable packaging complexity on a machine room 
ftoor. In this work we propose two new methods for generating 
random topologies and their physical layout on a ftoorplan: 
randomize links after optimizing the physical layout, or optimize 
the layout after randomizing links. The first method randomly 
swaps link end points for a given non-random topology for which 
a good physical layout is known. The resulting topology has the 
same cable length and cable packaging as the original topology, 
but achieves lower communication latency. The second method 
creates a random topology with random links picked so that they 
will not lead to a long physical cable length, and then solves a 
constrained optimization problem to compute a physical layout 
that minimizes aggregate cable length. We quantitatively compare 
these two methods using both graph analysis and cycle-accurate 
network simulation, including comparisons with previously pro­
posed random topologies and non-random topologies. 

Index Terms-Network topologies, cabinet layout, interconnec­
ti on networks, high-performance computing 

I .  INTRODUCTION 

Large parallel applications to be deployed on next genera­
tion High Performance Computing (HPC) systems will suffer 
from conununication latencies that could reach hundreds of 
nanoseconds [ 1 ] ,  [2] . There is thus a strong need for devel­
oping low-Iatency networks for these systems . Switch delays 
(e.g . ,  about 1 00 nanoseconds in InfiniBand QDR) are large 
compared to the wire and flit injection delays even including 
serial and parallel converters (SerDes) . To achieve low latency, 
a topology of switches should thus have low diameter and 
low average shortest path length, both measured in numbers 
of switch hops.  Fortunately, high-radix switches with dozens 
of ports are now available, as seen in the YARC routers for 
folded-Clos or Fat-tree networks [3] . These switches make it 
possible to design low-Iatency topologies with higher degree 
than traditional high-diameter topologies,  e .g . ,  the 3-D torus 
used in the BlueGenelL supercomputer [4] . 

Traditional topologies use regular structures that can match 
application conununication patterns [4] , [5] . One drawback of 
using a regular structure is that it strictly defines network size 
(e.g . ,  kn vertices in a k-ary n-cube topology) even though 
the scale of an HPC system should be determined based on 
electrical power budget, surface area, and cost. Furthermore, 

978-1-4673-5587-2/13/$31.00 ©20 13 IEEE 

3500 -+-Torus , Hypercube --[]_. 
� 3000 Ring plus random shortcut _ .•••. ! 

i * i E 2500 i Q 
6 i 
� 2000 i f i 
'" i 
]5 1500 i 1l ,j' * 
� 

1000 / / 
/ / / 

_ .. _ .. _.<'�/::rr 
/ 

;f 500 

500 

200 

! 100 

Ö 50 
" + 
-" 
� 20 
i5 10 

2-D torus + 
3-D torus X 
4-Dtorus * 

Hypercube D 
TWisted hypercube • 
Folded hypercube 'V 

Flattened butterfly network • 
Ring plus random shortcuts ..........-

2L-�--��--���� 
o 10 15 20 25 30 1000 10000 

Degree Network size 

(a) (b) 
Figure 1. (a) Diameter vs. degree for a 210 topology, for non-random 
topologies and the random shortcut topology proposed in [6] , and (b) 
aggregate cable length vs. N (degree is I092N). 

additional mechanisms must often be used as part of routing 
algorithms so as to maintain topological structure in the face of 
network component failures [4] , [5] . As the number of inter­
cabinet cables increases, the number of backup cables pro­
portionally increases. These backup cables must be installed 
at deployment time since adding cables once the platform is 
deployed is costly. 

Random shortcut topologies are generated either as fully 
random graphs [7] or by adding random links to classical 
topologies [6] , [8] . These topologies achieve low diameter, low 
average shortest path length, and thus low end-to-end network 
latencies [6] . Figure l(a) , wh ich reproduces results in [6] , plots 
diameter vs. node degree, using a logarithmic scale on the 
vertical axis,  for seven non-random topologies with 210 ver­
tices: 2/3/4-D torus, hypercube, twisted hypercube [9] , folded 
hypercube [ 1 0] ,  and flattened butterfly network [ 1 1 ] ;  and for 
the "ring plus random shortcuts" topology proposed in [6] . The 
striking observation is that, for a given degree, random shortcut 
topologies have (often dramatically) lower diameter than non­
random topologies .  Furthermore, a small number of random 
shortcuts is sufficient to obtain low diameter, as seen in the 
curve's  sharp initial drop. Similar results are obtained when 
considering average shortest path length. Another advantage of 
random topologies is that they naturally mitigate the problems 
of component failures and of human errors that lead to mis­
connected link ports during system deployment. 

A practical concern for random shortcut topologies is long 
cable length for a physical deployment [7] , [6] . Aggregate 



cable length can reach astronomical proportions in deployed 
systems that use non-random network topologies .  For example, 
the first generation Earth Simulator required over two thousand 
kilometers of cabling [ 12] , while the K-computer requires 
one thousand kilometers [5] . The use of random shortcuts 
further increases cable length, and thus cost. Figure 1 (b) shows 
average cable length versus network size for a hypercube 
topology, a torus topology and for the random shortcut topol­
ogy proposed in [6] . For a given network size all the topologies 
have the same degree, and they use a standard physical layout 
by wh ich switches are taken in the canonical topological order 
and mapped to cabinets sequentially. We see that the cable 
length of the random topology is about three times larger 
than that of the hypercube and torus, meaning that its cost 
would be significantly higher in practice. Another concern with 
random shortcut topologies is cable packaging. As the number 
of cabinet pairs that are directly connected by at least one 
cable increases, the cable packaging becomes more complex, 
also increasing cost. Previously proposed random topologies 
tend to connect all cabinet pairs. We conclude that, in spite of 
good performance results , random shortcut may thus become 
impractical at large scale due to the added cost. 

To address the above issue we propose and evaluate two 
methods for generating random topologies and their physi­
cal layouts: one method randomizes links after optimizing 
the physical layout while the other randomizes links before 
optimizing the physical layout. The first method, wh ich we 
term permutation, uses a known good physical layout for a 
non-random topology as a starting point and swaps endpoints 
between pairs of links in a way that conserves cable length. 
One advantage of topology permutation is that it can be 
applied to HPC systems that are already deployed in a machine 
room using a non-random topology: it only requires swapping 
the endpoints of some pairs of physical links and updating 
routing tables. The second method, which we term constrained 

shortcutting, generates a random shortcut topology starting 
from a ring and adding shortcut links to it, as in [6] , but 
these shortcuts are created to bypass a small number of nodes 
so as to reduce the potential tor long cable lengths. Then, a 
graph clustering algorithm is used to group switches together 
in cabinets, and cabinets are mapped to a physical floor by 
solving a facility location problem. Our main contributions 
are as tollows: 

• We find that a permuted topology has better performance 
properties than its non-random counterpart (lower diame­
ter, lower latency, identical bisection bandwidth, identical 
or higher throughput). The performance improvement is 
lower than that achieved by random shortcut topolo­
gies [6] , but comes at no increase in cable length. This 
result shows that randomness of endpoints, rather than 
the shortcutting effect of bypassing switches ,  is sufficient 
to improve performance. 

• We find that constrained shortcutting in which shortcuts 
connect only nodes that are at most N /4 hops away on a 
N -switch ring produces topologies that have essentially 
the same performance properties as the unconstrained 
random shortcut topologies in [6] . The main advantage of 
constrained random shortcut topologies is that they can 

be mapped to cabinets on a standard floorplan in a way 
that reduces cable length significantly when compared to 
their unconstrained counterparts. 

• Our results provide a quantitative comparison of topology 
permutation and constrained shortcutting in terms of 
performance and aggregate cable length. One important 
result is that as long as the degree is relatively large, 
e .g . ,  order log N for an N -switch network, then topology 
permutation leads to the best trade-off between perfor­
mance and cabling cost. Note that such "Iarge" degrees 
are feasible due to the availability of affordable high-radix 
switches .  

• We find that the path computations necessary to  fully 
define our random topologies can be completed in only 
a few minutes for networks with tens of thousand of 
switches ,  meaning that they can be deployed in real-world 
systems . 

The rest of this paper is organized as folIows. Related work 
is discussed in Section 11. Sections III and IV detail and 
evaluate topology permutation and constrained shortcutting, 
respectively, while Section V provides qualitative and quanti­
tative comparisons of both methods . Section VI discusses the 
sc al ability of path computation. Finally, Section VII concludes 
the paper with a brief summary of our findings,  including 
recommendations regarding wh ich random topologies should 
be deployed in practice. 

11. RELATED WORK 

A. Topologies of HP C Systems 

A few topologies are traditionally used to interconnect 
compute nodes in most HPC systems, and these topologies 
can be used to interconnect high-radix switches [ 1 3 ] .  In direct 

topologies, each switch connects directly to a number of 
compute nodes as weil as to other switches. Popular direct 
topologies include k-ary n-cubes, wh ich include tori, meshes,  
and hypercubes. Each topology leads to a different trade-off 
between degree and diameter. All these topologies are regular, 

meaning that all switches have the same degree (i .e . ,  each 
switch has the same fixed number of links to other switches). 

Indirect topologies, i .e. ,  topologies in which some switches 
are connected only to other switches,  have also been proposed. 
They have low diameter at the expense of larger numbers 
of switches when compared to direct topologies . The best 
known indirect topologies are Fat trees , Clos network and 
related multi-stage interconnection networks (MINs) such as 
the Omega and Butterfly networks. MINs have uniform access 
latency and they use different schemes by wh ich link end 
points are "shuffled" deterministically at each stage, so that 
re-arrangeable or non-blocking data transfers are possible. 

B. Graphs with Low Diameter 

The problem of maxirnizing the number of vertices in 
a graph for given diameter and degree has been studied 
by graph theoreticians for decades, striving to approach the 
famous Moore bound [ 1 4] . Several graphs with tractable 
and hierarchical structure and good diameter properties have 
been proposed for interconnection networks, including the 
well-known De Bruijn graphs [ 1 5 ] ,  (n,k)-star graphs [ 1 6] , 



etc . Another approach is to augment known topologies .  For 
instance, in the case of the hypercube, many variations have 
been proposed: folded hypercube [ 1 0] , twisted hypercube [9] , 
hierarchical hypercube [ 17 ] ,  enhanced hypercube [ 1 8] ,  Hyper 
De Bruijn (hypercube plus De Bruijn) [ 1 9 ] ,  hierarchically 
constructed Hypernets [20] , etc . Some of these variations 
have also been proposed for k-ary n-cubes, such as express 
cubes [2 1 ] .  

The low diameter properties o f  random graphs have been 
identified in the theoretical literature, e .g . ,  for a ring with 
random chordal shortcuts [22] . The effectiveness of random, 
or seemingly random, shortcuts to reduce diameter has been 
exploited for real-world complex networks, e .g . ,  social net­
works and Internet topology. The small-world property of 
these networks has been studied in the literature. Watts and 
Strogatz [23] propose a small-world network model based on a 
probability parameter that smoothly turns a single-dimensional 
lattice into a random graph, in wh ich a small number of long 
edges are used to reduce the diameter drastically. Other small­
world networks rely on lattice structure plus random links that 
are generated by accounting for the distance along the lattice 
structure [24] . 

Most of the above hierarchical or random topologies are 
constructed for fixed numbers of nodes and/or strive to achieve 
a node degree as low as possible. Furthermore, some of these 
topologies use non-uniform node degrees , wh ich complexifies 
their use in a real deployment. By contrast, in this work 
we focus on topologies of high-radix switches in wh ich 
maintaining as low node degree as possible is not a pressing 
concern. Furthermore, some of our proposed topologies do not 
impose any constraints on the number of nodes. Finally, all our 
proposed topologies have uniform node degree. 

Recently, small-world graphs have been proposed for de­
signing data center networks with increased expandability, 
fault tolerance, and throughput [8] , [7] . In [6] such graphs have 
been proposed to reduce the latency in HPC interconnects, 
based on the observation that adding random shortcuts to a 
ring produce topologies with drastically lower diameter and 
average shortest path length than same-degree non-random 
topologies used traditionally in HPC systems. These random 
networks, whether for a data center that uses a top-of-rack 
switch for inter-cabinet connection or an HPC system in which 
a large number of switches are connected by inter-cabinet 
links [25] , face the challenge of long aggregate cable length. 

C. Cabinet Layout oj Topologies 

Cabinet layout on a floorplan is a concern when designing 
large systems because it affects costs [ 1 1 ] ,  [25 ] .  The salient 
features of a layout include cabinet footprint, number of 
compute nodes and switches per cabinet, and cabinet spacing. 
For instance, in the case of the Cray BlackWidow system, it 
is estimated that each cabinet has a 0.57mx 1 .44m footprint, 
with 128 nodes per cabinet, and that the node/m2 density 
should be 75 [ 1 1 ] .  A COlmnon way to view this problem is 
to co me up with specifications for the widths of the aisles 
between rows of cabinets . The ANSI/TIAlEIA-942 standard 
recommends site layouts with alternating cold and hot aisles 
with width at least 4ft and 2ft, respectively. A similar speci-

fication is found in [26] . In this work we assume that some 
2-D physical layout of cabinets has been determined to comply 
with the power/he at constraints of the system to be deployed. 

The topologies used traditionally in HPC systems exhibit 
both highly regular structures and low degree (e.g . ,  the 3-D 
torus in BlueGene/L). As a result, they map naturally to a 
simple 2-D grid-like cabinet layout with low (or even opti­
mally low) aggregate cable length. This is no longer the case 
for high-degree, and especially random, topologies .  System 
designers are thus faced with the difficult task of mapping 
switches to a physical layout so as to reduce aggregate cable 
length. In addition, the cost of the cabling medium increases 
with the cable length between cabinets (e .g . ,  for InfiniBand 
the typical maximum length of passive copper is 1 0m, while 
embedded optical is 1 00m [27]) .  In this work we focus on the 
problem of reducing aggregate cable length when mapping 
random topologies onto pre-determined physical layouts . 

III . TOPOLOGY PERMUTATION 

A. Two Permutation Methods 

Consider an arbitrary physical layout of cabinets on a 
floorplan, so that each cabinet contains the same number of 
switches (and possibly compute nodes connected to these 
switches). The switches are interconnected in some non­
random tradition al topology, e .g . ,  a 3-D torus,  that maps weil 
to the cabinet layout in terms of aggregate cable length. We 
use the notation x f-4 y to denote a link between switch x 

and switch y. A natural permutation method proceeds in two 
steps.  In the first step, for each cabinet i, determine Ei, the set 
of all intra-cabinet links that connect two switches in cabinet 
i. Consider two links picked randomly in Ei, say a f-4 b and 
c f-4 d. If all four switches a, b, c, and d are distinct, then 
replace a f-4 b by a f-4 d and c f-4 d by c f-4 b, otherwise 
do nothing. Remove both links from consideration, and repeat 
until all links in Ei have been considered. In the second step, 
consider all pairs of cabinets (i, j) with i i= j. Considering 
Ei,j, the set of all inter-cabinet links connecting a switch in 
cabinet i to a switch in cabinet j, swap the endpoints of these 
links using the same method as described for intra-cabinet 
links . 

Because all endpoint permutations are for links between the 
same pair of cabinets, bisection bandwidth and cable length 
are conserved. Figure 2 (a) shows an example initial topology 
and Figure 2 (b) shows a sampie permuted topology generated 
using the above method. 

An alternate method is to randomly swap endpoints without 
using two separate steps for intra- and inter-cabinet links . For 
each pair of cabinets i and j, i i= j, let Ei,j = Ei,j U Ei U Ej, 
i .e . ,  the set of all intra-cabinet links and all inter-cabinet links 
with both endpoints in cabinets i and/or j. Randomly pick 
two links in Ei,j, say a f-4 b and c f-4 d. If all switches 
a, b, c, and d are distinct and if the two links are not both 
intra-link cabinets in different cabinets, then replace a f-4 b by 
a f-4 d and c f-4 d by c f-4 b, otherwise do nothing. Rem�ve 
both links from consideration and repeat until all links in Ei,j 
have been considered. The number of intra-cabinet links and 
the number of inter-cabinet links between any two cabinets 
are identical to those for the baseline topology. Here again, 
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Figure 2. Example 1 8-switch 3-cabinet baseline non-random topology and 
permuted topology. 

both the aggregate cable length and the bisection bandwidth 
are conserved. But the topology can be considered as "more 
random" than when using the two-step method. We term this 
method fully random permutation and the two-step method 
partially random permutation. 

Note that this topology generation procedure may produce 
a partitioned network. However, this happens with very low 
probability, making it possible to simply regenerate the 
topology until a non-partitioned network is obtained. Note 
also that the generation procedure may lead to multiple edges 
between the same pair of switches,  but only the first such edge 
is actually added and all other redundant edges are ignored if 
the link duplication is prohibited. 

B. Graph Analysis Evaluation 

In this section we use graph analysis to evaluate the merits 
of topology permutation when compared to non-random stan­
dard topologies and to fully random shortcut topologies .  More 
specifically, we consider the following random topology: 

• RING-n: A ring of degree two with n - 2 additional 
random shortcut links at each vertex [6]; 

and the following three non-random topologies: 

• TORUS-n: A n/2-dimensional torus of degree n; 
• HYPERCUBE: A hypercube of degree n for N = 2n 

vertices; and 
• FHYPERCUBE: A folded hypercube of degree n + 1 for 

N = 2n vertices, in wh ich an edge is added between 
each vertex and its most distant multi-hop neighbor [ 10] . 

Let 2P be the number of vertices that fit in a cabinet. The 
last three topologies above admit a natural mapping of the 
vertices into cabinets that is known to have low aggregate 
inter-cabinet cable length: simply assign vertices taken in the 
canonical topological order to cabinets sequentially. In the 
case of the TORUS-n topology, however, such straightforward 
mapping is only valid when the total number of vertices is 
N = 2p·n/2. These three topologies are thus good candidates 
for evaluating our topology permutation approach. Considering 
that each cabinet can hold 24 

= 16 switches we denote by P­
tapa, resp. PF-tapa, the partially, resp. fully, random permuted 
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Figure 4. Diameter (a) and average shortest path length (b) vs. network 
size for the FHYPERCUBE, P-FHYPERCUBE, and PF-FHYPERCUBE 
topologies and the RING-x topology of the same degree. 

version of base topology tapa, where tapa is one of TORUS-n, 
HYPERCUBE, or FHYPERCUBE. 

Figure 3 shows exact values of the diameter and the average 
shortest path length for HYPERCUBE, its two permuted 
versions P-HYPERCUBE and PF-HYPERCUBE, and RING­
n as the number of vertices, N = 2n, increases. For a given n 
value all four topologies have the same degree, thus allowing 
for a fair comparison. We see that all random topologies 
improve both metrics over the non-random HYPERCUBE. In 
all cases , P-HYPERCUBE leads to equivalent or better re­
sults than PF-HYPERCUBE, showing that randomly swapping 
links in two separate steps for intra- and inter-cabinet links is 
more effective than using a single step. In terms of diameter, 
P-HYPERCUBE is outperformed by RING-n but improves 
significantly over HYPERCUBE (e.g . ,  for n = 12 its diameter 
is larger than that of RING-n by 3 hops but lower than that of 
HYPERCUBE by 4 hops).  Similarly, P-HYPERCUBE leads 
to larger average shortest path lengths than RING-n but still 
improves significantly over HYPERCUBE (e.g . ,  for n = 12 
its average shortest path length is 0.72 hops larger than that 
of RING-n but 1 .63 hops lower than that of HYPERCUBE). 
The gaps between P-HYPERCUBE and RING-n increase as n 
increases. However, N = 212 already represents a very large-



Table 1. Diameter and average shortest path length (ASPL) for the TORUS-4 
and TORUS-6 topologies, and for the RING-n topology of the same degree. 

N= 2n Topology diameter ASPL 
TORUS-4 16 8.00 

256 P-TORUS-4 10 5.59 
PF-TORUS-4 11 5.96 
RlNG-4 7 4.38 
TORUS-6 24 12.00 

4,096 P-TORUS-6 16 8.41 
PF-TORUS-6 17 8.70 
RlNG-6 7 5.06 

scale platform. Assuming switches with 36 ports, each switch 
would support 24 compute nodes for a total 01' 98k compute 
nodes, or almost the number in the largest platform in the 
Top500 list at the time this articIe is being written. 

Figure 4 shows results for FHYPERCUBE and its permuted 
versions . Note that the random shortcut topology used is 
RING-(n + 1) so as to allow same-degree topology compar­
isons . As expected, diameters and average shortest path lengths 
are lower than with HYPERCUBE. All random topologies 
improve both metrics over the non-random HYPERCUBE, 
with the exception of the diameter when n = 6. Again, 
in all cases , P-FHYPERCUBE leads to equivalent or better 
results than PF-FHYPERCUBE. In terms 01' diameter, P­
FHYPERCUBE leads to the same diameter as RING-(n + 1), 
improving over FHYPERCUBE by up to two hops.  In terms 
of average shortest path length, P-FHYPERCUBE leads to a 
large improvement over FHYPERCUBE and is cIose to RING­
(n + 1) (e.g . ,  for n = 12 its average shortest path length is 
0.23 hops larger than that of RING-n but 1 .24 hops lower than 
that of HYPERCUBE) . 

Table 1 shows resuIts for the TORUS topologies (with a 
number 01' vertices constrained to be an integral power 01' p = 

16 so that a straightforward layout 01' the vertices into cabinets 
is possible). The main observations are similar to those for 
HYPERCUBE and FHYPERCUBE. The random topologies 
outperform the non-random base topology. P-TORUS-n is 
more effective than PF-TORUS . While P-TORUS-n is not 
as impressive as RING-n it improves significantly over the 
base non-random topology. The gap between P-TORUS-n 
and RING-n is larger than observed for the higher-degree 
HYPERCUBE and FHYPERCUBE topology. This is because 
the RING-n topology achieves low diameter and average 
shortest path length for low n values,  as seen in Figure l(a) . 

We concIude that topology permutation leads to largely 
improved diameter and average shortest path length when 
compared to original non-random topologies .  Furthermore, for 
high-degree topologies such as hypercubes, it leads to result 
that can be cIose to that 01' the random shortcut topology 
proposed in [6] . In the next section we evaluate topology 
permutation in terms of actual network latency and throughput 
measured in simulation. 

C. Simulation Evaluation 

1) Methodology: We use a cycIe-accurate network simula­
tor written in C++ [6] . Every simulated switch is configured 
to use virtual cut-through switching. A header flit transfer 
requires over WOns that incIude the routing, virtual-channel 

allocation, switch allocation, and flit transfer from an input 
channel to an output channel through a crossbar. The flit injec­
tion delay and link delay together are set to 20ns . Each cabinet 
stores 16 switches (except in the case of 64-switch networks, 
in wh ich case there are eight switches per cabinet) . Routing 
in hypercubes and tori is done with the protocol proposed by 
Duato [28 ] ,  and we use dimension-order routing for the escape 
paths. For random topologies we use the topology-agnostic 
adaptive routing scheme described in [29] , with up*/down* 
routing for the escape paths. In our simulation, four virtual 
channels are used in all topologies .  We also present results for 
the Myrinet-Clos topology [30] , for wh ich we use up*/down* 
routing. 

We simulate three synthetic traffic patterns that deter­
mine each source-and-destination pair: random uniform, bit­

reversal, and matrix-transpose. These traffic patterns are com­
monly used for measuring the performance of large-scale 
interconnection networks [3 1 ] .  The hosts in ject packets into 
the network independently of each other. In each synthetic 
traffic the packet size is set to 33 flits (one of wh ich is for 
the header) . Each flit is set to 256 bits , and effective link 
bandwidth is set at 96 Gbps.  We pick relatively small packet 
sizes since we wish to study the performance of latency­
sensitive traffic that consists of small messages [ 1 ] .  

Our results quantify two metrics: latency and throughput. 

The latency is the elapsed time (in nsec) between the gen­
eration of a packet at a source host and its delivery at a 
destination host. The throughput is the largest amount of traffic 
(in Gbit/sec) accepted by the network before network is not 
saturated. 

Because discrete event simulation is compute intensive, 
we simulate networks with at most 5 1 2  switches .  However, 
our simulation results are consistent with the graph analysis 
results presented in the previous section. Those results are for 
networks with up to 4,096 switches and show stable trends as 
the number of switches increases. 

2) Simulation Results: Figures 5 ,  6,  and 7 plot communica­
tion latency vs. accepted traffic for 64- , 256- , and 5 12-switch 
direct topologies, respectively. Each figure shows results for 
our three synthetic patterns .  All figures show results for 
HYPERCUBE, P-HYPERCUBE, and PF-HYPERCUBE, as 
weil as for the same degree RING-n topology, where 2n is 
the number of switches .  Results for 256-switch topologies also 
incIude TORUS-4, P-TORUS-4, and PF-TORUS-4, as weil as 
the same degree RING-4 topology. We do not incIude FHY­
PERCUBE here because results lead to the same concIusion 
as those for HYPERCUBE (wh ich is expected given the graph 
analysis results) .  The network latency of a given topology 
is the value of the corresponding curve on the left of the 
horizontal axis .  The achieved throughput is quantified by the 
points at which the latency curve "shoots up." 

For 2n-switch topologies ,  RING-n leads to the better results 
in terms of both latency and throughput than all HYPER­
CUBE versions. For instance, for a 256-switch topology, it 
achieves latency lower than that of HYPERCUBE by 1 9 .4%, 
20. 1 %,  and 1 5 .6% tor the uniform, matrix-transpose, and bit­
reversal traffic, respectively. By comparison, the latency of P­
HYPERCUBE improves over that of HYPERCUBE by 16 .5%,  
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1 7 .2%, and 12 .0%. PF-HYPERCUBE leads to performance 
inferior to that of P-HYPERCUBE. The advantage of ran­
dom topologies over the baseline HYPERCUBE increases 
as network size increases. It is worth noting that all same­
degree hypercube and RING-n topologies achieve similar 
throughput. In the case of 256 switches ,  results show that the 
non-random TORUS-4 is widely outperformed by same-degree 
random topologies .  P-TORUS-4 is significantly better than 
PF-TORUS-4 (with a latency 5% lower) but not as good as 
RING-4 (which has a latency 21 % lower than PF-TORUS-4) . 
Furthermore, for these low-degree topologies,  we do observe 
differences in throughput, with network saturation being reach 
first by TORUS-4, then PF-TORUS-4, then P-TORUS-4, and 
finally by RING-4. Overall, our simulation results corroborate 
the graph analysis results in the previous section. This is 
expected because network latency is correlated with diameter 
and average shortest path length. 

We also present results for the indirect Myrinet-Clos topol­
ogy in Figure 8 ,  which plots comrnunication latency vs. ac­
cepted traffic for 80- and 1 60-switch topologies with 256- and 
5 12-hosts, respectively, for our synthetic trafik patterns .  We 
ass urne that leaf switches are stored in cabinets that store their 
local compute nodes (up to 128) ,  while the other switches are 
stored in switch-only cabinets. The permuted Clos topology is 
computed using our fully randomness method. We observe 
that the original and permuted topologies achieve sensibly 
the same throughput, but the perrnuted topology improves 
communication latency for all trafiic patterns , by up to 23 .4%. 
Results for the bit reversal traffic pattern are similar but are 
omitted due to lack of space. We conclude that topology 
permutation is effective in reducing latency not only for direct 

but also for indirect topologies such as Myrinet-Clos.  Since 
this topology belongs to the Fat-tree family, we expect our 
approach to apply to Fat trees in general, and thus to data 
center networks . Random topologies have in fact received 
recent attention for such networks [8] , [7] . 

D. Cable Length Evaluation 

In this section we estimate the cable length required for 
deploying the previous topologies onto a physical layout of 
cabinets. We assurne a physical ftoorplan that is sufficiently 
large to align all cabinets on a 2-D grid. Forrnall y, assuming 
m cabinets, the number of cabinet rows is q = I Vm l and 
the number of cabinets per row is p = Im / q l We assurne 
that each cabinet is 0 .6m wide and 2 . 1 m  deep including 
space for the aisle, following the recommendations in [26] . 
The distance between the cabinets is computed using the 
Manhattan distance. We estimate average cable length based 
on [ 1 1 ] :  2m intra-cabinet cables,  and a 2m wiring overhead 
added to the length of inter-cabinet cables at each cabinet. 
We ignore cables between cOlnpute nodes and switches,  since 
their lengths are constant regardless of the layout. 

Figures 9 and 10 plot latency and throughput, respec­
tively, vs. average inter-cabinet cable length for 256-switch 
topologies and all three trafiic patterns .  The layout of all 
the topologies,  but for RING-n, is based on sequentially 
mapping switches to cabinets according to the canonical 
topological order. For RING-n the mapping to the cabinets is 
computed using a method described in an upcoming section 
(Section IV-D). Latency and throughput values are computed 
from simulation experiments similar to (and including) those 
presented in the previous section. As explained earlier, latency 
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Figure 1 1 . Constrained shortcutting on an example. 

values are the network delays measured in low load conditions 
before network saturation. Throughput values are computed 
as the largest accepted trafiic at wh ich network delay is 
less than 1 .2f.Ls . To avoid c1utter, these results exclude PF­
tapa topologies since they are always inferior to their P-tapa 
counterparts. 

In all results, and as expected, a topology tapa is either 
equivalent to or outperformed by the P-tapa topology since 
both topologies have the same cable length. Let us first 
consider the latency results in Figure 9. Among the topologies 
with degree 4,  RING-4 leads to latency between 19% and 
20% smaller than P-TORUS-4 but at the expense of between 
24% and 25% longer average cable length. Considering higher 
degree topologies, then we find that RING-8 leads to latencies 
only between 3% and 5% sm aller than P-HYPERCUBE, but 
incurs an increase in cable length between 30% and 3 1  % .  
Throughput results i n  Figure 10  paint a similar picture. RING-
4 improves on P-TORUS-4 by between 1 00% and 1 50%, but 
RING-8 improves on P-HYPERCUBE by less than 0.04% 
in the case of the uniform and matrix transpose traffics and 
even leads to lower throughput than P-HYPERCUBE for the 
bit reversal traffic. The overall conclusion is that topology 
permutation makes it possible to combine low cable length 
with good performance. RING-n may be preferred in low 
degree situation because it can lead to good performance even 
with only a few shortcut links (see Figure l(a)) .  However, 
as the degree increases, a permuted topology leads to similar 
performance as RING-n at a much lower cabling expense. 

IV. CONSTRAINED SHORTCUTTING 

A. Overview 

Constrained shortcutting, wh ich is inspired by the random 
topology generation approach in [6] but aims at lower cable 
length, proceeds in three steps.  First, starting with a simple 
ring, random shortcuts are generated that only bypass a small 
number of switches . Second, switches are aggregated into 
groups of 2P switches where 2P is the number of switches 
that can fit in a single cabinet. This aggregation is done using 
a graph c1ustering algorithm so as to reduce the number of 
edges between groups. Third, the groups are mapped onto 
a physical floorplan by solving a facility location problem. 
Figure 1 1  shows an example for a topologies with N = 64 
vertices. The first step creates the topology on the left-hand 
side of the figure, i .e . ,  a ring with random shortcuts that, in 
this example are constrained to not bypass more than 0.35 x N 
vertices (note that there are no cross-cutting shortcuts) . The 
result of the graph c1ustering algorithm used in the second 

step is shown in the middle part of the figure, in wh ich six 
clusters are formed. Each cluster is denoted by a symbol, and 
each node in that cluster is depicted with the same symbol 
in the topology shown on the left-hand side. The thickness 
of an edge between two clusters corresponds to the number 
of edges between the vertices in those two clusters. The third 
step maps each cluster to a cabinet on a floorplan, as shown 
on the right-hand side of the figure. 

B. Shartcut Generation 

1) Methods: In the RING-n topology, the two endpoints 
of each shortcut are randomly selected regardless of their 
distance (i .e . ,  hop counts) ,  wh ich can lead to a large number 
of longer cables in a physical layout [6] . Instead, we propose 
to add a shortcut only between vertices with bounded hop 
counts so that some of these long cables can be avoided. 
Results in [6] show that only marginal benefit can be achieved 
by generating long random shortcuts, i .e . ,  shortcuts between 
vertices that have high hop counts . Consequently, it is fair 
to expect that generating shortcuts between vertices with 
bounded hop counts, or not-as-long random shortcuts, may 
only degrade latency slightly when compared to RING-n. 
This reasoning provides the intuition and motivation for the 
constrained shortcutting approach. 

We consider two methods for generating constrained short­
cuts on an N -vertex ring, leading to two families of topologies: 

• Nbr(p )-n: Consider V, the set of all vertices on the ring. 
Given a randomly selected shortcut endpoint u in V, the 
other endpoint v is randomly selected among the vertices 
in V,f n Vu, where V,f is the set of vertices that are less 
than N . p/2 hops away from u along the ring, and Vu is 
the set of vertices that are not already connected with u. If 
such avis found, then connect u and v and remove them 
from V; otherwise simply remove u from V. Repeat this 
process until V is empty. Reset V and repeat this process 
n - 2 times to obtain a topology of degree n. Nbr( 1 .0)-n 
corresponds to RING-n. 

• Gau(o:)-n: Same as above but v is selected among the 
vertices in Vu so that the distance from u is picked 
randomly by sampling a Gaussian distribution with me an 
o and standard deviation N . 0:/2, truncated so that it 
takes values between - N /2 and + N /2. A positive, resp. 
negative value, means that the path between u and v is 
going cIockwise, resp . counter-cIockwise, along the ring. 
Lower values of 0: make average shortcut lengths lower. 
Unlike with Nbr(p)-n, the probability of having long 
shortcuts is not zero. As 0: increases, Gau(o:)-n generates 
topologies cIoser to RING-n. 

2) Graph Analysis Results: Figure 12 shows diameter and 
average shortest path length for random constrained shortcut 
topologies with 256 and 4,096 switches versus the average 
number of hops along the ring between two switches con­
nected by a shortcut. Results are shown for Nbr(p)-n and 
Gau(o:)-n. The last data points on the right of the curves 
correspond to RING-n. We see that Nbr(� 0.5)-n and Gau(� 
0.7)-n have diameters at most one hop larger than RING-n, 
and comparable average shortest path length, at least for the 
256- and 4,096-switch cases. We conclude that constrained 
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C. Clustering 

1) Methods: A topology is an unweighted, undirected 
simple graph in which vertices represent switches ,  Grouping 
switches together in a cabinet is equivalent to contracting 
the vertices - in other words, converting the graph into a 
weighted undirected simple graph in wh ich vertices represent 
cabinets - where loop edges are removed and multiedges are 
converted to weighted simple edges . One can use c1ustering 
methods to group densely-connected vertices together in the 
same cabinet so that the number of inter-cabinet cables is 
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Figure 13. Lateney vs. aeeepted traffie for non-random topologies and 
random shortcut topologies (256 switches, 2,048 hosts). 

shortcutting can produce high-quality topologies .  There is a 
small advantage to the Gau(a)-n method as it achieves lower 
or identical diameter and average shortest path length values 
at lower average shortcut hop counts , 

3) Simulation Results: Using the methodology described in 
Section III-C I we conduct network simulation experiments to 
evaluate network latency and throughput of topologies gener­
ated using constrained shortcutting , Figure 1 3  shows results 
with 256-switch topologies for the uniform and the matrix 
transpose trafik patterns,  for RING-8 ,  Nbr(OA)-8, Nbr(0.5)-
8,  Gau(0.7)-8,  and Gau( 1 .0)-8 .  Results for the bit reversal 
trafik pattern are omitted because virtually identical to results 
obtained with the uniform traffic pattern. The results tor the 
uniform traffic pattern show that all topologies lead to sensibly 
the same results, By contrast, for the matrix transpose traffic, 
we observe that the throughput decreases significantly for 
Nbr(OA)-8 and Gau(0.7)-8 compared to the other topologies .  
Based on these empirical results , we conclude that Nbr(;::: 0.5) 
or Gau(;::: 1.0) should be used for constrained shortcutting. In 
all that follows, we only use Nbr. The advantage of Gau over 
Nbr seen in the previous section is almost insignificant. One 
advantage of Nbr over Gau, wh ich is seen in the experiments 
presented in upcoming sections , is that the number of pairs of 
cabinets that are directly connected is much larger with Gau 
than with Nbr. As a result, Nbr leads to less complex cable 
packaging at only an insignificant performance penalty. 

In [32] we have evaluated the use of several c1ustering 
methods applied to the RING-n topology, The Walktrap 
method [33]  produces the best results in our experiments . In 
this work we thus attempt to use this method tor c1ustering 
constrained random shortcut topologies .  For completeness,  we 
present details of the method here, It starts from a state in 
wh ich each vertex is contained in a one-vertex cluster and 
recursively merges the two clusters that minimize the increase 
in the variance of the distance between each vertex and the 
cluster center. In this work, we define the distance between 

vertices i and j as dij = JL�=l (Pitk - PJk )2 jdeg(k) , where 

Ptk denotes the probability of arriving at vertex k by doing 
a t-step random walk from i, and deg( k) denotes the degree 
of k. We modify the Walktrap method to force it to generate 
clusters whose size does not exceed a specified cabinet size. 
We also define a sequential method as a baseline, which groups 
every 2P or 2P - 1 vertices (so that the grouping is as even 
as possible) in order of generation, where 2P denotes the 
cabinet size. If the random shortcut topology has absolutely 
no locality, then the sequential method leads to good (random) 
c1ustering. 

2) Graph Analysis Results: Figure 14 shows the number 
of inter-cabinet cables produced by the sequential (seq) and 
Walktrap (wal k) c1ustering methods for several topologies 
versus the number of switches (for a given number of switches,  
all topologies have the same degree) . We omit the results for 
Gau( l.O)-n because it leads to results similar to those obtained 
with Nbr(0.5)-n. The sequential method produces better results 
than the Walktrap method for the HYPERCUBE topology 
since for this regular topology assigning nodes to cabinet 
in the canonical topological order minimizes the number of 
inter-cabinet links , The Walktrap method outperforms the 
sequential method for Nbr(0,5)-n and RING-n, The number 
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of inter-cabinet links for RING-n is 59% larger than that of 
HYPERCUBE, but Nbr(0.5)-n reduces the number of inter­
cabinet links by up to 24% when compared to RING-n. 

D. Mapping 

1) Methods: The input to the mapping method is a ftoorplan 
that indicates the possible locations for the cabinets. The 
method is applicable to an arbitrary ftoorplan since it only uses 
the distances between each pair of cabinet locations,  for some 
arbitrary distance definition. Our method then assigns each 
cabinet to a location so that the inter-cabinet total cable length 
is minimized. This process can be framed as a facility location 
problem and formulated as a quadratic assignment problem 
(QAP). We employ Simulated Annealing (SA) [34] , a well­
known metaheuristic that has been successfully applied for 
solving QAPs. In [32] , in the context of the RING-n topology, 
we have experimented with several other heuristics, but they 
lead to almost the same results as SA. We run SA for 100 
million iterations and pick the best solution out of five trials .  
We also define a baseline method that assigns the locations 
from left to right in the first row, [rom right to left in the 
second row, etc . If the distribution of inter-cabinet cables has 
no locality, then the baseline method produces a high-quality 
mapping. 

2) Results: Figure 15 shows the average length of inter­
switch cables achieved by Simulated Annealing (SA) com­
pared to those by the baseline (base) method for RING-n, 
Nbr(0.5)-n, and HYPERCUBE, vs. the number of switches 
(for a given number of switches,  all topologies have the 
same degree) . Cable lengths are computed as described in 
Section III-D. 

Results show that Nbr(0.5)-n improves the average cable 
length by 26% compared to RING-n, but HYPERCUBE leads 
to markedly lower average cable length. For all topologies,  
the SA mapping method improves upon the baseline mapping 
method. The improvement is around 10% for Nbr(0.5)-n 
and RING-n. When using SA, Nbr(0.5)-n provides a good 
compromise between RING-n and HYPERCUBE in terms of 
cable length. For instance, consider 8 , 1 92 switches,  each with 
10 attached compute nodes. This would imply a total of 8 1 ,920 
compute nodes, which is around the number of compute nodes 
in the K-computer [5] . At this scale, using the SA mapping 
method, the average cable length for Nbr(0.5)-n is around 
1 1m, while it is around 7m for HYPERCUBE but more than 
1 4m for RING-n. 

V. COMPARISON OF RANDOM TOPOLOGIES 

In this section we compare the best topologies ob­
tained using the permutation method (P-TORUS-x and P­
HYPERCUBE), using constrained shortcutting (Nbr(0.5)-n 
with Simulated Annealing for cabinet mapping), and the 
random topology proposed in [6] (RING-n) . Figure 1 6  shows 
latency and throughput vs. cable length for 256-switch topolo­
gies for our three synthetic traffic patterns .  Results for the bit 
reversal traffk are sirnilar, and are omitted due to lack of space. 
For all traffic patterns considering latency or throughput, the 
resuIts show that the best topology is permuted topology 
P-HYPERCUBE at degree 8. The other topologies lead to 
similar (or even worse) performance at higher cabling costs . At 
degree 4, the choice of the topology would depend on budget 
constraints for cabling cost and on the target performance: 
the permuted topology P-TORUS is the most economical, 
RING-n is the most high-performance, and Nbr(0.5)-n strikes 
a compromise between the two. 

An important concern is the cabling and installation costs 
for a topology and its physical layout in a machine room. Costs 
can be estimated using the method and parameters available 
in recent studies [35] , [36] . The cost of lOGbps cables varies 
according to the technology (copper or optical, connector 
types), and is simply assumed to be in the $50-$200 range. 
Installation and re-wiring costs are in the $ 1 0-$50 range. 
Using these parameters,  expected costs can be computed for 
our topologies .  For instance, P-HYPERCUBE decreases cost 
by up to 27% when compared to RING- 1 2  in a network with 
4,096 switches .  

Another important concern is the reliability of  a topology, 
i .e . ,  its robustness to link failures ,  of a topology. The two 
methods proposed in this work, permutation and constrained 
shortcutting, and that in [6] , all produce topologies of similar 
reliability. This is because they are based on graphs with 
the same level of edge redundancy and can all use the same 
deadlock-free topology-agnostic routing . 

VI .  ROUTING SCALABILITY 

The scale of a network topology can be limited by routing 
table size at a switch. We note that 83% of the supercomputers 
posted on the June 20 1 2  Top500 list [37] are based on 
Ethernet or InfiniBand. For all these systems, the routing 
table size limits scalability regardless of the topology, though 
various types of topologies and deadlock-free routing can be 
implemented [38] . 

Another potential scalability issue is path caIculation cost 
for topology-agnostic deadlock-free routing, wh ich is more 
complex than when routing on structured topologies (see the 
survey in [39]) .  The computation cost of path search on most 
deadlock-free topology-agnostic routings,  such as up*/down* 
routing, or Silla's  routing with virtual channels used in the 
simulation [29] , is almost the same as the problem of finding 
shortest paths in a graph. Several algorithms can be used 
to compute these paths (e.g. Dijkstra, Bellman-Ford, Floyd­
Warshall) .  In this section we use a priority-queue implemen­
tation of Dijkstra's  algorithm, with computational complexity 
O(  (N + E) logN), where N is the number of vertices and 
E is the number of edges [40] . Figure 17 shows the path 
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calculation time vs. network size (N) for a RING-log2N 
topology when executed as a single-threaded program on a 
3 .47 GHz Intel Xeon X5690 with 144GB of RAM. Similar 
results are obtained for HYPERCUBE and Nbr(O.5)-log2N 
since these topologies all have the same number of vertices 
and edges. The results show that it is feasible to compute paths 
for 1 6k-switch random topologies to be used with topology­
agnostic deadlock-free routings since the computation requires 
under 82 seconds . Furthermore, path computation can be done 
in parallel for each destination and a faster but complicated al­
gorithm can be used, such as a Fibonacci-heap implementation 
of Dijkstra's  algorithm. 

VII . CONCLUSIONS 

In this work we have proposed and evaluated two methods 
for generating random topologies that lead to lower cable 
lengths (and less complex cable packaging) than the random 
shortcut topology proposed in [6] once deployed in a physical 
cabinet layout. The first method consists in randomly swapping 
link endpoints in a non-random topology. One advantage of 
this method is that the generated random topology has the 
same cable length and packaging as the original non-random 
topology. Since traditional non-random topologies can often 
be deployed with low cable length onto a standard cabinet 
layout, then the cable length of the permuted topology is also 
low. Another advantage of topology permutation is that it can 
be applied to an already deployed topology. In our results 
permuting a topology can improve latency (by up to "-' 1 5 %  
for direct topologies and ,,-,25% for indirect topologies) while 
leading to the same or even slightly higher throughput. While 
the performance is lower than that of the topology proposed 
in [6] , the cabling cost is much lower. The second method 

consists in adding shortcuts to a ring topology, but ensuring 
that these shortcuts do not bypass too many vertices so as 
to limit cable length. The vertices in the obtained topology 
are then logically clustered in as many clusters as cabinets in 
the physical layout so as to minimize the number of inter­
cabinet links . Finally, these clusters are physically mapped 
to cabinets so as to minimize aggregate cable length. One 
advantage of this approach is that it is applicable to any type 
of ftoorplan for any definition of the distance between two 
cabinets. In our results we found that topologies generated 
using this method can achieve high performance but lead to a 
significant cable length increase compared to traditional non­
random topologies .  They also lead to more complex cable 
packaging because any two cabinet have inter-cabinet links 
between them. However, they achieve essentially the same 
performance as the topology in [6] at reduced cable length. 

Our results show that topology permutation is the best 
approach for "high" (i.e . ,  logarithmic) degree. It leads to 
performance at least equivalent to the other methods with 
cabling costs and cable packaging complexity identical to 
that of non-random topologies .  When the degree is low (e.g . ,  
as in a 2-D or 3-D torus), then all three methods can be 
viable options , with topology permutation being the most 
economical, the method in [6] the most high-performance, 
and constrained shortcutting a middIe ground. Given that 
high-radix switches are increasingly available, high-degree 
topologies are no longer merely attractive due to their good 
performance, but also feasible in practice. In this context, our 
results indicate that topology permutation is the method of 
choice for generating high-performance random topologies .  
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