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Abstract—As the scales of supercomputers increase total cable
length becomes enormous, e.g., up to thousands of kilometers.
Recent high-radix switches with dozens of ports make switch
layout and system packaging more complex. In this study, we
study the optimization of the physical layout of topologies of
switches on a machine room floor with the goal of reducing cable
length. For a given topology, using graph clustering algorithms,
we group switches logically into cabinets so that the number of
inter-cabinet cables is small. Then, we map the cabinets onto a
physical floor space so as to minimize total cable length. This
is done by modeling and optimizing the mapping problem as a
facility location problem. Our evaluation results show that, when
compared to standard clustering/mapping approaches and for
popular network topologies, our clustering approach can reduce
the number of inter-cabinet cables by up to 40.3% and our
mapping approach can reduce the inter-rack cable length by
up to 39.6%.

Index Terms—Topology, cabinet layout, interconnection net-
works, high performance computing, high-radix switches

I. INTRODUCTION

As the scale of supercomputers increases, total cable length

can reach enormous proportions. For example, the first gen-

eration Earth Simulator required over two thousand kilome-

ters [1], while the K-computer requires one thousand kilo-

meters [2]. Cable length directly affects the cabling medium.

If the cable length for inter-cabinet connections is one or

more orders of magnitude longer than the intra-cabinet con-

nection, then inter-cabinet cables must be optical. In case

of InfiniBand, typical maximum length of passive copper is

10m, that of active copper is 40m, connectorized copper is

30m, and embedded optical is 100m [3]. In addition, as the

number of inter-cabinet cables increases the number of backup

cables proportionally increases. These backup cables must be

installed at deployment time since adding cables once the

platform is deployed is costly.

Since traditional topologies used in supercomputers often

exhibit both highly regular structures and low degree (e.g., k-

ary n-cubes such as the 3D Torus in BlueGene/L [4]), they

naturally fit into a simple physical cabinet layout. High-degree

topologies, however, have become not only possible but also

attractive, due to the availability of high-radix switches with

dozens of ports (e.g., YARC routers for folded-Clos or Fat-

tree networks [5]). With these topologies, optimal physical

layouts are no longer intuitive and system designers are now

faced with the difficult task of mapping switches to a physical

layout so as to reduce total cable length. Furthermore, system

designers need to carefully select each dimension of the

network topology, as the impact on total cable length can

be large. For example, in the 6D torus “Tofu” network in

the K-computer, three dimensions are fixed at 2 × 3 × 2,

but the remaining three dimensions are scalable and must

be chosen carefully [2]. Note that a drawback of almost all

popular topologies is that the network size is strictly defined

by topology dimensions (e.g., kn vertices in a k-ary n-cube

topology), even though the scale of a supercomputer should

ideally be determined solely based on electrical power budget,

surface area, and cost.

In this context, given a topology, we study the optimiza-

tion of the physical cabinet layout in a view to minimizing

the number and total length of inter-cabinet cables between

switches. Note that intra-cabinet cables are usually short (e.g.,

2m [6]) and constant regardless of the topology. Our approach

consists in aggregating switches into groups that correspond

to the cabinet size using graph clustering techniques so as to

reduce the number of links between groups. We then map these

groups onto a physical floorplan by framing the problem and

solving it as a facility location problem. Our goal in this work

is to reduce total inter-cabinet cable length not only for low-

radix, layout-friendly topologies but also for more challenging

high-radix topologies. Our main contributions and findings are

as follows:

• Among several candidate methods, the Girvan-Newman

clustering method [7] is effective for grouping switches

and reduces the total number of inter-cabinet cables up

to 40.3% when compared to the popular straightforward

method used in conventional mesh, torus, and hypercube

topologies. Incidentally, the Ward clustering method [8]

leads to similar results.

• Clustering is particularly challenging for the recently

proposed random ring topologies (consisting of a ring

with additional random chordal shortcuts) because these

topologies exhibit little regularity and locality.

• A scheme based on Simulated Annealing is effective
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Figure 1. Approach for shortening total cable length. The thickness of a line indicates the number of individual network cables.

for mapping each switch cabinet to a physical floorplan,

improving total inter-cabinet cable length by up for 39.6%

when compared to traditional approaches for popular

topologies.

• Both our clustering and mapping approaches scale up to

at least the size of the largest existing supercomputers [2],

maintaining their relative advantage over traditional ap-

proaches as the network size increases.

The rest of this paper is organized as follows. Related work

is discussed in Section II. Preliminaries, including our assump-

tion, target topologies, and an overview of our approach, are

given in Section III. Our clustering approach to group switches

into cabinets is described in Section IV, and our approach for

mapping these cabinets onto a physical floorplan is described

in Section V. Finally, a summary of our findings and of their

impact is provided in Section VI.

II. RELATED WORK

In this section we review high-radix supercomputer topolo-

gies, graph analysis techniques, and facility location problems.

A. High-radix Topologies

A few topologies are traditionally used to interconnect

compute nodes in most HPC systems, and these topologies

can be used to interconnect high-radix switches. In direct
topologies, each switch connects directly to compute nodes

as well as to other switches. Popular direct topologies include

k-ary n-cubes, with a degree of 2n, leading to tori, meshes,

and hypercubes (including several variations of the hypercube

such as folded hypercubes and twisted hypercubes). These

topologies achieves well-known trade-offs between degree and

diameter. Recently, [9] has proposed the use of random topolo-

gies (namely a ring with randomly generated chordal links),

which achieves good such trade-offs. All these topologies are

regular, meaning that all switches have the same degree as

each switch is connected to the same number of other switches.

Indirect topologies, i.e., topologies in which some switches

are connected only to switches, have also been proposed. They

have low diameter at the expense of larger numbers of switches

when compared to direct topologies. The best known indirect

topologies are Fat trees, Clos network and related multi-stage

interconnection networks such as the Omega and the Butterfly

networks. A popular option is (p, q, r) Fat trees, with a degree

of p+ q, where p is the number of upward connections, q is

the number of downward connections, and r is the number

of tree levels. For large-scale HPC systems, the network

layout has a high impact on network cost, especially because

longer wires must be optical if high bandwidth is required [3].

Consequently, several variations of these topologies, such as

the flattened butterfly [6], have been proposed as a way

to improve cost effectiveness. More recently, the Dragonfly

topology [10] uses a group of routers as a virtual router to

reduce the wire length in the context of high-radix topologies,

which is done by distinguishing inter-cabinet and intra-group

networks.

B. Graph Analysis

Graph analysis techniques, which extract valuable knowl-

edge out of a large graph’s structure, have become increasingly

used in conjunction with the popularization of social network-

ing services [11]. These techniques are applied to analyze

not only human networks but also computer networks like

the Internet and the Web. In this work we attempt to apply

such techniques [12], [13], [8], [7] because recently proposed

high-radix topologies are not amenable to intuitive grouping

of switches. To the best of our knowledge, this research is the

first attempt to apply graph analysis techniques to cabinet-level

design of the HPC systems.

C. Facility Location Problem

It is important in various industries for a corporation to

decide the locations of factories and other facilities so as to

minimize transportation costs between them. This “facility lo-

cation problem” has been studied in operations research since

the 1960s [14]. Since it is is NP-hard, metaheuristics-based

techniques have been developed and used to compute good

solutions in practice. Solutions to facility location problems

have been used in the computer industry for computer chip

design. To the best of our knowledge, this work is the first to

apply the facility location problem to the design of physical

network layouts for HPC systems.
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III. PRELIMINARIES

A. Assumption

We focus on a supercomputer that is to be newly deployed

on a site (e.g., in a room, building). Upgrade of an existing

system is out of scope of this paper, but our work should

be adaptable to that scenario. The time to compute a layout

should be at most a few hours so that our approach can be

used repeatedly while designing the system, with system sizes

ranging up to several thousands of nodes. In our context, a

“node” comprises a switch and several compute nodes (e.g.,

a 128-port switch with 100 attached compute nodes and 28

ports left to connect to other switches). In all that follows, we

omit these details and simply treat a node as an indivisible

unit. We can now define the following terminology: A link
is a connection between two nodes; a cable is the physical

realization of a link; the degree of a node is the number of

links at that node; and a cabinet size is the maximum number

of nodes that can fit inside a physical cabinet.

B. Network Topologies

Our goal is to develop an approach that is effective not

only for low-radix, layout-friendly topologies but also for

high-radix topologies for which there is no clear or intuitive

layout. We consider four direct network topologies: k-ary n-

mesh, k-ary n-torus, n-dimensional hypercube, and n-degree

Random Ring. The Random Ring, which consist of a ring with

n − 2 additional random shortcut links from/to each node,

was shown in [9] to achieve low diameter and low latency.

However, among our four candidate topology, it is the least

layout-friendly.

C. Approach Overview

Our approach consists of two optimization steps: (1) switch

clustering and (2) cabinet mapping. Figure 1 depicts an

overview of our approach. An instance of a mesh topology of

27 nodes is shown on the left. In the first step we cluster the

nodes to obtain a weighted graph of cabinets, as shown in the

center. The weights indicate the number of links between the

cabinets. In the second step, we compute the physical layout

of the cabinets on the floorplan, as shown on the right. The

following two sections give the details of these two steps.

IV. CLUSTERING

In this section we describe how we convert a topology of

nodes into a weighted graph of cabinets.

A. Modeling

A topology is an unweighted undirected simple graph in

which vertices represent nodes. Grouping nodes together in

a cabinet is equivalent to contracting the vertices — in other

words, converting the graph into a weighted undirected simple

graph in which vertices represent cabinets — where loop edges

are removed and multiedges are converted to weighted simple

edges. Our approach attempts to group densely-connected

nodes together in the same cabinet so that the number of inter-

cabinet cables is minimized. We call this operation “cluster-

ing.”

B. Methods

We develop hierarchical clustering methods based on those

used for data mining, modifying them so that the resulting

cluster size does not exceed the specified cabinet size. Hier-

archical clustering methods can be classified into aggregative

methods and divisive methods. The former start from a state

in which each cluster contains only one node and recursively

aggregates pairs of clusters. The latter, instead, start from

a single cluster that contains all the nodes and recursively

divides each cluster into two distinct clusters. We use the two

following clustering methods: 1

• Ward method [8] – an aggregative method that merges

two clusters so that the increase of the variance of the

distance between each vertex and the cluster center is

minimized.

• Girvan-Newman method [7] – a divisive method that

divides a cluster by iteratively removing the edge with

the highest “betweenness”, i.e., the highest number of

shortest paths between all pairs of vertices that traverse

the edge.

We also define a sequential method as a baseline. It groups

every r or r − 1 nodes (so that the grouping is as even as

possible) in order of generation, where r denotes the cabinet

size. For example, given a 4-ary 4-mesh topology (4×4×4×4
nodes) and r = 16, the sequential method assigns the first

4 × 4 nodes to the first cabinet, the next 4 × 4 nodes to

the second cabinet, etc. As a result, in this example, the

first two dimensions remain within each cabinet and the last

two dimensions exit the cabinets. Note that this case can

be considered a lucky occurrence; in general, the sequential

method does not create topology-friendly clusters.

C. Adjusting the Cluster Size

The aggregative/divisive methods described in the previous

section produce a tree structure called dendrogram, whose

branches represent the aggregations/divisions of the cluster(s).

For a data mining purpose, the dendrogram is cut horizontally

and the resulting cluster size, i.e., its number of vertices, is

unpredictable. For our purpose, however, the cluster size must

not exceed the cabinet size. Consequently, we develop our own

cutting method as follows:

1) Pick two clusters from the leaves furthest from the root.

2) Merge these clusters if the aggregate size does not

exceed the cabinet size; otherwise leave them alone and

cut the larger one off the dendrogram.

3) Repeat steps 1 and 2 until the root is reached.
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Table 1. Topology details

256 nodes 4,096 nodes

Mesh 4-ary 4-mesh 4-ary 6-mesh

Torus 4-ary 4-torus 4-ary 6-torus

Hypercube 8-dimensional 12-dimensional

Random Ring 8-degree 12-degree
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Figure 2. Number of inter-cabinet cables after clustering.

D. Evaluation

We evaluate the topologies listed in Table 1. Figure 2 shows

the number of inter-cabinet cables produced by the Ward

(ward) and Girvan-Newman (girvan) clustering methods com-

pared to those by the sequential (seq) method for topologies

of 256 (top chart) and 4,096 nodes (bottom chart), versus the

cabinet size. The Girvan-Newman method was not tested on

4,096 nodes since its computation is O(n3), thus requiring

several hours to complete. Recall that we omit the intra-cabinet

cables in our counts, since their number is constant regardless

of the clustering result.

These results show that the Girvan-Newman method leads to

the best result regardless of the cabinet size. The same goes for

the Ward method except for the Random Ring topology. The

1We also tried Average, Single and Complete hierarchical methods as well
as Walktrap [12] and Newman [13] methods, but omit them here since they
produce either similar or poorer results.

sequential method, in contrast, causes an unneeded increase

in number of cables for some of the odd cabinet sizes (e.g.,

9 and 18), but works well for even cabinet sizes (e.g., 8

and 16). By contrast, using our clustering methods leads to

monotonically decreasing numbers of cables as the cabinet

size increases. In these results, comparing to the baseline, the

number of cables is reduced by clustering up to 40.3%, 16.7%,

17.3% and 10.9% for mesh, torus, hypercube and Random

Ring topologies, respectively. We see that the Random Ring

topology proves challenging due to its randomness and lack

of locality.

Beyond the reduction in number of cables, these results also

show that our automatic clustering approach can handle odd-

sized cabinets for which there is no intuitive way to assign

nodes to cabinets. Our approach thus makes it possible for

a system designer to make hardware decisions (cabinet size,

component sizes) without worrying about unexpected negative

impact on the network topology layout, and thus on cabling

cost.

V. MAPPING

We now describe how we map our weighted graph of

cabinets to a physical layout on a floorplan.

A. Modeling

Input to our approach, provided by the system designer, is a

floorplan that indicates the possible locations for the cabinets.

Our scheme then assigns each cabinet to a location so that the

inter-cabinet total cable length is minimized. This process can

be modeled as a facility location problem and formulated as

a quadratic assignment problem (QAP).

Assuming n cabinets and n locations, the QAP solution is

represented by a permutation Φ = φ(1), . . . , φ(n) such that

Minimize
n∑

i=1

n∑

j=1

wijdφ(i)φ(j) (1)

where dij denotes the distance between locations i and j, wij
denotes the number of cables between locations i and j, and

φ(i) denotes the location where cabinet i is assigned.

B. Methods

We employ Simulated Annealing (SA) [15], a well-known

metaheuristics successfully applied to QAPs2.

We defined the following baseline method for comparison.

Assuming the locations are aligned on a 2-D grid, we consider

two schemes: (1) a “wrap-around” method, which assigns

the locations from left to right in every row, and (2) a

“zigzag” method, which assigns the locations from left to

right in the first row, from right to left in the second row,

etc. The former can produce reasonable results for mesh/torus

topologies whereas the latter is more reasonable for ring-based

topologies. Our baseline method uses both schemes and returns

the best of the two obtained results.

2We also tried Robust Taboo Search[16], GRASP [17] and Fant [18], but
omit them here since they produce almost the same results as SA.
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Figure 3. Total inter-cabinet cable length after mapping.

C. Map Generation

Our approach is applicable to an arbitrary map since the

model is not built based on coordinates but solely on distances

between locations. We assume that the system designer pro-

vides a floorplan that is sufficiently large to align all cabinets

on a grid. Formally, assuming n cabinets, the number of row is

q = �√n � and the number of cabinets per row is p = �n/q�.
D. Evaluation

Figure 3 shows the total length of inter-cabinet cables

achieved by the Simulated Annealing (SA) method compared

to those by the baseline (base) method for topologies of 256

and 4,096 nodes. Topology details, cabinet size and clustering

methods are the same as in Section IV. We assume that

each cabinet is 0.6m wide and 2.1m deep including space

for the aisle [19]. The distance between the locations is the

Manhattan distance. We run SA for 100 million iterations and

pick the best solution out of five trials. Here again we do not

consider intra-cabinet cabling, since its total length is constant

regardless of the layout.

The results show that the cable lengths produced by SA

are always shorter than or at least equal to those produced

by the baseline method. More specifically, in these results the

total length, compared to the baseline, is reduced by up to

39.6%, 24.8%, 29.7% and 28.6% for mesh, torus, hypercube

and Random Ring topologies, respectively. The implication

is that a system designer can use our approach to come

up with physical layouts without worrying about topology

concerns. Finally, recall that our approach can be applied to

any floorplan, including floorplans that span separate rooms.

We now turn to evaluating the scalability of our approach.

As mentioned in Section III, we must support up to several

thousands of nodes. For instance, considering 8,192 nodes,

each with 10 attached compute nodes, would lead to 81,920

compute nodes, which is around the number of compute nodes

in the K-computer [2].

For the topologies detailed in Table 2, Figure 4 shows

the reduction rate of the total length of inter-cabinet cables

optimized by SA compared to the baseline as the number

of nodes increases (cabinet size is set to 12). The chart

indicates that our approach remains effective when going from

small systems to large systems. For the hypercube topologies,

for example, a 3–19% reduction in cable length is observed
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Table 2. Topology details (scalability evaluation)

3mesh 3-ary 5,6,7,8-mesh

3torus 3-ary 5,6,7,8-torus

4mesh 4-ary 4,5,6-mesh

4torus 4-ary 4,5,6-torus

hypercube 7,8,9,10,11,12,13-dimension

random ring 7,8,9,10,11,12,13-degree
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Figure 4. Percentage reduction in cable length with respect to the baseline
versus the number of nodes.

between a 7-D hypercube with 128 nodes to 13-D hypercube

with 8,192 nodes.

VI. CONCLUSION

In this paper we have studied the problem of reducing total

inter-cabinet cable length in supercomputer physical layouts

for various network topologies. For a given topology, we solve

this problem by first grouping switches logically so that each

group fits in a physical cabinet and the number of inter-cabinet

links is low. This is accomplished by using graph clustering

algorithms, and in particular the Girvan-Newman method [7]

or the Ward method [8], which reduce the total number of

links between cabinets by up to 40.3% compared to the

straightforward method used in conventional topologies such

as meshes, tori, and hypercubes. In the case of random ring

topologies, the benefits of clustering are limited because the

topology lacks locality. The obtained switch-cabinet set is then

physically mapped to a floorplan in a way that reduces the total

cable length between cabinets. This is accomplished by mod-

eling the mapping problem as a facility location problem and

solving this problem via Simulated Annealing. This approach

is applicable to any type of floorplan and distance definition.

Results show that SA is effective. For instance, it can reduce

the total inter-cabinet cable length by up to 39.6% for mesh

topologies when compared to a standard baseline approach.

Finally, both clustering and mapping approaches scale up to

at least the size of the largest existing supercomputer [2], still

proving beneficial at these large scales.

As supercomputer scales increase, reducing cabling cost

becomes increasingly crucial. The approach proposes in this

work provides a solution that outperforms standard practice

in terms of total cable length. Furthermore, one advantage

of the approach is that it makes it possible to decouple

layout concerns from topology concerns, while remaining

effective even for high-degree topologies built from high-

radix topologies, which are not amenable to intuitive physical

layouts.
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