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Abstract—Adopting high-degree topologies is a promising
way to reduce end-to-end latency in a network-on-chip (NoC).
However, some high-degree topologies are not used in practice
due to their complex layout on a chip. In this work we explore
the way to systematically obtain the quasi-optimal mapping of
those topologies onto a chip by modelizing the mapping problem
as a quadratic assignment problem. Results show that the Robust
Tabu Search algorithm achieves the mappings with the shortest
link length for most topologies of up to 512 cores. The link
length is reduced by up to 51% when compared to naive baseline
method. We also tackle even larger topologies by means of
clustering, and a promising results are obtained to apply those
algorithms for topologies of 2,048 or more cores with a modest
penalty on the link length.

Keywords—Network topologies, systems on chip, Network-on-
Chip, optimization.

I. INTRODUCTION

The advances in semiconductor technology allow us to
integrate a number of processing cores on a single chip
using enormous amount of wire resources [1]–[4]. It is ex-
pected to reach 1,000 cores on a chip [5], [6]. Enormous
wire resources enable to use a large number of links on a
chip, e.g. 32 or 256 wires per link. Thus, high-radix on-
chip network topologies that effectively use a large number of
links are widely proposed to make a low-latency network-on-
chips (NoCs) [7]. Since traditional on-chip network topologies
often exhibit both highly regular structure and low degree
(e.g. k-ary 2-cubes), they naturally fit into a simple physical
layout. In addition, recent specific high-radix topologies such
as Flattened Butterfly [7] have their own layout that has a
short link length. Other typical high-degree topologies such as
k-ary n-cube with n > 3 are also attractive to attempt the task
mapping for traditional parallel algorithms especially in chip
multiprocessors. Many parallel algorithms have known and
efficient mapping to such high-degree topologies. With those
topologies, optimal physical layouts are no longer intuitive and
system designers are now facing a difficult task of mapping
routers to a physical layout so as to reduce the total link length
on a chip.

In this context, given a topology, we study the optimization
of the physical layout on a 2-D chip in a view to minimizing
the total link length. Our approach maps on-chip routers onto
a physical die by framing the problem and solving it as a
quadratic assignment problem (QAP). Our goal in this work is
to reduce the total link length not only for low-radix, layout-
friendly topologies but also for more challenging high-radix
topologies. Our main contributions and findings are as follows:
(1) a quasi-optimal mapping of high-degree network topologies

onto a chip can practically be obtained for a chip with up to
512 cores; (2) Robust Tabu Search algorithm achieves the best
tradeoff between the quality of the solution and the execution
time; and (3) a clustering technique enables our approach to
deal with even larger topologies.

The rest of this paper is organized as follows. Section II
rationalizes the mapping problem and introduces algorithms
to solve it. Section III evaluates the performance of those
algorithms. Section IV extends our approach to larger prob-
lems. Section V discusses related work. Finally, Section VI
concludes the paper with a summary of our findings.

II. QUADRATIC ASSIGNMENT PROBLEM

A mapping of cores onto a chip can be modelized and
optimized as a quadratic assignment problem (QAP). In this
section we introduce a formal representation of QAP as well
as applied optimization algorithms and their implementations.

A. Rationale

Assume a topology of N cores to be mapped onto N
locations on a chip so that the total link length between cores is
minimized. The QAP solution is represented by a permutation
Φ = φ(1), . . . , φ(N) such that

Minimize
N∑

i=1

N∑

j=1

wijdφ(i)φ(j) (1)

where dij denotes the physical distance between locations i
and j, wij denotes the number of links between cores i and
j, and φ(i) denotes the location where core i is assigned.

QAP is considered as one of the “hardest of the hard” of
all combinatorial optimization problems [8] as it is NP-hard
and even an ε-approximation algorithm is proven not to exist
unless P = NP [9]. In general, QAP instances of size N > 30
cannot be exactly solved in reasonable time [10]. Therefore,
we need to use heuristic algorithms to practically solve a QAP.
As we have no hope for exact optimization, we use the term
“optimization” in the same meaning as “quasi-optimization”
in the rest of this work.

B. Optimization Algorithms and Solvers

We select for this work three metaheuristic algorithms that
have been successfully applied to QAP.

• Simulated annealing (SA) is a local search algorithm that
exploits the analogy between combinatorial optimization
algorithms and statistical mechanics [10]. We adopted
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TABLE I. DIMENSIONS.
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Taillard’s implementation in C [11] of Connolly’s algo-
rithm [12].

• Tabu search (TS) is a local search algorithm that features
an updated list of the best solutions that were found in
the search process [10]. We adopted Taillard’s implemen-
tation in C++ [11] of his Robust Tabu Search algorithm
[13].

• Greedy randomized adaptive search procedure (GRASP)
[14] is a random and iterative technique that obtains an
approximate solution at each step and returns the best
generated one [10]. We adopted Recende’s implementa-
tion in Fortran [15] of GRASP for sparse QAP [16].

We defined the following baseline method for comparison.
Assuming the locations are aligned on a 2-D grid, we consider
two schemes: (1) a “wrap-around” method, which assigns
the locations from left to right in every row, and (2) a
“zigzag” method, which assigns the locations from left to
right in the first row, from right to left in the second row,
etc. The former can produce reasonable results for mesh/torus
topologies whereas the latter is more reasonable for ring-based
topologies. Our baseline method uses both schemes and returns
the best of the two obtained results.

III. COMPARISON OF OPTIMIZATION ALGORITHMS

Forthcoming technology will integrate several hundreds of
cores on a chip. No exact optimization algorithm is likely to be
available for such a large QAP and different heuristics bring
different tradeoffs between the quality of the solution (i.e. the
resulting link length) and the execution time. In this section
we evaluate those metaheuristic algorithms introduced in the
previous section and try to pick the most preferable one for
our purpose.

A. Setup

We employ an abstract model of an interconnection net-
work on a 2-D chip as described below. A chip consists of
many tiles. A tile hosts a core. A core has its own router (the
term “core” includes its router in this work) and is connected
to other cores with physical links. All tiles have a uniform-
sized square shape (e.g. 1 mm × 1 mm) and are aligned in a
grid-like pattern on a chip (e.g. 64 tiles are aligned on a chip of
8 mm × 8 mm). We also use the term “tile” as a unit of length,
which is equal to the grid size (e.g. 1 tile = 1 mm if a tile is
1 mm × 1 mm large). We assume the number of cores to be

N ∈ {32, 64, 128, 256, 384, 512, 640, 768, 896, 1024} and the
number of tiles to be x×y, where x = �√N � and y = �N/x�,
as shown in Table I(a). In case of N < xy, cores are located
on N tiles selected from left to right and then from top to
bottom of the chip, and the remainder xy − N tiles are left
unused. We pick several typical topologies to be mapped onto
a chip, namely n-dimensional Torus with n ∈ {4, 5, 6, 7},
n-dimensional Hypercube with n ∈ {5, 6, 7, 8, 9, 10} and d-
degree Random Ring with d ∈ {5, 6, 7, 8, 9, 10}, as shown
in Table I(b). A Random Ring is a ring topology with d − 2
additional shortcut links at every core which randomly connect
to other cores [17].

We executed those solvers introduced in Section II-B as
single-threaded programs on our Linux server with 3.47 GHz
Intel Xeon X5690 processor and 144 GB main memory. We
run SA for 100 million iterations and pick the best solution
out of 10 trials.

B. Link Length vs. Chip Size

Figures 1 and 2 show the average and the maximum link
length, respectively, vs. the number of cores. Results indicate
that both SA and TS successfully reduce the link length, and
TS slightly outperforms SA at most cases. For example, the
average link length of 4-D Torus topology of 640 cores is
reduced by 49.6% and 51.3% by SA and TS, respectively,
when compared to the baseline. The difference between SA
and TS is less than 10% of the best solution as far as the
average link length is concerned. GRASP also reduces the link
length, but its effectiveness is not as much as SA and TS.
Some plots of GRASP are missed due to runtime errors. The
baseline method exceptionally works well for Torus/Hypercube
of 64, 256 and 1,024 cores (see also Fig. 6). They are “lucky”
cases in which their topological dimensions fit the physical
dimensions. In other general cases, the baseline method leads
to unreasonably long link lengths, and proves the necessity
of a systematic method to optimally map a complex topology
onto a chip.

Cumulative distributions of the link length for some par-
ticular topologies are shown in Fig. 3. The baseline has some
“steps” or intermediate horizontal parts on its plots. This
indicates that the topological boundary matches up with the
physical boundary. The steps can clearly be seen in the “lucky”
cases including Torus/Hypercube of 256 cores (as shown in
the two charts on the left-hand side) and not in general cases
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Fig. 1. Average link length vs. number of cores.
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Fig. 2. Maximum link length vs. number of cores.
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Fig. 3. Cumulative distribution of link length.
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Fig. 4. Execution time of solvers vs. number of cores.
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Fig. 5. Link length relative to baseline vs. execution time of solvers.
Horizontal axis is logarithmic.

(on the right-hand side). The plots of SA, TS and GRASP
are pulled up toward the upper left corner and have no clear
steps. This means that those algorithms successfully shorten
the link lengths without depending on the relationship between
physical and topological dimensions.

C. Execution Time vs. Chip Size

Figure 4 shows the execution time of the solvers vs. the
number of cores. The execution time of SA is the longest
among those three algorithms with a small chip; while it
becomes the shortest with a large chip. This is because SA
repeats a fixed number of trials (10 times in this work) to
search the optimal solution and each trial has a pre-defined
cap on the number of iterations (100M iterations in this work).
Indeed the cap eliminates the execution time while possibly
misses a better solution, but the opportunity loss caused by
the cap is not very significant, as far as the resulting link
length is concerned (see Section III-B). The execution time
of TS, in contrast, straightly fits a quadratic function to the
chip size. It is the shortest among those three algorithms
when 128 < N < 512 (except for Random Ring) and the
difference between TS and GRASP is less than 10 minutes
when N ≤ 128. The crossover point of SA and TS exists at
around 384 < N < 512 (except for Random Ring) and the
difference between SA and TS is less than 16% (70 minutes)
at N = 512. Consequently we consider TS to be advantageous

or comparable to SA as long as N ≤ 512. The execution time
of GRASP grows near-exponentially with the chip size and
exceeds 12 hours at N = 512. We thus consider GRASP as
an impractical algorithm to optimize the mapping of topology
of more than 256 cores.

D. Link Length vs. Execution Time

To summarize the observations in this section, we plot the
link length (relative to baseline) vs. execution time of the
solvers in Fig. 5. From the chart we can reconfirm that SA
and TS are comparable in terms of the resulting link length.
TS tends to consume shorter execution time than SA when
the problem size is small (on the left-hand side); while TS can
cause a longer execution time than SA when the problem size
is large (on the right-hand side). The plots of GRASP tend to
form a vertical distribution on the horizontal axis, which means
that the execution time of GRASP depends not on the essential
difficulty of the problem but sorely on the problem size. When
there are 640 cores (the rightmost part of the plots), GRASP
can cause more than seven times longer execution time than
SA.

From the overall observations in this section, we conclude
that TS is the most preferable algorithm to optimize the
mapping of a topology onto a chip, as long as the chip size
does not exceed 512 cores.

IV. FURTHER SCALING BY CLUSTERING

We found that naive implementations of the optimization
algorithms face a practical upper limit on the chip size at
around 512 cores. Indeed more sophisticated solvers are pro-
posed to tackle larger problems, but QAP is essentially too
difficult to solve such a large problem directly. Instead we
should go through another way to reduce the complexity of the
problem, and divide-and-conquer is a promising strategy to do
so. In this section we try to divide the problem by grouping
several cores into a cluster and to optimize the mapping on a
per-cluster basis.

A. Setup

Given a chip, on one hand, we divide it so that the adjacent
four tiles (2×2 on a chip) form a clustered tile. We assume that
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Fig. 6. Average link length vs. number of cores. Clustered vs. non-clustered.

the size of a cluster is 2 tiles × 2 tiles, the link length between
two cores within the same cluster is 1 tile, and the link length
between two cores on different clusters has an overhead of 2
tiles (1 tile at each end) in addition to the Manhattan distance
between two clusters. Given a topology of cores, on the other
hand, we pick every four cores in the canonical topological
order to form a clustered core. For example, given a 5-D Torus
of 128 cores (2×2×2×4×4 cores), the first 2×2 cores form
the first cluster, the next 2× 2 cores form the second cluster,
and so on. As a result, in this example, the first two dimensions
remain within each cluster and the last three dimensions exit
the clusters. We then optimize the mapping of the clustered
cores onto the clustered tiles using the same methods as the
previous section.

B. Link Length vs. Chip Size

Figure 6 shows the average link length vs. the number of
cores. The number of clusters is one fourth of the number of
cores. In this section we only show the results of TS, since the
results of the other optimization algorithms follow essentially
the same trend.

From the result we can observe that the link length in-
creases by clustering, and the differences between the clustered
and the non-clustered cases are almost constant. The average
penalties on the link length is 1.41 tiles in 4-D Torus, 1.44
tiles in 5-D Torus and 1.46 tiles in Hypercube, which are
smaller than the overhead of the inter-cluster links (2 tiles
long), because cores are densely connected inside a cluster
using shorter intra-cluster links (1 tile long). An exception to
this observation is Random Ring, in which the average penalty
is 2.66 tiles, because many shortcut links jumps beyond a
cluster.

C. Link Length vs. Execution Time

Figure 7 shows the optimized link length (relative to non-
clustered baseline) vs. the execution time of the TS solver. A
line corresponds to a topology. The leftmost and the rightmost
points of a line correspond to the clustered and the non-
clustered cases, respectively.

From the result we can observe that the execution time
decreases drastically by clustering (note that the horizontal axis
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Fig. 7. Link length relative to non-clustered baseline vs. execution time of
TS solver. Leftmost point is clustered and rightmost point is non-clustered.
Horizontal axis is logarithmic.

is logarithmic), whereas the link length increases modestly.
This observation applies to all the cases with no exception.
For example, in the case of 640-core 5-D Torus, the execution
time decreases by 98% (from 33,875 sec to 728 sec) whereas
the link length increases by 18% (from 16,296 tiles to 19,280
tiles).

Since clustering four cores reduces to one fourth the size of
QAP, we confidently suppose that the mapping of a 2,048-core
topology can be optimized in essentially the same execution
time as a 512-core non-clustered counterpart. Further scaling
can also be considered by clustering 9 cores (3× 3), 16 cores
(4 × 4) etc., at a possible cost of wiring overhead inside a
cluster.

V. RELATED WORK

We focus on existing on-chip topologies and their layouts
in NoCs. Needless to say, k-ary 2-meshes and folded k-
ary 2-tori have intuitive layouts that make each link length
uniform and short. The butterfly network (k-ary n-fly) can be
efficiently mapped onto a 2-D VLSI by utilizing high-radix
routers [18]. In the flattened butterfly [7], routers in each row
of a conventional butterfly are combined into a single router.
It has a large diversity of router degrees for each network size
and its low-degree case is equivalent to hypercube. Spidergon
topology, which is a ring topology with links that connect
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diagonal counterparts in the ring, has been discussed for cost-
effective on-chip networks [19]. It can be efficiently mapped
onto a chip in which almost all links have minimum length
as well as k-ary 2-meshes. However, its average hop counts
considerably increase as the number of nodes increases, even
though it provides diagonal links to mitigate the increase of
diameter compared to a conventional ring. To the best of our
knowledge, the above specific topologies have good layouts
on a chip; however, optimal physical layouts are no longer
intuitive for other typical high-radix networks evaluated in the
previous sections.

In addition to the above direct networks in which each
router has a local core, NoCs sometimes employ indirect
networks in which some routers do not have local cores. The
simplest indirect network topology is H-Tree, in which each
router (except for the top-rank router) has one upward and four
downward connections. The links and routers around the root
of the H-Tree are frequently congested due to its poor bisection
bandwidth. Fat Tree enhances the number of connections
toward the root to mitigate the congestion. Another variation
of H-tree is Fat H-tree that includes tori and tree by using two
H-trees [20]. Our work can be applied to any indirect networks
for their layout; however, their evaluation is out of our scope
in this work.

Custom topology design for a traffic patterns generated by
a target application has been widely discussed [21], [22]. Their
resulting topology usually becomes irregular. Our works can be
naturally extended to such irregular topologies for their layout;
however, their evaluation is also out of our scope in this work.

VI. CONCLUSIONS

In this work we tried to obtain a quasi-optimal mapping of
high-degree network topologies onto a chip for upcoming low-
latency network-on-chips (NoCs). We modelized the mapping
as a quadratic assignment problem in a straightforward way
and compared three metaheuristic algorithms to solve it. The
Robust Tabu Search algorithm among them achieves the best
tradeoff between the quality of the solution and the execution
time as long as the chip size does not exceed 512 cores. For
even larger chips we modelized the mapping in a sophisticated
way that clusters adjacent cores to reduce the complexity, and
confirmed the feasibility of our approach for large-scale NoCs
with 2,048 or more cores with a modest penalty on the link
length. The advantage of our approach is that it makes it
possible to decouple layout concerns from topology concerns,
while remaining effective even for high-degree topologies,
which are not amenable to intuitive physical layouts.
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