
Applying Double-sided Combinational Auctions  
to Resource Allocation in Cloud Computing 

 

Ikki Fujiwara 
The Graduate University for Advanced Studies 

(SOKENDAI) 
Tokyo, Japan 
ikki@nii.ac.jp 

Kento Aida 
National Institute of Informatics/ 
Tokyo Institute of Technology 

Tokyo, Japan 
aida@nii.ac.jp

 

Isao Ono 
Tokyo Institute of Technology 

Kanagawa, Japan 
isao@dis.titech.ac.jp 

 
 

Abstract— We believe that a market-based resource allocation 
will be effective in a cloud computing environment where 
resources are virtualized and delivered to users as services. We 
propose such a market mechanism to allocate services to 
participants efficiently. The mechanism enables users (1) to 
order a combination of services for workflows and co-
allocations and (2) to reserve future/current services in a 
forward/spot market. The evaluation shows that the 
mechanism works well in probable setting.  

Keywords- cloud computing, web services, market, auction, 
scheduling, optimization, linear programming 

I.  INTRODUCTION 
Cloud computing is an emerging paradigm for distributed 

computing environments. The computing resources, either 
software or hardware, are virtualized and allocated as 
services from providers to users. QoS is an important issue 
for industrial users. Advanced features related to QoS 
include performance guarantee of service, co-allocation of 
multiple services, and support of a workflow involving 
different services. 

We envision that providers in the near future will 
compete to offer cloud computing services and that 

 

 
Figure 1.  Overview of the Cloud Service Exchange 
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thousands of users will compete to receive such services to 
run complex tasks with guaranteed QoS and limited budgets.  
However, an efficient allocation mechanism among service 
providers and users has yet to be devised. 

In this paper, we propose a market-based resource 
allocation mechanism that allows participants to trade their 
services by means of a double-sided combinational auction. 
A market mechanism may be better able to cope with 
situations where large numbers of participants trade different 
services. The proposed mechanism enables participants to 
trade future and current services in the forward market and 
the spot market, respectively. 

The rest of the paper is organized as follows. Section II 
describes the model of the cloud computing environment and 
the related work. Section III presents the proposed market 
mechanism. Section IV describes our simulator for the 
proposed mechanism, and Section V discusses the 
preliminary evaluation. Section VI summarizes our 
contributions and outlines future work. 

II. MODEL AND RELATED WORK 

A. Cloud Computing Environment Model 
We assume the cloud computing environment includes 

service providers, users, and a market. The service providers 
and the users sell/buy different computing resources 
abstracted as services through the market. The services vary 
in abstraction level, from primitive resources (e.g. CPU 
cycles, storage capacity, and network bandwidth) to 
sophisticated applications (e.g. customer behavior analysis, 
structural mechanics simulations, and pay-check 
calculations). The users get one or more services together to 
meet their business requirements. Their requirements vary in 
regularity from periodical, scheduled tasks to temporal, 
immediate tasks. For instance, a user may run a financial risk 
evaluation program using 80 CPUs and 16GB of storage for 
4 hours after midnight on every day. 

The resource allocation mechanism needs to satisfy the 
service providers and the users. We define four requirements, 
and our goal is to devise the market-based resource 
allocation mechanism that satisfies them. 

1) Economic efficiency: When the allocation is 
economically efficient, it is impossible to increase a 
participant's welfare without decreasing another participant's 
welfare; i.e. there is no wasted resource. Maximizing the 
total welfare is a sufficient condition for economic 
efficiency. The proposed mechanism employs mixed integer 
programming to strictly maximize the total welfare. 

2) Predictability and flexibility: Since supply and 
demand in cloud computing environment changes 
dynamically over time, users may desire a predictable 
allocation in advance and a adjustment at runtime. The 
proposed mechanism installs two markets to support them: a 
forward market for advance reservations and a spot market 
for immediate reservations. 

3) Combination for a workflow: Many cloud computing 
applications utilize several services in a specific order to 

organize a workflow. The user therefore needs to bundle 
multiple services with different start/finish times. The 
proposed mechanism allow users to express complementary 
requirements for an arbitrary combination of services, in 
order to support both workflows and co-allocations. 

4) Double-side competition: To encourage a fair 
exchange between resource providers (sellers) and users 
(buyers), the prices should only depend on the supply-
demand conditions.  The proposed mechanism is based on 
the double-sided auction model [2] to give no advantage on 
the seller's side or the buyer's side. 

B. Related Work 
Market-based resource allocation has been a hot topic in 

grid literature for a decade. Schnizler et al. [1] introduced the 
notion of using a double-sided combinational auction to 
allocate grid resources. However, in this scheme, resources 
are bundled by the resource providers, and users cannot 
combine arbitrary resources in different timeslots to compose 
a workflow. Tan et al. [2] proposed a stable continuous 
double auction (SCDA). This auction is not truly 
combinational; i.e., users need to bid on multiple auctions in 
order to receive multiple resources. Amar et al. [3] illustrated 
a comprehensive grid market model including a futures 
market and a centralized/decentralized spot market. However, 
they did not discuss a model of the futures market. To the 
best of our knowledge, no previous work has studied a 
resource allocation mechanism that satisfies the requirements 
presented in II.A. 

Although a computing resource market has yet to be 
realized at the industrial level, electricity markets have been 
in practical operation for several years. For instance, Japan 
Electric Power Exchange (JPEX) started operations in 2005. 
According to ref. [4], it provides three markets: (1) a spot 
market for trading the electricity on the next day, (2) a 
forward market for trading the electricity to be delivered 
weeks or months ahead, and (3) a forward bulletin board 
market for free transactions. Since electricity and computing 
services have similar natures (i.e. they cannot be stored), we 
regard the electricity market as a preceding model to the 
computing services market. However, the electricity market 
model cannot be directly applied to cloud computing because 
the electricity is almost uniform, whereas computing services 
vary in type and quality. 

The stock market deals with a variety of stocks, which 
can be stored and resold, unlike a computing service. The 
studies on dealing strategies and mechanism design have 
used multi-agent simulations. U-Mart [5] is a test bed for 
multi-agent simulations of the stock market, and it is 
especially focused on futures trading. It allows machine 
agents and human agents to trade future stocks at the same 
time. We are developing our evaluation framework to be 
compatible with the U-Mart system so that human agents can 
participate in experiments. 
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III. MARKET MECHANISM 
Figure 1 shows a cloud computing environment with the 

proposed mechanism, the Cloud Service Exchange. There is 
a centralized exchange including the forward market and the 
spot market, where service providers sell their services and 
users buy these services to execute their tasks. The 
participants interact with the spot market and the forward 
market independently. Each service is represented as a 
uniform order and traded independently in the market, 
regardless of its abstraction level. A broker is one who buys 
many kinds of primitive resources in the market, composes 
them into a sophisticated application, and sells that 
application in the market. 

We assume that the services satisfy the following 
conditions: 

• The quantity of a service can be measured in 
arbitrary units (e.g. 60 requests/second of service A). 
We shall use arbitrary "units" in the rest of this paper. 

• A service can be divided into an arbitrary fraction 
(e.g. a resource of 60 units is divided into 20 units 
for user 1 and 40 units for user 2). 

• A task can be divided into sub-tasks and executed on 
multiple services (e.g. a task of 40 units runs on a 
service of 10 units from provider 1 and that of 30 
units from provider 2). 

• A task can be migrated at runtime (e.g. a task 
running on a service from provider 1 can be 
suspended and resumed on that from provider 2). 

We omit the physical parameters (e.g. network distance 
between co-allocated services) for the sake of simplicity. 
Obviously, these physical matters affect the cost and the 
runtime in reality. Such a physical cost can be included in the 
service price or traded as a separate service. 

The proposed mechanism has three main properties: (1) 
the bidding language defines the protocol between the 
participants and markets, (2) the allocation scheme 
determines the assignment of services, and (3) the pricing 
scheme fixes prices at which the participants trade their 
services. Below, we present the details of the properties in 
the forward and spot markets. 

A. Forward Market 
The forward market deals with long-term advance 

reservations by means of the clearinghouse auction. It 
performs matchmaking between sell orders and buy orders 
periodically. A provider/user sells/buys a service by the 
timeslot, and the timeslot is traded in the market. For 
instance, a user buying a service with the timeslot of 1 pm – 
2 pm utilizes the service from 1 pm to 2 pm. The market 
accepts orders from providers/users any time and performs 
matchmaking periodically, e.g. every 24 hours. 

1) Bidding Language 
The bidding language describes the information in the 

orders from participants to the market.  
A buy order from a user includes the following 

information: 
• Valuation: the maximum price at which the user 

wishes to buy the bundle of services 

•  A bundle of arbitrarily services, each of which 
includes: 
o Name: the kind of service 
o Quantity: the amount (throughput) of the service 
o Earliest Time: the earliest acceptable timeslot to 

start the task 
o Latest Time: the latest acceptable timeslot to 

finish the task 
o Runtime: the number of timeslots to be allocated 

between the earliest and the latest time1 
Note that the valuation is given to a bundle of services, 

not to each discrete service. In this way, the user can express 
requirements for receiving multiple services, e.g. co-
allocation or workflow. If the market cannot reserve all the 
services in a bundle at once, the user receives nothing at all. 

A sell order from a provider includes the following 
information: 

• Valuation: the minimum price per timeslot at which 
the provider wishes to sell the service 

• Name: the kind of service 
• Quantity: the amount (throughput) of the service 
• Earliest Time: the timeslot to begin the service 
• Latest Time: the timeslot to end the service 
Note that a sell order includes only one service. The 

provider can make separate orders for different services. If a 
provider wishes to sell certain low-level services at the same 
time, he can do so by bundling them into a single high-level 
service. 

Formulation: Let ܯ ൌ ൛݉ଵ,… ,݉|ெ|ൟ , ݉௜ ൌ ሼݒ௜, ௜ܵሽ  be 
sell orders; ܰ ൌ ൛݊ଵ,… , ݊|ே|ൟ, ௝݊  ൌ ൛ݒ௝, ௝ܵൟ be buy orders; 
and ܩ ൌ ൛ ଵ݃, … , ݃|ீ|ൟ  be services; 1 ൑ ݐ ൑ ܶ  be timeslots; 
and ݒ௜ and ݒ௝ be valuation. A buy order is formulated as 

௝ܱ  ൌ ൛൫݃௞, ,௝,௞ݍ ௝ܽ,௞, ௝݀,௞, ௝݈,௞൯ ห 1 ൑ ݇ ൑  ൟ|ܩ|
where ݍ௝,௞  is the quantity of service ݃௞ , ௝ܽ,௞  is the earliest 
time, ௝݀,௞ is the latest time and ௝݈,௞ is the runtime. Similarly, 
a sell order is formulated as 

௜ܱ ൌ ൫݃௞, ,௜,௞ݍ ܽ௜,௞, ݀௜,௞൯ ;  1 ൑ ݇ ൑   .|ܩ|
2) Allocation Scheme 

The allocation scheme determines the winners of an 
auction, or allocation of services to users. We formulate the 
winner determination problem into a linear mixed integer 
program (MIP) and try to strictly optimize the allocation. 
Here, we introduce four decision variables: ݑ௝ א ሼ0,1ሽ 
denotes whether the buyer ௝݊ gets all services in the bundle;  
௝,௞ݔ א ሼ0,1ሽ denotes whether the service ݃௞  is allocated to 
the buyer ௝݊; ݖ௝,௞,௧ א ሼ0,1ሽ denotes whether the service ݃௞ is 
allocated to the buyer ௝݊  in the timeslot ݐ ; 0 ൑ ௜,௝,௞,௧ݕ ൑ 1 
denotes the percentage of the service allocated to the buyer 
௝݊  in the timeslot t, where the service ݃௞  is owned by the 

seller ݉௜. The solver then maximizes the total welfare ݓ by 
solving the MIP: 

 

                                                           
1 If ሺܴ݁݉݅ݐ݊ݑ ൏ ݁݉݅ܶ ݐݏ݁ݐܽܮ െ  a task will be ,(݁݉݅ܶ ݐݏ݈݁݅ݎܽܧ
suspended and resumed at runtime. 
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Maximize 

ݓ ൌ෍ݒ௝ݑ௝

|ே|

௝ୀଵ

 െ ෍෍෍෍ݒ௜ݕ௜,௝,௞,௧

்

௧ୀଵ

|ீ|

௞ୀଵ

|ெ|

௝ୀଵ

|ே|

௜ୀଵ

 (1)

s.t. 

෍ݔ௝,௞

|ீ|

௞ୀଵ

െ  ௝ݑ |ܩ| ൌ 0,   

1 ൑ ݆ ൑ |ܰ|

(2)

෍ݖ௝,௞,௧

்

௧ୀଵ

െ ௝݈,௞ ݔ௝,௞ ൌ 0, 

 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ |ܩ|
(3)

෍ݕ௜,௝,௞,௧

|ே|

௝ୀଵ

൑ 1, 

ൌ 1 ൑ ݅ ൑ ,|ܯ| 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ

(4)

௝,௞,௧ݖ௝,௞ݍ െ෍ݍ௜,௞ݕ௜,௝,௞,௧

|ெ|

௜ୀଵ

ൌ 0, 

 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ

(5)

൫ ௝ܽ,௞ െ ௝,௞,௧ݖ൯ݐ ൑ 0, 
 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ

(6)

൫ݐ െ ௝݀,௞൯ݖ௝,௞,௧ ൑ 0, 
 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ 

(7)

൫ܽ௜,௞ െ ௜,௝,௞,௧ݕ൯෍ݐ

|ே|

௝ୀଵ

൑ 0, 

ൌ 1 ൑ ݅ ൑ ,|ܯ| 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ

(8)

൫ݐ െ ݀௜,௞൯෍ݕ௜,௝,௞,௧

|ே|

௝ୀଵ

൑ 0, 

1 ൑ ݅ ൑ ,|ܯ| 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ

(9)

௝ݑ א ሼ0,1ሽ, 
 1 ൑ ݆ ൑ |ܰ| (10)

௝,௞ݔ א ሼ0,1ሽ, 
 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ |ܩ| (11)

௝,௞,௧ݖ א ሼ0,1ሽ, 
 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ 

(12)

0 ൑ ௜,௝,௞,௧ݕ ൑ 1, 
 1 ൑ ݅ ൑ ,|ܯ| 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ

(13)

 
3) Pricing Scheme 

A price earned/paid by a provider/user for an allocation is 
decided by the pricing scheme. The pricing scheme should 
be budget balanced and individually rational in order to 

sustain the market and give providers/users incentives to 
participate in the market. The former indicates that total 
earnings of providers should equal the total payment of users, 
and the latter means a provider/user earns/pays no less/more 
than their valuation. 

We employ the K-pricing scheme [6] to meet the above 
requirements. The basic idea of K-pricing is to distribute the 
welfare, which is the difference between the user's valuation 
and the provider's valuation. It is straightforward in single-
service auctions. In our multiple-service combinational 
auctions, however, we can neither calculate the discrete price 
for each service nor for each timeslot of a user's order. Here, 
we propose the following algorithm to determine the price. 

We assume ݑ௝ ൌ 1, since the only orders that succeed 
need pricing. Let 0 ൑ ܭ ൑ 1 be an arbitrary fraction. For a 
buy order  ௝݊, let  ݓ௝ be the welfare corresponding to   ௝݊, ݌௝ 
be the price, ݌௜,௝  be the price earned by the provider ݅ , 
and ݎ௜,௝,௞,௧ be the proportion of the provider  ݅ 's valuation to 
all the providers' valuation of the service ݇  in timeslot  ݐ . 
They are formulated as 

 

௝ݓ ൌ ௝ݒ െ ෍෍෍ݒ௜ݕ௜,௝,௞,௧

்

௧ୀଵ

|ீ|

௞ୀଵ

|ே|

௜ୀଵ

 , (14)

௝݌ ൌ ௝ݒ െ ሺ1 െ ௝ , (15)ݓሻܭ

௜,௝,௞,௧ݎ ൌ
௜,௝,௞,௧ݕ௜ݒ

∑ ∑ ∑ ௜,௝,௞,௧்ݕ௜ݒ
௧ୀଵ

|ீ|
௞ୀଵ

|ே|
௜ୀଵ

 , (16)

௜,௝݌ ൌ ෍෍ݒ௜ݕ௜,௝,௞,௧

்

௧ୀଵ

|ீ|

௞ୀଵ

൅ ௜,௝,௞,௧ݎ௝ݓ෍෍ܭ

்

௧ୀଵ

|ீ|

௞ୀଵ

. (17)

 
Consequently, the provider ݅’s total earning ݌௜ is 
 

௜݌ ൌ෍෍෍ݒ௜ݕ௜,௝,௞,௧

்

௧ୀଵ

|ீ|

୩ୀଵ

|ெ|

௝ୀଵ

൅ ௜,௝,௞,௧ݎ௝ݓ෍෍෍ܭ

்

௧ୀଵ

|ீ|

௞ୀଵ

|ெ|

௝ୀଵ

. (18)

 
The incentive compatibility, which means that the 

participant's dominant strategy is to reveal his/her valuation 
truthfully, is another important aspect of the pricing scheme. 
However, these three aspects —the budget balance, the 
individual rationality, and the incentive compatibility— 
cannot be fulfilled at the same time [7]. In this paper, we 
focus on the first two aspects, the budget balance and the 
individual rationality, because we consider non-truthful 
bidding should also be allowed as the participant’s strategy. 

B. Spot Market 
The spot market deals with short-term allocations. It 

deals with resources in the immediate timeslot. The bidding 
language, the allocation scheme, and the pricing scheme are 
almost the same as those of the forward market except that 
they have only one timeslot. 
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IV. SIMULATOR 
We are developing a simulator system, named W-Mart, 

to explore market behavior by means of multi-agent 
simulations. The overall architecture of W-Mart is designed 
after U-Mart [5], as shown in figure 2.  

U-Mart is a client-server system written in Java, 
including a dedicated text-based protocol over TCP/IP. The 
market server accepts sell/buy orders from the client agents, 
executes pricing and contracts, and manages the asset 
accounts. The client agents obtain the market information 
(e.g. current/historical prices) and make the orders depending 
on their own strategies. The agent can be either a machine or 
a human. 

The original U-Mart system was specialized to trade a 
stock index futures of a given series of spot prices. It had a 
single instance of the futures market with hard-coded itayose 
algorithm [8] to perform matchmaking and pricing. Our W-
Mart system, in contrast, has two market instances for the 
forward/spot markets run on separate threads, each of which 
is designed to trade arbitrary combinations of multiple goods. 
The protocol has been extended to support multiple markets 
and combinational orders. We have implemented the 
proposed matchmaking and pricing algorithm on top of 
MACE [1], which is a sophisticated framework for 
combinational auctions. This mechanism translates the 
orders into a mixed integer program (MIP) and solves it with 
a general-purpose LP/MIP solver, which can be CPLEX [9] 
or lp_solve [10]. 

V. EVALUATION 
We carried out a preliminary evaluation to study the 

feasibility of the proposed mechanism. Currently no public 
marketplace for cloud services is in operation, and hence, no 
empirical guideline on evaluating a market mechanism has 
been established. Thus, we have two points of view in our 
preliminary evaluation: (1) verifying the combinational 
allocation by the market and (2) estimating the scalability of 
the market. 

A. Verifing the Combinational Allocation 
The proposed mechanism enables combinational 

allocations for workflows and co-allocations. In this section, 
we investigate two simple cases to see how combinational 
allocations are achieved in the forward market and in the 
spot market. 

1) Experimental Settings 
For the forward market, we assume four timeslots (i.e. 

from zero o’clock to four o’clock). Two kinds of services are 
offered by three providers: provider 1 offers service A; 
provider 2 and provider 3 offer service B with different 
prices. Two users require these services in different manners: 
user 1 needs services A and B simultaneously for co-
allocation; user 2 needs services A and B sequentially for a 
workflow. The quantities, valuations and start/finish times of 
each service are shown in Figure 3. The required runtime of 
the task equals ሺfinish time  െ start timeሻ , which means 
that no interruption occurs.  

 
Figure 2.  Simulator architecture 
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Only one timeslot is available for the spot market. The 
providers and services are the same as those of the forward 
market. User 1 and user 2 require the same combination of 
services A and B, but the valuation of user 1 is higher than 
that of user 2.  

Table I shows the formulations and table III shows the 
hardware and software configuration to run the simulator. 

2) Results 
Figure 3 and 4 respectively show the orders and the 

allocation results in the forward market. These results show 
that orders from all users are fulfilled. In particular, the order 
from user 2 consists of two tasks in a workflow, a task of 
service A and one of service B; and the services are properly 
allocated to the tasks. These results indicate that the 
proposed mechanism using the combinational auction 
properly allocated services to workflow tasks. The previous 
study was not able to do so [1]. Note that provider 3 won the 
competition to sell service B for user 1 in timeslot 2 because 

he priced it lower than provider 2 did and therefore generated 
more total welfare.  

Figure 5 and 6 show orders and allocation results in the 
spot market. The supply of service B is less than the demand. 
As a result, user 2 lost the competition and bought nothing. 
Indeed provider 1 still has enough capacity for service A, but 
it is not allocated to user 2 since it does not fulfill the 
combinational order of user 2. 

 
Figure 5.  Combinational orders in the spot market 

 

 
Figure 6.  Combinational allocation in the spot market 
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Figure 3.  Combinational orders in the forward market 

 

 
Figure 4.  Combinational allocation in the forward market 
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TABLE I.  SIMULATION PARAMETERS (A) 

Number of timeslots ܶ ൌ 4  
Number of users |ܰ| ൌ 2  

Number of providers |ܯ| ൌ 3  
Number of services |ܩ| ൌ 2  

Number of combined 
services 

ݒݎݏ݊ ൌ 2  

Length of a task 1 ൑ ݈݁݊ ൑ 4  ݈݁݊ ൌ 1  for 
spot market 

Start time of a task 0 ൑ ݐݐݏ ൑ ܶ െ ݐݐݏ  1 ൌ 0  for 
spot market 
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B. Estimating Scalability 
Mixed integer programming tends to consume a long 

time when faced with a large problem. In this section, we 
evaluate the scalability of the proposed mechanism in order 
to confirm its practicality in a cloud computing environment. 
The evaluation assesses the impact of the number of users 
and timeslots on the runtime. 

1) Experimental Settings 
We carried out the simulation by generating a set of 

orders and running the market mechanism. Since the 
evaluation aims to assess the scalability, we assume that the 
rounds are independent; i.e., the result of matchmaking of 
orders does not affect the next orders. 

The number of timeslots has a range of {1, 24, 120, 240, 
480, 720}. The case of #slots ൌ 1 represents trading in the 
spot market, and other cases represent trading in the forward 
market. The actual time span covered by timeslots depends 
on the length of the timeslot. For example,  #slots ൌ 720 
represents one month with a timeslot of one hour, or 
represents one year with a timeslot of 12 hours. We refer to 
the example of the Japanese electricity exchange for the time 

Figure 7.  Sell orders in the simulation Figure 8.  Buy orders in the simulation 

 

Figure 9.  Overall runtime 

 

Figure 10.  Solver runtime 
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TABLE II.  SIMULATION PARAMETERS (B) 

Number of timeslots ܶ א ሼ1, 24, 120, 240, 480, 720ሽ
Number of users |ܰ| א ሼ100, 400, 700, 1000ሽ

Number of providers |ܯ| א ሼ10ሽ  
Number of services |ܩ| א ሼ10ሽ  

Number of combined 
services 

1 ൑ ݒݎݏ݊ ൑ 5 , uniform distribution 

Length of a task 1 ൑ ݈݁݊ ൑ 12  , 
uniform distribution  

݈݁݊ ൌ 1  for 
spot market 

Start time of a task 0 ൑ ݐݐݏ ൑ ܶ െ 12  , 
uniform distribution 

ݐݐݏ ൌ 0  for 
spot market 

Selling quantity 100 units 
Buying quantity 1 unit for each service 
Seller’s valuation $1 per timeslot per unit 
Buyer’s valuation $3 per timeslot per unit 

Number of simulation runs 10 times 

TABLE III.  SIMULATION ENVIRONMENT 

CPU AMD Opteron 8218 HE (2.6 GHz)  16 cores 
RAM 32GB 

OS CentOS 5.1 (Linux kernel 2.6.18-92.el5) 
JRE Sun Java SE 1.6.0_11 

Solver ILOG CPLEX 11.200 
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granularity. We consider this extent of granularity to be 
applicable to the cloud computing environment. 

The number of providers is set to 10, while the number of 
users has a range of {100, 400, 700, 1000}. Figure 7 shows 
the sell orders of the providers. Each provider offers a unique 
service and all the services are available anytime. Figure 8 
shows the buy orders of the users. Each user requires one to 
five services chosen randomly out of 10 services to be co-
allocated. The task length varies from one to 12 timeslots. 
The time margin between ordering and starting a task varies 
from zero to ሺ#slots െ 12ሻ  timeslots. This setting is 
intended to reflect the current situation of cloud computing, 
where some big companies provide their own services and 
many small consumers use services to execute their tasks. 

Other parameters are set constant for the sake of 
simplicity. The quantity (throughput) of a service is 100 units 
for selling and one unit for buying. The valuation of a service 
is $1/ሺslot · unitሻ for selling and $3/ሺslot · unitሻ for buying. 
This setting means a loose supply-demand situation with no 
price competition, where the buyer's requirements are likely 
to be fulfilled. Table II shows the formulations. The 
simulation was conducted 10 times for each setting with 
different random seeds, and the average results are presented. 
The hardware and software configuration is identical. 

2) Results 
For the forward market, the desirable matchmaking time 

is less than the length of a timeslot because the allocation for 
the next timeslot must be determined within the current 
timeslot. For the spot market, it is preferable to finish the 
matchmaking as soon as possible, i.e. within one minute. 

Figure 9 shows the overall runtime consumed by the 
market mechanism to perform a round of matchmaking. For 
the forward market, it takes more than five minutes with 720 
timeslots and 1000 users. However, it is still shorter than the 
length of a timeslot, which we assume to be one hour or 12 
hours. The result for the spot market is shown as "Number of 
Timeslots = 1". For the spot market, it takes less than one 
second. The overall runtime is essentially proportional to 
|ܯ| ൈ |ܰ| ൈ |ܩ| ൈ ܶ, which is the number of iterations to 
build the model and parse the results. 

Figure 10 shows the runtime of the solver, i.e. excluding 
the time to build the model, etc. It takes less than 3 seconds 
in the worst case. The solver runtime is mainly affected by 
the difficulty to find the optimal solution, which is more 
sensitive to the number of conflicted orders than the number 
of timeslots.  

The simulation results show that the proposed 
mechanism will scale beyond 720 timeslots, 1000 users, 10 
providers and 10 services. In addition, the current 
implementation of the market mechanism is not intended to 
maximize the speed; it leaves room for improvement. 
Consequently, we conclude that the proposed mechanism 
will work practically with probable settings in the cloud 
computing environment. 

VI. CONCLUSIONS AND FUTURE WORK 
We described a market-based resource allocation for 

cloud computing environments. It allows users to order an 
arbitrary combination of services from different providers. 

The forward market and the spot market run independently 
to make predictable and flexible allocations at the same time. 
The preliminary evaluation showed that the proposed 
mechanism worked with a realistic overhead under the 
probable settings of a cloud computing environment.  

Our goal is to design an efficient public marketplace for 
cloud computing environments. We are interested in the 
autonomous behavior of the market price, particularly the 
interaction between the forward market and the spot market, 
where the forward price is expected to be a forecast of the 
spot price. An understanding of such behavior will help us to 
design and operate the cloud marketplace. We will 
investigate the market behavior by means of multi-agent 
simulations. 

We are also interested in applying a market mechanism 
to enforce Green IT solutions. Our market model is aimed 
only at maximizing the total welfare in an economic sense, 
but this is not necessarily a desirable goal in an ecologic 
sense. Our future work will thus include optimization of 
energy consumption by means of a market mechanism. 
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