
Distributed Shortcut Networks:
Layout-aware Low-degree Topologies Exploiting

Small-world Effect

Van K. Nguyen, Nhat T. X. Le
Ha Noi University of Science and Technology,

1 Dai Co Viet Road, Ha Noi, Viet Nam

vannk@soict.hut.edu.vn, thongnhat313@gmail.com

Ikki Fujiwara, Michihiro Koibuchi
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

{ikki, koibuchi}@nii.ac.jp

Abstract—Low communication latency becomes a main con-
cern in highly parallel computers and supercomputers. Random
network topologies are best to achieve low average shortest path
length and low diameter in hop counts between nodes and thus
low communication latency. However, random topologies lead to
a problem of increased aggregate cable length on a machine room
floor. In this context we propose low-degree non-random topolo-
gies that exploit the small-world effect, which has been typically
well modeled by some random network models. Our main idea is
to carefully design a set of various-length shortcuts that keep the
diameter small while maintain an economical cable length. Our
experimental graph analysis showed that our proposed topology
has low diameter and low average shortest path length, which is
considerably better than those of a counterpart 2-D torus and is
near to those of a counterpart random topology with the same
average degree. Meanwhile, the proposed topology has average
cable length drastically shorter than that of the counterpart
random topology. Our cycle-accurate network simulation results
show that the proposed topology has lower latency by 15% and
almost the same throughput when compared to torus with the
same degree.

Index Terms—Network topologies, small-world networks, in-
terconnection networks, high-performance computing.

I. INTRODUCTION

As the scale of many-core high-performance computer

systems increases, their scientific parallel applications usually

become latency-sensitive [1]–[3]. Thus designing low-latency

interconnection networks is essential for these systems. Switch

delays (e.g., about 100 nanoseconds in InfiniBand QDR) are

relatively large when compared to the link delays (i.e. 5 ns/m).

To achieve low end-to-end communication latency, a topology

of switches should thus have low diameter and low average

shortest path length, both measured in numbers of switch hops

[3].

Topology design has been excitingly discussed for low-radix

vs. high-radix networks, especially for exascale computing

systems. IBM has been attempted a 3D torus for BlueGene/L

and a 5D torus for BlueGene/Q supercomputers for low-

radix cases, and Dragonfly [4] for Power 775 “datacenter-in-

a-rack” systems for a high-radix case. However, we should

not forget that low-degree topologies have been historically

used in a mainstream of supercomputers, because of (1)

their simple management mechanisms for faults [5], [6],

(2) easy integration of network router/network interface and

computation cores to a single chip or to a board (it can be

regarded as “switch-less” network), (3) straightforward layout

of switches with relatively short cables in a machine room [7],

and (4) easiness in debugging custom communication protocol.

Indeed, tori are employed by six of the top 10 supercomputers

in TOP500 ranking in June 2012 [8]. In “Tofu” 6D torus

network in the K-computer, three dimensions are fixed at

2 × 3 × 2, but the remaining three dimensions are scalable

and must be chosen carefully [6]. We can thus regard it as a

3D torus network when attempting to scale the topology. In

this work, we target at low-degree topologies, i.e., up to six

inter-switch links per switch.

Random topologies are generated either as fully random

graphs [9] or by adding random shortcuts to classical topolo-

gies [3], [10]. These topologies achieve low diameter, low

average shortest path length, and are thus a good candidate

for the low-degree topology target [3]. However, a practical

concern for random topologies is their long cable length for

a physical deployment [3], [9], [11]. Even in the case of non-

random topologies, for example, the first generation Earth

Simulator required over two thousand kilometers of cabling

[12], while the K-computer requires one thousand kilometers

[6]. The use of random links further increases aggregate

cable length [11]. A layout-conscious random topology using

permutation has recently been proposed. It has low diameter

and average shortest path length in high-radix networks, but

less reduction is reported in low-radix networks [11].

Other practical concerns with random topologies are on

routing implementation and traffic balancing. With respect to

the former, random topologies cannot support custom rout-

ing implementation while several non-random topologies can

exploit topological regularity to make routing logic simple

and small (e.g., dimension-order routing). Thus, a topology-

agnostic deadlock-free routing, such as up*/down* routing is

assumed [13], which however can introduce traffic imbalance.

In this context we propose Distributed Shortcut Networks
(DSN), namely low-degree non-random topologies that “learn”

some exciting design features from random topologies such

2013 42nd International Conference on Parallel Processing

0190-3918/13 $26.00 © 2013 IEEE

DOI 10.1109/ICPP.2013.71

572

as small-world properties while still feature a simple routing

logic. Our new interconnect architecture has a much shorter
cable length than counterpart random shortcut topologies

while keeping a similar (small) constant degree and a log-

arithmic diameter. Theoretically, the improvement can be a

log n factor, asymptotically, compared to the random shortcut

topology DLN-2-2 [3] of n nodes arranged in a 1-D fashion.

The contribution of our work is as follows.

• Although DSNs do not use the random effect of shortcut

links to shorten path hops, they have similar low diam-

eter and similar average shortest path hops to those of

the counterpart random topologies in all network sizes,

i.e., 64 – 2048 switches in our graph analysis. Besides

the basic DSN topology, we also consider a variety of

extensions that have different properties of diameter (and

average shortest path hops) vs. degree and that also cope

with other important issues such as to avoid deadlocks in

our custom routing implementation.

• In the practical perspective, our DSNs surprisingly have

similar average cable length to the same-degree torus in

conventional floor layout of supercomputers in a machine

room. When compared to a random topology with the

same degree, they reduce the average cable length by up

to 38%.

• Cycle-accurate network simulation results show that

DSNs reduce end-to-end network latency by up to 15%

compared to the same-degree torus topology.

The rest of this paper is organized as follows. The principles

of our DSN design and related work are discussed in Sections

II and III. In Section IV, we define and analyze our basic

DSN topology in theoretical aspects. We then briefly discuss

some initial work on the extended topologies in Section V.

In Section VI, using experimental graph analysis, we compare

DSN to counterpart non-random and random topologies, based

on the computation of average cable length when laid out

in a machine room. In Section VII, we use discrete-event

simulation to compare them. Section VIII concludes the paper

and shows our future work.

II. DISTRIBUTED SHORTCUT NETWORKS (DSN):

EXPLOITING SMALL-WORLD PROPERTIES IN DESIGNING

SHORTCUTS

As a subject of extensive studies, small-world networks have

been introduced to model network structures of popular real-

world large-scale networks [14]. The small-world effect can be

spoken of some special low-degree small-diameter networks

that support distributed search, i.e., routing using local infor-

mation only. In his seminal work for analyzing the algorithmic

perspective of the small-world effect [15], Kleinberg showed

that a selective addition of a few random long-range links can

drastically reduce the diameter and can make the distributed

search possible. Motivated by this important observation, we

consider designing efficient low-degree topologies which also

exploit the pattern of cleverly-created long-range links as we

observed in these mentioned small-world models.

Let us briefly review some existing topologies, which are

(inspired by) small-world networks and have helped to shape

our proposed topology. DLN-x, a Distributed Loop Network

of degree x [3], consists of n vertices arranged in a ring

and additional shortcuts between vertices i and j such that

j = i + �n/2k� mod n for k = 1, . . . , x − 2. This graph

has a logarithmic diameter for x = log n. Koibuchi et al. [3]

also introduced a topology called DLN-x-y, where y random

links are added to each node of the DLN-x. These graphs

have constant degrees and logarithmic diameters with constant

x, y. Kleinberg’s small-world network [15], on the other hand,

consists of a grid and additional random shortcuts that prefer

nearby nodes. This graph features the small-world effect in

full: short routes between any two nodes are abundantly

provided and also are easy to find using just local information.

In scrutiny, however, all these above topologies have some

significant shortcomings. DLN-log n has a logarithmic di-

ameter but has degree log n, which is not low as desired.

DLN-x-y with constant x, y has a logarithmic diameter and

a constant degree but routing needs a global knowledge of the

topology and, most crucially, it has a very large total cable

length. Although having shorter cable length, a constant degree

and a logarithmic diameter, Kleinberg’s small-world network

uses greedy routing, which can find paths with length only

quadratic to the optimum [16].

In our approach, the basic idea is also to use the same

type of shortcut links as in DLN-log n but utilize them in

a smarter, more economical manner (also similarly reflected

in Kleinberg’s topology). In DLN-log n, each node u has

its own super shortcut jumping a distance of n/2. This is

redundant and too expensive in terms of cable length. It will

be cheaper if each node can “borrow” the super shortcut of

the next-door neighbor. Therefore we consider adding only

one shortcut of each type to a group of adjacent nodes rather

than to each node. This may increase the diameter a bit, but

can drastically reduce the degree and the cable length. A close

observation shows that the distribution of shortcuts and their

lengths in our proposal is quite similar to those in Kleinberg’s

random topology. However, our proposed topology has fixed

(non-random) shortcut links, which are intentionally designed

to save cable length. Moreover, our way to create shortcuts

enables to use an efficient deadlock-free routing algorithm.

III. RELATED WORK

Traditionally, low-diameter topologies were often designed

using a hierarchical structure or node permutation. For exam-

ple, shuffle-based topologies such as De Bruijn graphs [17]

or (n, k)-star graphs [18] have desirable diameter-and-degree

properties: De Bruijn has 12-and-4 for 3,072 vertices while

Kautz has 11-and-4 and Pradhan has 12-and-5. Hierarchical

structures are also well studied for targeting low degrees. Other

typical low-degree topologies include Hypernet that consists

of subnets mutually connected by a complete graph [19] and

Cube Connected Cycles (CCC) that replaces each node in a

hypercube with a ring of nodes. The latter has a constant

degree three for any size of network. Hypernet has 19-and-5

573

for 4,608 vertices and CCC has 23-and-3. Although we have

to carefully consider their layouts in a machine room when

applying them to supercomputers, they still have interesting

diameter-and-degree properties.

The low diameter property of random graphs has been

extensively discussed in literature. Having the effect of greatly

reducing the graph diameter, random links have been exploited

for modeling real-world complex networks, such as social net-

works and the Internet topologies. The small-world property

of these networks has received a fair amount of attention

in literature, initiated by the landmark small-world paper by

Watts and Strogatz [20]. Small-world and random graphs have

recently been proposed for designing data center networks

with increased expandability, fault tolerance and throughput

[9], [10]. They can be applied in low-radix switch era. They

are competitive to our DSN topologies and we compare them

to DSN in terms of path hops and end-to-end communication

latency in cycle-accurate simulation in Sections VI and VII.

To save the aggregate cable length, two methods are re-

cently proposed in [11], which considers generating quasi-

random topologies that has low path hops—almost comparable

with its counterpart fully random topologies—and studies

their physical layout on a floorplan. One of their methods

randomizes the links after optimizing the physical layout,

while the other optimizes the layout after randomizing the

links. However, they implicitly assume relatively high-radix

networks compared to its network size to obtain a small

diameter and a small average shortest path length.

IV. BASIC TOPOLOGY AND CUSTOM ROUTING

A. Basic approach

Let us introduce our basic approach and give a more detailed

review of the existing topologies that have motivated our

approach.

Consider topology DLN-x [3], a Distributed Loop Net-

work of degree x, where n vertices are arranged in a ring

and a shortcut is added between vertices i and j such that

j = i + �n/2k� mod n for k = 1, . . . , x − 2. For DLN-

log n, obviously, for any given destination node t, any other

node u has at least one shortcut link that halves the distance

to t. Thus it is easy to see that this graph has a logarithmic

diameter. These long-range shortcuts have made possible, what

we call, the distance halving technique, which is widely used

in analyzing graphs as well as designing topologies with small

diameter. Generally, in these graphs when a node u searches

for a path to another node v, it will find a long link from

itself or a nearby node that goes closer to v by at least

half of the distance between u and v for a given predefined

distance metrics. As mentioned, DLN-x with x = log n has a

logarithmic diameter and also has a natural simple routing

logic but has a degree log n which is not low as desired.

Besides, DLN-x-y with constant x, y [3] has a logarithmic

diameter and a constant degree but its routing needs a global

topology knowledge. Unfortunately, a uniformly-distributed

random shortcuts can make the total cable length very long.

Now look closer at Kleinberg’s small-world network [15].

A base grid graph of n × n, where each node has at most 4

links to its neighbor nodes, is augmented by random shortcuts.

A shortcut from node u goes to any other node v with a

probability inversely proportional to the square of the lattice

distance between u and v. Kleiberg’s small-world network

has a short cable length, a constant degree and a logarithmic

diameter. This graph fully features the small-world effect and

provides an abundant choice of short routes between any

two nodes. Moreover, any node u can find a path of length

O(log2 n) to any other node v by using local information

only. This is done by using greedy routing which works

naturally based on the distance halving technique. However,

the greedy routing can only find paths of length θ(log2 n) [16],

asymptotically quadratic of the minimum.

Our proposed topology inherits those existing topologies

mentioned above to achieve a low degree (small constant),

a logarithmic diameter and a custom simple routing to find
almost optimum paths; but we especially focus on reducing
cable length. Our basic idea is to utilize the kind and variety

of shortcut links as well as in DLN-log n but in a smarter,

more economical manner (which is also somehow reflected in

Kleinberg’s topology). We give a full set of log n shortcuts,

spanning distances n/2k for k = 1 . . . log n, to each group of

log n adjacent nodes, which we call super nodes. Compared

to DLN-2-2, obviously, this selection and deployment of

shortcuts helps to reduce the total cable length to a factor

of θ(log n). Still, this lessened density of shortcuts is enough

to make the distance-having technique work well and produce

routes of logarithmic length.

B. Topology Description

Below we show the detailed construction of our basic

topology DSN-x-n with n nodes. We also call it DSN-x or just

DSN for short when the context is clear. The integer parameter

x, conditioned to be 1 ≤ x ≤ p − 1 with p = �log n�,
represents the size of the set of different-length shortcuts.

• n vertices are arranged in a ring and each node has an

ID number from 0 to n − 1. Each node i shares two

local undirected links with adjacent neighbors (i − 1)
mod n and (i+1) mod n, which are called predecessor
(pred for short) and successor (succ for short) links,

respectively.

• Each node also has a numeric label from 1 to p, which

is called the level of the node. The levels are assigned to

nodes periodically: level i = 1 . . . p is assigned to nodes

k × p+ i− 1 where k = 0, 1, 2, . . . , �n/p�.
• Each node that has a level l ≤ x has one shortcut link

going to node j that has level l+1 and has the minimum

clockwise distance to i but at least �n/2l�. We call this

type of shortcut as the level-l shortcut, which has length

at least n/2l.
• For a node with level l we say that it has a height of

p + 1 − l. Thus the higher a node is the farther its

shortcut goes. The nodes with height p have shortcuts

going farthest that is half of the ring.

574

(a) Level labels are assigned to nodes periodically

(b) The full topology DSN-3-16

(c) An example of super node in DSN-4-32

Figure 1. The basic DSN topology.

Figure 1 illustrates in detail about our topology construction.

Fig. 1(a) illustrates on level assignment, while 1(b) presents

a full network for the case of n = 16 and x = 3. To have a

simple view of our DSN topology, imagine each group of p
adjacent nodes to be collapsed into one big super node. You

then obtain exactly a DLN-x topology of these super nodes as

illustrated in figure 1(c). Later in certain clear context we also

use a “super node” to indicate a group of p adjacent nodes.

Our DSN topology has a natural simple routing, which is

induced from a simple routing logic of its super graph, i.e.,

the DLN-x of super nodes as mentioned above. Reviewing the

simple routing logic of this super-graph, DLN-X topology,

each super node U will find a proper shortcut (amongst its x
shortcuts) to go half a distance to a destination super node V .

This step can be repeated at most p times before the destination

V is hit. Thus, the routing for DSN can follow the above as

the blueprint but adding a few small steps for moving within

a super node for finding the proper shortcuts.

Consider the details in performing a routing task from

a source node s to a destination node t. Without loss of

generality, we assume that 0 ≤ s < t < n and d = t − s
is the distance between the two. Let l = �log n

d � + 1 where

n/2l < d ≤ n/2l−1. We need to find a path from s to a

node u at height p + 1 − l (i.e., of level l) in order to use a

proper shortcut that would go at least halfway through towards

destination t. More generally, the main idea is that, at any

current node u, we need to find a node v nearby (within the

same super node) that is high enough to look over to t unless

u is high enough.

Figure 2 presents the detailed algorithm. The algorithm has

three phases: (i) PRE-WORK is for the source node s to find

such a nearby node v with proper height, (ii) MAIN-PROCESS

is to successively use distance-halving shortcuts to come into

the locality of t, and (iii) FINISH is to walk to t using the

local links. In the first PRE-WORK phase, the starting node s
usually need to find a nearby node u at a proper height. If the

level of s, ls = s mod p+ 1, is greater than l, then we need

to move up in height from s to find u; otherwise we need to

move down from s.

Note that the MAIN-PROCESS is a loop. It goes downhill

from the current node u to find a node v with the required

height and takes the distance-halving shortcut, and repeats

again with the new current node u. MAIN-PROCESS stops

just when the shortcuts can no longer be used, where the

current node u is close enough to t. Then we can simply

walk to t on the local links. More specifically, this loop stops

if either of the following three conditions occurs:

• lu = x + 1, i.e., u is at the level that no longer has a

shortcut.

• u is in the clockwise side of t, i.e., the shortcut just taken

overshoots t.
• t− u ≤ p, i.e., u is close enough to t and further taking

a shortcut will overshoot t.

We name this union the LOOP-STOP condition.

C. Properties and Analysis

Note that we only define our DSN-x for x = 1 . . . p− 1.

We denote r = n mod p in the remainder of this paper.

Fact 1 (On the degrees): The possible vertex degrees in

DSN are 2 (only if x < p − 1), 3, 4 and 5. The average

degree is ≤ 4 and there are at most p vertices with degree 5.

Proof: By definition, each node at a level l between 1
and x is assigned a level-l shortcut. We say this node has

an outgoing shortcut (figuratively speaking, because links are

indirect). A level-l node may also often have one or two level-

l − 1 shortcuts coming into it (l > 1). Nodes at level 1 or

l > x have no incoming shortcut. Therefore a typical node in

575

DSN-Routing Algorithm Pseudo-code

1: procedure DSN-ROUTING(s, t)
2: u← s
3: l← �log n

dut
�+ 1 � i.e. n

2l
≤ dut ≤ n

2l−1

� PRE-WORK Phase —————————–

4: while lu > l do � lu− level of u
5: u← u.pred
6: l← �log n

dut
�+ 1

7: end while
� MAIN-PROCESS Phase ———————–

8: repeat
9: if lu = l then

10: u← u.shortcut
11: else
12: u← u.succ
13: end if
14: l← �log n

dut
�+ 1

15: until lu = x+ 1 or d ≤ p or overshooting t
� FINISH Phase ————————————

16: repeat
17: u← u.succ or u← u.pred
18: until u = t
19: end procedure

Figure 2. Our custom routing algorithm for DSN-x.

Figure 3. A typical node with degree 4.

DSN has degree 4, namely a Pred, a Succ, an outgoing and

an incoming shortcuts (see figure 3).

For x = p−1, the minimum degree is 3 since each node has

at least one shortcut, outgoing or incoming, and the nodes at

level l > x+1 only have degree 2. The number of nodes with

degree 3 is at most 2n/p, possibly counting nodes at level 1
(no incoming shortcuts) and nodes at level x+1 (no outgoing

shortcuts). It is quite obvious that 5 is the maximum degree

in DSN-x because a node can have no more than 2 incoming

shortcuts.

Now we prove the upper bound on the number of nodes

with degree 5. Suppose that a node t has degree 5, i.e., t has

two incoming shortcuts, namely from nodes ti and t′i with

level i. It is also not hard to point out that there are only two

cases of having degree 5 as follows.

• The first case of having degree 5: When n − r ≤ ti ≤
n − 1, t′i = (ti + r) mod n and the condition below

holds:

i < [(ti + n/2i) mod n] mod p ≤ p− r.

(a) Case 1

(b) Case 2

Figure 4. Two cases of degree 5 for n = 1024, p = 10, r = 4. (i) denotes
the level of node. Node in red are the last r nodes of the ring.

Clearly, there are at most r nodes as such ti (see Figure

4(a)).

• The second case of having degree 5: When t′i = ti + p,

i > r and the condition below holds:

n+ i− p− r ≤ ti + n/2i < ti + n/2i + p ≤ n+ i

Clearly, there are at most p − r nodes as such ti (see

Figure 4(b)).

In summary, there are at most p nodes with degree 5.

Observation: It is also not hard to show that the expected

number of nodes with degree 5 is ≤ p/2. Its proof is omitted

due to space limitation since this fact is not that important and

its proof is long and tedious.

Fact 2 (On the routing diameter): In our routing algo-

rithms on DSN-x with x > p − log p, the maximum path

length is ≤ 3p+ r.

Proof: Let’s consider a path from source s to destination

t in our routing algorithm. First, in the PRE-WORK we

successively take Pred links to go up, i.e. to smaller level,

to find a proper node with level l. Clearly, it takes at most p
hops in the PRE-WORK. In the MAIN-PROCESS, however,

we always move up (in the hight of node), i.e. going down with

levels. Obviously, the MAIN-PROCESS also takes at most p
hops in the path length. Now we just need to consider the

FINISH. It is a simple local walk, of which we will show an

upper bound on the length.

Notice an invariant throughout the MAIN-PROCESS: du,

i.e. the distance between the current node u and destination t,
is always at most n/2lu−1. This is clear, because at this height

and level (lu), by definition, the shortcut from u will jump over

at least half of this distance to t (a typical distance halving

argument). Now, let us consider the situation when the MAIN-

PROCESS just finishes. If LOOP-STOP is met by lu = x+1,

we have du = t − u ≤ n/2lu−1 = n/2x ≤ n/2p−log p = p.

If LOOP-STOP is met by overshooting t, then the overshoot

576

Figure 5. Case of overshoot. (i) denotes the level of node.

distance is at most p+ r (see Figure 5). Generally, from any

node we go at most p + r hops to find another node at any

given level. Thus, regardless of how MAIN-PROCESS stops,

the distance to t that it leaves for the FINISH to cover is at

most p+ r.

Overall, using our routing algorithm the path from any s to

any t takes at most 3p+ r hops.

Fact 3 (On the diameter): For x > p − log p, DSN-x has

diameter ≤ 2.5p+ r.

Proof: It is possible to find a path shorter than ones found

by our routing algorithm as follows. We almost imitate this

algorithm but in the PRE-WORK we take moves to the closest

node at the required height (or level), either using successive

Pred or Succ links, which reduces the max hop number in

the PRE-WORK to at most p/2 (from p as in our routing

algorithm — fact 2). Thus, such a path has length at most

2.5p+ r.

We conclude the above facts by the below theorem, which

only considers the worst case.

Theorem 1: On the properties of the DSN:

a. The degree of vertices is mostly 4 but the maximum

is 5 at at most p vertices.

b. For x > p− log p, the diameter is at most 2.5p+ r
c. For x > p − log p, the routing diameter is at most

3p+ r

Theorem 1 establishes upper bounds on some important

factors of our proposed topology. The next theorem considers

the average values instead.

Theorem 2: On the properties of the DSN:

a. For x > p − log p, for s and t uniformly selected

from the n nodes, the expected length of the s–t
path found by our routing algorithm is ≤ 2p while

that of the shortest s–t path is ≤ 1.5p.

b. If the nodes are arranged evenly in a line of length

n (distance between two adjacent node is 1), the

average length of the shortcuts is ≤ n/p and the

total cable length of the network is ≤ n2/p + 2n.

Using the same setting, the topology DLN-2-2 [3]

has average length of shortcut n/3. Thus the cable

length in DSN is shorter than in DLN-2-2 about a

factor of p/3.

Proof(Sketch): a. Because the expected level of s is

p/2, the PRE-WORK will take expectedly no more than p/2
hops to any desired height. A similar argument will show that

the FINISH phase takes expectedly p/2 hops. The MAIN-

PROCESS as before can take up to p hops. Therefore, the

expected length of an s–t path found by our routing algorithm

is ≤ 2p.

Now we aim to create a shorter s–t path by simulating our

routing algorithm but making better choices in PRE-WORK

and FINISH. From s we can choose to go either clockwise

or counterclockwise to node u or v, respectively, that are at a

necessary height required for the MAIN-PROCESS. Of course,

u and v are distance p apart. Let X be the random variable

to count the number of hops between u and s. We simulate

PRE-WORK but choose between u and v the nearest one to s.

Therefore, the expected number of hops in this simulated PRE-

WORK is E[min{X, p−X}] which is p/4 (a basic probability

problem). A similar argument (a bit more complicated) will

also show that a simulated FINISH takes expectedly p/4 hops.

Thus, the expected length of the shortest s–t path is ≤ 1.5p.

b. We omit the proof of this part which only requires some

basic integral work, although a bit tedious.

Our theorems above show that our proposed topology

can strongly outperform DLN-2-2 in terms of cable length,

while being quite similar in terms of degree and path length.

However, our custom routing algorithm does not often find the

minimum path and hence, we still leave space for improvement

in future work. Our basic topology has been defined in a

general format. We can specifically choose n as a multiple

of p, and hence r = (n mod p) = 0 so that we can avoid

having the last super node with only r < p nodes, which does

not have a full set of levels and shortcuts (Figure 4 shows an

incomplete, final node in red color). Such an incomplete super

node makes it harder to manage our routing, e.g., it can enlarge

the overshoot. The overshoot is normally at most p but can be

enlarged to p+r. In the next section, we also consider to have

n as an arbitrary integer but still avoid having an incomplete

super node.

V. POSSIBLE EXTENSIONS

Our basic topology can be extended or augmented in several

ways. In this section we consider extending our basic topology

and our DSN-routing algorithm for solving different issues or

improving on certain performance factors.

A. On Deadlock-free Routing

We can extend our basic topology and our custom rout-

ing algorithm to absolutely avoid having deadlocks in using

wormhole or cut-through routing modes. Let us discuss our

main idea first. If the DSN-routing algorithm had composed

of only two parts, PRE-WORK and MAIN-PROCESS, it were

deadlock-free because it had a natural Up-Down walking on

the height of nodes. Remind that, the PRE-WORK is to go

uphill to a proper height (so can look over to destination t)
while the MAIN-PROCESS is to go downhill gradually, one

step down each time taking a shortcut or a Succ link towards

the destination. However, in reality we also have to deal with

the FINISH, where we can possibly go uphill (using Pred links

to get back over the overshoot distance). Note that we use

577

the same type of links, the Pred, in both PRE-WORK and

FINISH. Hence, two PRE-WORK and FINISH link sequences

that are resulted in two separate routing tasks can still mess

up together, creating a deadlock. This issue can be solved by

introducing a separate virtual channel for moving uphill to the

preceding node within the same super node (while decreasing

the level by one). Alternatively, we can instead add a new

local link per node for this purpose. We call them Up links.

Another cause of deadlock is that multiple routing threads

all are in the FINISH phase can create a deadlock loop over the

whole network ring. To solve this we can also further create

2p virtual channel, or alternatively, add 2p Extra links, that

are (i, i− 1) for i = 1 . . . 2p. In both cases, we fix x = p− 1
so that all super nodes will have a full set of shortcuts. We use

DSN-E to call our extended topology with the new additional

links (Up and Extra links), while we use DSN-V to call our

basic topology with the additional virtual channels.

Theorem 3: In DSN-E networks, if we extend DSN-routing

by using the Up links in the PRE-WORK and Extra links when

available in the FINISH, then this extended routing algorithm

is deadlock-free and the routing diameter is still ≤ 3p + r.

Similar results apply for DSN-V networks when we use new,

separate virtual channels in place of the Up and Extra links

accordingly.

Proof (Sketch): We analyze deadlock possibility in our

routing algorithm by using a special Channel Dependency
Graph (CDG), in which each vertex is not a single channel or

link but a combination (or group) of links (see Figure 6). By

nature of our routing algorithm, the three groups of links —

Up, Succ and Shortcut, Pred and Extra — are used completely

separately in the three phases of our routing algorithm, i.e.,

PRE-WORK, MAIN-PROCESS and FINISH, respectively. It is

easy to observe that there are only two such dependencies

between two distinct groups and no deadlock situation can

occur due to them. Hence, we only need to consider deadlock

possibility in each individual groups. However, the ways we

use Up links (in PRE-WORK) or Succ and Shortcut (in

MAIN-PROCESS) are such that the changings of height (or

level) are always monotone, i.e., gradually moving uphill (in

height) in PRE-WORK or gradually going downhill in MAIN-

PROCESS. This property assures no deadlock possibility in

each of these two groups. The only remaining deadlock

possibility is in the Pred and Extra group of the FINISH

phase, i.e., the existence of possibility of a cycle consisting

of multiple FINISH sequences (of links used by each FINISH

phase). Here we introduce the use of Extra link to break such a

cycle: when destination t is in the range of 0 . . . 2p−1, FINISH

will only use Extra links for this part of the route inside this

range. In summary, our routing algorithm is deadlock-free. The

upper bound on routing diameter can be shown similarly as

in fact 2.

B. Improving routing diameter

In DSN-(p − 1) the last few shortcuts from a super node,

specifically the log p shortest shortcuts at the log p lowest

Figure 6. Channel Dependency Graph of three link groups. (1) and (2) are
dependencies. There is no cycle (1-4), (2-3), (1-2-5).

heights and at level l > p − log p, are not really helpful.

It is easy to see that they are simply (i, i + p + 1) for any

i mod p = l. If used, these links will overshoot destination

t. Therefore it is better not to have them but instead to add

in some short links, a few per each super node, that can

actually help to reduce the FINISH. Below is such a topology

construction that uses DSN-x, with x = p−�log p�, as a base

and add a few such links to each group within a super node.

Construction DSN-D-x: Let q = �p/x�. We add links

(iq, (i+1)q) for i = 1, 2, . . ., w = �n/q�−1 and ((w+1)q, 0).
Clearly, this helps to reduce the long local walks in the steps

PRE-WORK and FINISH up to (1 − 1
x)p per each step. For

DSN-D-2, we add just two more short links per super node

that help to reduce the diameter to only 7
4p (from 2.5p + r).

Our routing algorithm can also be updated a little bit to reduce

routing diameter to 2p (from 3p+ r).

C. Improving flexibility

Here we aim to loosen the strict condition in constructing

our topology. We allow each super node to have a flexible

size, that is p and possibly plus/minus a few. For example, for

n = 1024 we can arrange the nodes in 6 super nodes of size 10
and 4 of size 11. All the super nodes will still have the same set

of shortcuts, i.e., the four 11th nodes don’t have any shortcut.

This arrangement will help to fix the issue of incomplete super

node as well as to tolerate with node addition or failure. For

convenience in managing and routing, we can extend the ID

system as follows. We start with a convenient n (e.g. 1020),

form the basic topology with integer IDs and whenever we

need to add a new node between two initial node i and i+ 1
we give it a fractional ID such as i + 1

2 . The integer nodes

will be considered the major nodes that come with shortcuts,

the fractional are minor without shortcut. For example, a size-

1024 topology can look like the basic DSN-10-1020 with 4
more added minor nodes, which can have ID such as 10 1

2 , 201
2 ,

30 1
2 and 40 1

2 . The routing will still be basically the same with

the additional rule that is to route to a minor node we need

to firstly route to the major node just before it, and then use

Succ links to reach it.

D. Avoiding the overshoot

For the basic DSN, any shortcut must go from level k − 1
to level k, which causes the overshoot issue. It could be a

bit ugly to have an overshoot distance almost p + r (r = n
mod p): normally, the overshoot distance is at most p− 1 but

the existence of the final, incomplete super node I (that may

578

 0

 2

 4

 6

 8

 10

 12

 5 6 7 8 9 10 11

H
op

s

Network Size (log2 N)

2-D Torus
RANDOM

DSN

Figure 7. Diameter vs. network size for DSN, torus and RANDOM
topologies.

not have a required level k) can delay the walk for finding

the next k-level node further by the extra r local links within

I . To avoid this overshoot problem totally, we can twist the

routing algorithm a bit: at a node i if we find that the originally

selected shortcut turns out to be an overshoot, we shoot first

take a local link to node i + 1 and then take the shortcut

from it, which is much shorter and definitely lands before the

destination t. Note that this new routing algorithm will help

to reduce a lot in the FINISH, but may prolong the MAIN-

PROCESS. We intend to make it concretely done in our future

work.

VI. TOPOLOGY AND LAYOUT ANALYSIS

In this section we firstly compare our newly proposed

topology (DSN) with a typical non-random topology (torus)

and a random topology (DLN-2-2 [3]) in terms of diameter

and average shortest path length by means of graph analyses.

Next we compute the average cable length considering their

floorplan in a machine room using parameters of recent

interconnect technology.

We focus only on our basic topology in this paper to

evaluate it from a practical perspective. Evaluation of our

topology extensions will be made in our future work.

A. Diameter and Average Shortest Path Length versus Net-
work Size

Our basic DSN topology has an average degree 4 (or a bit

less). Thus we compare it with same-degree counterparts, a

2-D torus and a DLN-2-2, using the same network size (the

number of nodes). Below we denote these topologies as DSN,

torus and RANDOM, respectively. Figures 7 and 8 show the

diameter and the average shortest path length of each topology,

respectively. Lower values in both graphs are considered better.

In all the network sizes, RANDOM topology achieves the

lowest diameter and the lowest average shortest path length.

When compared to torus, DSN improves the diameter and

the average shortest path length by up to 67% and 55%,

respectively. These values are not far from those of RANDOM,

which has an exact degree 4. Therefore our DSN is expected

 0

 2

 4

 6

 8

 10

 12

 5 6 7 8 9 10 11

H
op

s

Network Size (log2 N)

2-D Torus
RANDOM

DSN

Figure 8. Average shortest path length vs. network size for DSN, torus and
RANDOM topologies.

 0

 2

 4

 6

 8

 10

 12

 5 6 7 8 9 10 11

A
ve

ra
ge

 c
ab

le
 le

ng
th

 (
m

)

Network Size (log2 N)

2-D Torus
RANDOM

DSN

Figure 9. Average cable length vs. network size for DSN, torus and
RANDOM topologies.

to have a similar performance to that of RANDOM topology

with the same average degree.

As the network size becomes large, both RANDOM and

DSN achieve considerably lower path length than that of torus.

Therefore we can say that RANDOM and DSN topologies

have a good scalability.

B. Average Cable Length and Layout

We estimate the cable length required to deploy the topolo-

gies onto a physical layout of cabinets. We assume a physical

floorplan that is sufficiently large to align all cabinets on a 2-D

grid. Formally, assuming m cabinets, the number of cabinet

rows is q = �√m � and the number of cabinets per row

is p = �m/q�. We assume that each cabinet is 0.6m wide

and 2.1m deep including space for the aisle, following the

recommendations in [21]. The distance between the cabinets is

computed using the Manhattan distance. We estimate average

cable length based on [22]: 2m intra-cabinet cables and a 2m

wiring overhead added to the length of inter-cabinet cables

at each cabinet. We ignore cables between compute nodes

and switches, since their lengths are constant regardless of

the layout. We assume that each cabinet has 16 switches.

The average cable length of each topology is computed and

shown in Figure 9. Lower values of the average cable length

are considered better. Notice that the layout of 2-D torus is

579

well studied, such as folded method for uniform link length.

However, the aggregate cable length of folded torus is the

same as that of the corresponding original torus in which only

wraparound links become long. Thus we fairly compare 2-D

torus and our basic DSN in terms of cable length.

For RANDOM topology, the average cable length increases

significantly as the network size becomes large. We can say

that RANDOM topology has a serious issue of trading a lot

of cable length for shorter hop count. By contrast, our DSN

topology features (i) an average cable length similar to that

of the 2-D torus and much shorter than that of RANDOM

topology, and (ii) an average path length comparable to that of

RANDOM topology. In another analysis, our DSN with degree

6 surprisingly has shorter average cable length than 3-D torus

in conventional floor layout of supercomputers in a machine

room. The total cost of interconnects (the price of switches

and cables plus installation cost) increases in proportion to

the cable length assuming high-bandwidth optical cables over

10Gbps [4], [23]. We thus expect that our DSN topology

has a good economy. From this topological analysis, we

recommend using our DSN topology for low-radix network

era in supercomputers.

VII. SIMULATION RESULTS

A. Parameters

We use a cycle-accurate network simulator written in C++

[3]. Every simulated switch is configured to use virtual cut-

through switching. A header flit transfer requires over 100ns

that includes the routing, virtual-channel allocation, switch

allocation, and the flit transfer from an input channel to an

output channel through a crossbar. The flit injection delay

and the link delay together are set to 20ns. We use the

topology-agnostic adaptive routing scheme described in [24],

with up*/down* routing for the escape paths. This topology

evaluation uses four virtual channels. The network size is set

to 64 switches. Each switch has four compute nodes.

We simulate two synthetic traffic patterns that determine

each source-and-destination pair: random uniform, and bit-
reversal. These traffic patterns are commonly used for mea-

suring the performance of large-scale interconnection networks

[25]. In addition to these typical traffic patterns, we evaluate

“neighboring” traffic in which 90% of packets are sent to

neighboring nodes in 2-D array layout, whereas the remainder

packets are sent to destination nodes randomly selected. The

neighboring traffic considered in the evaluation is used for

the performance evaluation under heavy local accesses. The

hosts inject packets into the network independently of each

other. In each synthetic traffic the packet size is set to 33 flits

(one of which is for the header). Each flit is set to 256 bits.

Effective link bandwidth is set at 96 Gbps. We pick relatively

small packet sizes since we wish to study the performance

of latency-sensitive traffic that consists of small messages [1].

Our results quantify two metrics: latency and throughput. The

latency is the elapsed time (in nsec) between the generation of

a packet at a source host and its delivery at a destination host.

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 2 4 6 8 10 12

La
te

nc
y

[n
se

c]

Accepted traffic [Gbit/sec/host]

RANDOM
Torus
DSN

(a) Uniform traffic.

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 2 4 6 8 10 12

La
te

nc
y

[n
se

c]

Accepted traffic [Gbit/sec/host]

RANDOM
Torus
DSN

(b) Bit reversal traffic.

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 2 4 6 8 10 12

La
te

nc
y

[n
se

c]

Accepted traffic [Gbit/sec/host]

RANDOM
Torus
DSN

(c) Neighboring traffic.

Figure 10. Latency vs. accepted traffic for DSN, torus and RANDOM
topologies (degree 4).

The throughput is the largest amount of traffic (in Gbit/sec)

accepted by the network before the network is not saturated.

B. Evaluation

Figure 10 plots the results of DSN, torus and RANDOM

topologies. All the topologies have similar throughput, and the

difference appears in their latency under low-traffic load. The

average shortest path lengths in 64-switch network are 3.2,

3.2 and 4.1 hops for DSN, RANDOM and torus topologies,

respectively (see Figure 8). As expected from these values,

580

DSN and RANDOM topologies have almost the same curves.

Traffic patterns also affect the performance gain. DSN

improves the latency by 4.3% with bit reversal traffic and

by 15% with uniform traffic when compared to torus. We

thus observe that DSN always outperforms torus in terms

of latency. Our cycle accurate network simulation confirms

that the latency strongly depends on the average shortest path

length of topology. We thus expect that our DSNs maintain

lower latency near to RANDOM topology as the network

size become large, e.g., 2048 switches as shown in our graph

analysis.

We have also created simulations using our custom routing.

Our initial work has also obtained exciting results that our

custom routing makes traffic significantly more balanced than

using up*/down* routing. Hence, our custom routing can lead

to better throughput for heavier traffic. We do not discuss these

results in detail due to the scope and space limitation of this

paper.

VIII. CONCLUSIONS

We proposed distributed shortcut networks (DSNs),

which achieve low-latency communication using low-degree

switches, mainly targeting on HPC off-chip interconnects.

Our DSN topology features a carefully designed set of

various-length shortcuts, which reflects small-world networks

in achieving small diameter while ensuring a very economical

cable length. We also consider extending our basic DSN

topology to a variety of topology designs that have different

diameter-vs-degree properties and that also cope with other

important issues. They include topologies (with custom routing

algorithm) for avoiding deadlocks or avoiding overshoots in

routing, or constructions that possess the flexibility in sup-

porting network sizes and switch degrees.

Our graph analyses showed that the proposed basic topology

has low diameter and low average shortest path length, which

is considerably better than those of a counterpart 2-D torus and

near to those of a random topology (DLN-2-2 [3]) with the

same average degree. Moreover, the average cable length of the

proposed topology is drastically shorter than that of DLN-2-2.

It is near to that of the same-degree torus. Our cycle-accurate

network simulation showed that the proposed topology reduces

latency by 15% and has almost the same throughput when

compared to the torus with the same degree.

As with a typical non-random topology, it is possible

to exploit the structure of our DSN topologies to create a

custom routing algorithm with a natural routing logic. We

also proposed a deadlock-free routing algorithm, by which the

routing logic at each switch is expected to be simple and small.

Our future work will attempt to analyze our custom routing

with respect to the strength in creating traffic balance. We will

also aim to design a deadlock-free minimal custom routing on

DSNs as well as to analyze further on our extended topologies.

ACKNOWLEDGMENTS

This work was partially supported by KAKENHI

#25280018 and #25730068.

REFERENCES

[1] K. Scott Hemmert et al, “Report on Institute for Advanced Architectures
and Algorithms, Interconnection Networks Workshop 2008,” http://ft.
ornl.gov/pubs-archive/iaa-ic-2008-workshop-report-final.pdf.

[2] J. Tomkins, “Interconnects: A Buyers Point of View,” ACS Workshop,
2007.

[3] M. Koibuchi, H. Matsutani, H. Amano, D. F. Hsu, and H. Casanova, “A
Case for Random Shortcut Topologies for HPC Interconnects,” in Proc.
of the International Symposium on Computer Architecture (ISCA), 2012,
pp. 177–188.

[4] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-Driven, Highly-
Scalable Dragonfly Topology,” in Proc. of the International Symposium
on Computer Architecture (ISCA), 2008, pp. 77–88.

[5] P. Coteus and et. al., “Packaging the Blue Gene/L supercomputer,” IBM
Journal of Research and Development, vol. 49, no. 2/3, pp. 213–248,
Mar/May 2005.

[6] Y. Ajima, S. Sumimoto, and T. Shimizu, “Tofu: A 6D Mesh/Torus
Interconnect for Exascale Computers,” IEEE Computer, vol. 42, pp. 36–
40, 2009.

[7] I. Fujiwara, M. Koibuchi, and H. Casanova, “Cabinet Layout Optimiza-
tion of Supercomputer Topologies for Shor ter Cable Length,” in Proc.
of International Conference on Parallel and Distributed Com puting,
Applications and Technologies, Dec 2012.

[8] Top 500 Supercomputer Sites, http://www.top500.org/.
[9] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Net-

working Data Centers Randomly,” in Proc. of USENIX Symposium on
Network Design and Implementation (NSDI), 2012.

[10] J. Y. Shin, B. Wong, and E. G. Sirer, “Small-World Data Centers,” in
Proc. of the Symposium on Cloud Computing, Oct. 2011.

[11] M. Koibuchi, I. Fujiwara, H. Matsutani, and H. Casanova, “Layout-
conscious random topologies for hpc off-chip interconnects,” in 19th
International Conference on High-Performance Computer Architecture
(HPCA), Feb. 2013, p. XX.

[12] “Earth simulator project,” http://www.jamstec.go.jp/es/en/index.html.
[13] A. Mejia, M. Palesi, J. Flich, S. Kumar, P. López, R. Holsmark, and

J. Duato, “Region-based routing: A mechanism to support efficient
routing algorithms in nocs,” IEEE Transactions on VLSI Systems, vol. 17,
no. 3, pp. 356–369, 2009.

[14] D. Watts and S. Strogatz, “Collective dynamics of small-world net-
works,” Nature, vol. 393, pp. 440–32, 1998.

[15] J. Kleinberg, “The small-world phenomenon: An algorithmic perspec-
tive,” in STOC, 2000.

[16] C. Martel and V. Nguyen, “Analyzing Kleinberg’s (and other) smallworld
models,” in PODC, 2004.

[17] M. R. Samatham and D. K. Pradhan, “The De Bruijn Multiprocessor
Network: A Versatile Parallel Processing and Sorting Network for
VLSI,” IEEE Trans. on Computers, vol. 38, no. 4, pp. 567–581, 1989.

[18] S. B. Akers, B. Krishnamurthy, and D. Harel, “The Star Graph: An
Attractive Alternative to the n-Cube,” in Proc. of the International
Conference on Parallel Processing (ICPP), 1987, pp. 393–400.

[19] K. Hwang and J. Ghosh, “Hypernet: A communication-efficient archi-
tecture for constructing massively parallel computers,” IEEE Trans. on
Computers, vol. 36, no. 12, pp. 1450–1466, 1987.

[20] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[21] HP, “Optimizing facility operation in high density data center environ-
ments , technoloogy brief,” 2007. [Online]. Available: http://h18004.
www1.hp.com/products/servers/technology/whitepapers/datacenter.html

[22] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: a cost-efficient
topology for high-radix networks,” in Proc, of the International Sympo-
sium on Computer Architecture (ISCA), 2007, pp. 126–137.

[23] J. Mudigonda, P. Yalagandula, and J. C. Mogul, “Taming the flying
cable monster: a topology design and optimization framework for data-
center networks,” in Proc. of the USENIX conference on USENIX annual
technical conference, 2011.

[24] F. Silla and J. Duato, “High-Performance Routing in Networks of
Workstations with Irregular Topology,” IEEE Trans. on Parallel Distrib.
Syst., vol. 11, no. 7, pp. 699–719, 2000.

[25] W. D. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2003.

581

