
Applying Double-sided Combinational Auctions
to Resource Allocation in Cloud Computing

Ikki Fujiwara
The Graduate University for Advanced Studies

(SOKENDAI)
Tokyo, Japan
ikki@nii.ac.jp

Kento Aida
National Institute of Informatics/
Tokyo Institute of Technology

Tokyo, Japan
aida@nii.ac.jp

Isao Ono
Tokyo Institute of Technology

Kanagawa, Japan
isao@dis.titech.ac.jp

Abstract— We believe that a market-based resource allocation
will be effective in a cloud computing environment where
resources are virtualized and delivered to users as services. We
propose such a market mechanism to allocate services to
participants efficiently. The mechanism enables users (1) to
order a combination of services for workflows and co-
allocations and (2) to reserve future/current services in a
forward/spot market. The evaluation shows that the
mechanism works well in probable setting.

Keywords- cloud computing, web services, market, auction,
scheduling, optimization, linear programming

I. INTRODUCTION
Cloud computing is an emerging paradigm for distributed

computing environments. The computing resources, either
software or hardware, are virtualized and allocated as
services from providers to users. QoS is an important issue
for industrial users. Advanced features related to QoS
include performance guarantee of service, co-allocation of
multiple services, and support of a workflow involving
different services.

We envision that providers in the near future will
compete to offer cloud computing services and that

Figure 1. Overview of the Cloud Service Exchange

The Cloud Service Exchange

provider1

has service A

needs service A and B
for a workflow
in the future

provider2

has service B

provider3

has service B
cheaper than 2's

user2 user3

needs service A and B
right now

selling order selling order

buying
order

Forward Market Spot Market

user4

needs service A and B
right now

needs service A and B
for a co‐allocation

in the future

user1

buying
order

buying
order

buying
order

selling
order

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.93

7

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.93

7

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.93

7

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.93

7

thousands of users will compete to receive such services to
run complex tasks with guaranteed QoS and limited budgets.
However, an efficient allocation mechanism among service
providers and users has yet to be devised.

In this paper, we propose a market-based resource
allocation mechanism that allows participants to trade their
services by means of a double-sided combinational auction.
A market mechanism may be better able to cope with
situations where large numbers of participants trade different
services. The proposed mechanism enables participants to
trade future and current services in the forward market and
the spot market, respectively.

The rest of the paper is organized as follows. Section II
describes the model of the cloud computing environment and
the related work. Section III presents the proposed market
mechanism. Section IV describes our simulator for the
proposed mechanism, and Section V discusses the
preliminary evaluation. Section VI summarizes our
contributions and outlines future work.

II. MODEL AND RELATED WORK

A. Cloud Computing Environment Model
We assume the cloud computing environment includes

service providers, users, and a market. The service providers
and the users sell/buy different computing resources
abstracted as services through the market. The services vary
in abstraction level, from primitive resources (e.g. CPU
cycles, storage capacity, and network bandwidth) to
sophisticated applications (e.g. customer behavior analysis,
structural mechanics simulations, and pay-check
calculations). The users get one or more services together to
meet their business requirements. Their requirements vary in
regularity from periodical, scheduled tasks to temporal,
immediate tasks. For instance, a user may run a financial risk
evaluation program using 80 CPUs and 16GB of storage for
4 hours after midnight on every day.

The resource allocation mechanism needs to satisfy the
service providers and the users. We define four requirements,
and our goal is to devise the market-based resource
allocation mechanism that satisfies them.

1) Economic efficiency: When the allocation is
economically efficient, it is impossible to increase a
participant's welfare without decreasing another participant's
welfare; i.e. there is no wasted resource. Maximizing the
total welfare is a sufficient condition for economic
efficiency. The proposed mechanism employs mixed integer
programming to strictly maximize the total welfare.

2) Predictability and flexibility: Since supply and
demand in cloud computing environment changes
dynamically over time, users may desire a predictable
allocation in advance and a adjustment at runtime. The
proposed mechanism installs two markets to support them: a
forward market for advance reservations and a spot market
for immediate reservations.

3) Combination for a workflow: Many cloud computing
applications utilize several services in a specific order to

organize a workflow. The user therefore needs to bundle
multiple services with different start/finish times. The
proposed mechanism allow users to express complementary
requirements for an arbitrary combination of services, in
order to support both workflows and co-allocations.

4) Double-side competition: To encourage a fair
exchange between resource providers (sellers) and users
(buyers), the prices should only depend on the supply-
demand conditions. The proposed mechanism is based on
the double-sided auction model [2] to give no advantage on
the seller's side or the buyer's side.

B. Related Work
Market-based resource allocation has been a hot topic in

grid literature for a decade. Schnizler et al. [1] introduced the
notion of using a double-sided combinational auction to
allocate grid resources. However, in this scheme, resources
are bundled by the resource providers, and users cannot
combine arbitrary resources in different timeslots to compose
a workflow. Tan et al. [2] proposed a stable continuous
double auction (SCDA). This auction is not truly
combinational; i.e., users need to bid on multiple auctions in
order to receive multiple resources. Amar et al. [3] illustrated
a comprehensive grid market model including a futures
market and a centralized/decentralized spot market. However,
they did not discuss a model of the futures market. To the
best of our knowledge, no previous work has studied a
resource allocation mechanism that satisfies the requirements
presented in II.A.

Although a computing resource market has yet to be
realized at the industrial level, electricity markets have been
in practical operation for several years. For instance, Japan
Electric Power Exchange (JPEX) started operations in 2005.
According to ref. [4], it provides three markets: (1) a spot
market for trading the electricity on the next day, (2) a
forward market for trading the electricity to be delivered
weeks or months ahead, and (3) a forward bulletin board
market for free transactions. Since electricity and computing
services have similar natures (i.e. they cannot be stored), we
regard the electricity market as a preceding model to the
computing services market. However, the electricity market
model cannot be directly applied to cloud computing because
the electricity is almost uniform, whereas computing services
vary in type and quality.

The stock market deals with a variety of stocks, which
can be stored and resold, unlike a computing service. The
studies on dealing strategies and mechanism design have
used multi-agent simulations. U-Mart [5] is a test bed for
multi-agent simulations of the stock market, and it is
especially focused on futures trading. It allows machine
agents and human agents to trade future stocks at the same
time. We are developing our evaluation framework to be
compatible with the U-Mart system so that human agents can
participate in experiments.

8888

III. MARKET MECHANISM
Figure 1 shows a cloud computing environment with the

proposed mechanism, the Cloud Service Exchange. There is
a centralized exchange including the forward market and the
spot market, where service providers sell their services and
users buy these services to execute their tasks. The
participants interact with the spot market and the forward
market independently. Each service is represented as a
uniform order and traded independently in the market,
regardless of its abstraction level. A broker is one who buys
many kinds of primitive resources in the market, composes
them into a sophisticated application, and sells that
application in the market.

We assume that the services satisfy the following
conditions:

• The quantity of a service can be measured in
arbitrary units (e.g. 60 requests/second of service A).
We shall use arbitrary "units" in the rest of this paper.

• A service can be divided into an arbitrary fraction
(e.g. a resource of 60 units is divided into 20 units
for user 1 and 40 units for user 2).

• A task can be divided into sub-tasks and executed on
multiple services (e.g. a task of 40 units runs on a
service of 10 units from provider 1 and that of 30
units from provider 2).

• A task can be migrated at runtime (e.g. a task
running on a service from provider 1 can be
suspended and resumed on that from provider 2).

We omit the physical parameters (e.g. network distance
between co-allocated services) for the sake of simplicity.
Obviously, these physical matters affect the cost and the
runtime in reality. Such a physical cost can be included in the
service price or traded as a separate service.

The proposed mechanism has three main properties: (1)
the bidding language defines the protocol between the
participants and markets, (2) the allocation scheme
determines the assignment of services, and (3) the pricing
scheme fixes prices at which the participants trade their
services. Below, we present the details of the properties in
the forward and spot markets.

A. Forward Market
The forward market deals with long-term advance

reservations by means of the clearinghouse auction. It
performs matchmaking between sell orders and buy orders
periodically. A provider/user sells/buys a service by the
timeslot, and the timeslot is traded in the market. For
instance, a user buying a service with the timeslot of 1 pm –
2 pm utilizes the service from 1 pm to 2 pm. The market
accepts orders from providers/users any time and performs
matchmaking periodically, e.g. every 24 hours.

1) Bidding Language
The bidding language describes the information in the

orders from participants to the market.
A buy order from a user includes the following

information:
• Valuation: the maximum price at which the user

wishes to buy the bundle of services

• A bundle of arbitrarily services, each of which
includes:
o Name: the kind of service
o Quantity: the amount (throughput) of the service
o Earliest Time: the earliest acceptable timeslot to

start the task
o Latest Time: the latest acceptable timeslot to

finish the task
o Runtime: the number of timeslots to be allocated

between the earliest and the latest time1
Note that the valuation is given to a bundle of services,

not to each discrete service. In this way, the user can express
requirements for receiving multiple services, e.g. co-
allocation or workflow. If the market cannot reserve all the
services in a bundle at once, the user receives nothing at all.

A sell order from a provider includes the following
information:

• Valuation: the minimum price per timeslot at which
the provider wishes to sell the service

• Name: the kind of service
• Quantity: the amount (throughput) of the service
• Earliest Time: the timeslot to begin the service
• Latest Time: the timeslot to end the service
Note that a sell order includes only one service. The

provider can make separate orders for different services. If a
provider wishes to sell certain low-level services at the same
time, he can do so by bundling them into a single high-level
service.

Formulation: Let ܯ ൌ ൛݉ଵ,… ,݉|ெ|ൟ , ݉௜ ൌ ሼݒ௜, ௜ܵሽ be
sell orders; ܰ ൌ ൛݊ଵ,… , ݊|ே|ൟ, ௝݊ ൌ ൛ݒ௝, ௝ܵൟ be buy orders;
and ܩ ൌ ൛ ଵ݃, … , ݃|ீ|ൟ be services; 1 ൑ ݐ ൑ ܶ be timeslots;
and ݒ௜ and ݒ௝ be valuation. A buy order is formulated as

௝ܱ ൌ ൛൫݃௞, ,௝,௞ݍ ௝ܽ,௞, ௝݀,௞, ௝݈,௞൯ ห 1 ൑ ݇ ൑ ൟ|ܩ|
where ݍ௝,௞ is the quantity of service ݃௞ , ௝ܽ,௞ is the earliest
time, ௝݀,௞ is the latest time and ௝݈,௞ is the runtime. Similarly,
a sell order is formulated as

௜ܱ ൌ ൫݃௞, ,௜,௞ݍ ܽ௜,௞, ݀௜,௞൯ ; 1 ൑ ݇ ൑ .|ܩ|
2) Allocation Scheme

The allocation scheme determines the winners of an
auction, or allocation of services to users. We formulate the
winner determination problem into a linear mixed integer
program (MIP) and try to strictly optimize the allocation.
Here, we introduce four decision variables: ݑ௝ א ሼ0,1ሽ
denotes whether the buyer ௝݊ gets all services in the bundle;
௝,௞ݔ א ሼ0,1ሽ denotes whether the service ݃௞ is allocated to
the buyer ௝݊; ݖ௝,௞,௧ א ሼ0,1ሽ denotes whether the service ݃௞ is
allocated to the buyer ௝݊ in the timeslot ݐ ; 0 ൑ ௜,௝,௞,௧ݕ ൑ 1
denotes the percentage of the service allocated to the buyer
௝݊ in the timeslot t, where the service ݃௞ is owned by the

seller ݉௜. The solver then maximizes the total welfare ݓ by
solving the MIP:

1 If ሺܴ݁݉݅ݐ݊ݑ ൏ ݁݉݅ܶ ݐݏ݁ݐܽܮ െ a task will be ,(݁݉݅ܶ ݐݏ݈݁݅ݎܽܧ
suspended and resumed at runtime.

9999

Maximize

ݓ ൌ෍ݒ௝ݑ௝

|ே|

௝ୀଵ

 െ ෍෍෍෍ݒ௜ݕ௜,௝,௞,௧

்

௧ୀଵ

|ீ|

௞ୀଵ

|ெ|

௝ୀଵ

|ே|

௜ୀଵ

 (1)

s.t.

෍ݔ௝,௞

|ீ|

௞ୀଵ

െ ௝ݑ |ܩ| ൌ 0,

1 ൑ ݆ ൑ |ܰ|

(2)

෍ݖ௝,௞,௧

்

௧ୀଵ

െ ௝݈,௞ ݔ௝,௞ ൌ 0,

 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ |ܩ|
(3)

෍ݕ௜,௝,௞,௧

|ே|

௝ୀଵ

൑ 1,

ൌ 1 ൑ ݅ ൑ ,|ܯ| 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ

(4)

௝,௞,௧ݖ௝,௞ݍ െ෍ݍ௜,௞ݕ௜,௝,௞,௧

|ெ|

௜ୀଵ

ൌ 0,

 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ

(5)

൫ ௝ܽ,௞ െ ௝,௞,௧ݖ൯ݐ ൑ 0,
 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ

(6)

൫ݐ െ ௝݀,௞൯ݖ௝,௞,௧ ൑ 0,
 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ

(7)

൫ܽ௜,௞ െ ௜,௝,௞,௧ݕ൯෍ݐ

|ே|

௝ୀଵ

൑ 0,

ൌ 1 ൑ ݅ ൑ ,|ܯ| 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ

(8)

൫ݐ െ ݀௜,௞൯෍ݕ௜,௝,௞,௧

|ே|

௝ୀଵ

൑ 0,

1 ൑ ݅ ൑ ,|ܯ| 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ

(9)

௝ݑ א ሼ0,1ሽ,
 1 ൑ ݆ ൑ |ܰ| (10)

௝,௞ݔ א ሼ0,1ሽ,
 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ |ܩ| (11)

௝,௞,௧ݖ א ሼ0,1ሽ,
 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ

(12)

0 ൑ ௜,௝,௞,௧ݕ ൑ 1,
 1 ൑ ݅ ൑ ,|ܯ| 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ

(13)

3) Pricing Scheme

A price earned/paid by a provider/user for an allocation is
decided by the pricing scheme. The pricing scheme should
be budget balanced and individually rational in order to

sustain the market and give providers/users incentives to
participate in the market. The former indicates that total
earnings of providers should equal the total payment of users,
and the latter means a provider/user earns/pays no less/more
than their valuation.

We employ the K-pricing scheme [6] to meet the above
requirements. The basic idea of K-pricing is to distribute the
welfare, which is the difference between the user's valuation
and the provider's valuation. It is straightforward in single-
service auctions. In our multiple-service combinational
auctions, however, we can neither calculate the discrete price
for each service nor for each timeslot of a user's order. Here,
we propose the following algorithm to determine the price.

We assume ݑ௝ ൌ 1, since the only orders that succeed
need pricing. Let 0 ൑ ܭ ൑ 1 be an arbitrary fraction. For a
buy order ௝݊, let ݓ௝ be the welfare corresponding to ௝݊, ݌௝
be the price, ݌௜,௝ be the price earned by the provider ݅ ,
and ݎ௜,௝,௞,௧ be the proportion of the provider ݅ 's valuation to
all the providers' valuation of the service ݇ in timeslot ݐ .
They are formulated as

௝ݓ ൌ ௝ݒ െ ෍෍෍ݒ௜ݕ௜,௝,௞,௧

்

௧ୀଵ

|ீ|

௞ୀଵ

|ே|

௜ୀଵ

 , (14)

௝݌ ൌ ௝ݒ െ ሺ1 െ ௝ , (15)ݓሻܭ

௜,௝,௞,௧ݎ ൌ
௜,௝,௞,௧ݕ௜ݒ

∑ ∑ ∑ ௜,௝,௞,௧்ݕ௜ݒ
௧ୀଵ

|ீ|
௞ୀଵ

|ே|
௜ୀଵ

 , (16)

௜,௝݌ ൌ ෍෍ݒ௜ݕ௜,௝,௞,௧

்

௧ୀଵ

|ீ|

௞ୀଵ

൅ ௜,௝,௞,௧ݎ௝ݓ෍෍ܭ

்

௧ୀଵ

|ீ|

௞ୀଵ

. (17)

Consequently, the provider ݅’s total earning ݌௜ is

௜݌ ൌ෍෍෍ݒ௜ݕ௜,௝,௞,௧

்

௧ୀଵ

|ீ|

୩ୀଵ

|ெ|

௝ୀଵ

൅ ௜,௝,௞,௧ݎ௝ݓ෍෍෍ܭ

்

௧ୀଵ

|ீ|

௞ୀଵ

|ெ|

௝ୀଵ

. (18)

The incentive compatibility, which means that the

participant's dominant strategy is to reveal his/her valuation
truthfully, is another important aspect of the pricing scheme.
However, these three aspects —the budget balance, the
individual rationality, and the incentive compatibility—
cannot be fulfilled at the same time [7]. In this paper, we
focus on the first two aspects, the budget balance and the
individual rationality, because we consider non-truthful
bidding should also be allowed as the participant’s strategy.

B. Spot Market
The spot market deals with short-term allocations. It

deals with resources in the immediate timeslot. The bidding
language, the allocation scheme, and the pricing scheme are
almost the same as those of the forward market except that
they have only one timeslot.

10101010

IV. SIMULATOR
We are developing a simulator system, named W-Mart,

to explore market behavior by means of multi-agent
simulations. The overall architecture of W-Mart is designed
after U-Mart [5], as shown in figure 2.

U-Mart is a client-server system written in Java,
including a dedicated text-based protocol over TCP/IP. The
market server accepts sell/buy orders from the client agents,
executes pricing and contracts, and manages the asset
accounts. The client agents obtain the market information
(e.g. current/historical prices) and make the orders depending
on their own strategies. The agent can be either a machine or
a human.

The original U-Mart system was specialized to trade a
stock index futures of a given series of spot prices. It had a
single instance of the futures market with hard-coded itayose
algorithm [8] to perform matchmaking and pricing. Our W-
Mart system, in contrast, has two market instances for the
forward/spot markets run on separate threads, each of which
is designed to trade arbitrary combinations of multiple goods.
The protocol has been extended to support multiple markets
and combinational orders. We have implemented the
proposed matchmaking and pricing algorithm on top of
MACE [1], which is a sophisticated framework for
combinational auctions. This mechanism translates the
orders into a mixed integer program (MIP) and solves it with
a general-purpose LP/MIP solver, which can be CPLEX [9]
or lp_solve [10].

V. EVALUATION
We carried out a preliminary evaluation to study the

feasibility of the proposed mechanism. Currently no public
marketplace for cloud services is in operation, and hence, no
empirical guideline on evaluating a market mechanism has
been established. Thus, we have two points of view in our
preliminary evaluation: (1) verifying the combinational
allocation by the market and (2) estimating the scalability of
the market.

A. Verifing the Combinational Allocation
The proposed mechanism enables combinational

allocations for workflows and co-allocations. In this section,
we investigate two simple cases to see how combinational
allocations are achieved in the forward market and in the
spot market.

1) Experimental Settings
For the forward market, we assume four timeslots (i.e.

from zero o’clock to four o’clock). Two kinds of services are
offered by three providers: provider 1 offers service A;
provider 2 and provider 3 offer service B with different
prices. Two users require these services in different manners:
user 1 needs services A and B simultaneously for co-
allocation; user 2 needs services A and B sequentially for a
workflow. The quantities, valuations and start/finish times of
each service are shown in Figure 3. The required runtime of
the task equals ሺfinish time െ start timeሻ , which means
that no interruption occurs.

Figure 2. Simulator architecture

W‐Mart Server

Machine Agents / Human Agents

de
si
gn
ed

 a
ft
er
 U
‐M

ar
t

Spot Market

MACE

match‐
making

Solver

pricing

Forward Market

MACE

match‐
making

Solver

pricing Price Info

Asset Account

Order Log

Orders / Market Info via Dedicated Protocol

11111111

Only one timeslot is available for the spot market. The
providers and services are the same as those of the forward
market. User 1 and user 2 require the same combination of
services A and B, but the valuation of user 1 is higher than
that of user 2.

Table I shows the formulations and table III shows the
hardware and software configuration to run the simulator.

2) Results
Figure 3 and 4 respectively show the orders and the

allocation results in the forward market. These results show
that orders from all users are fulfilled. In particular, the order
from user 2 consists of two tasks in a workflow, a task of
service A and one of service B; and the services are properly
allocated to the tasks. These results indicate that the
proposed mechanism using the combinational auction
properly allocated services to workflow tasks. The previous
study was not able to do so [1]. Note that provider 3 won the
competition to sell service B for user 1 in timeslot 2 because

he priced it lower than provider 2 did and therefore generated
more total welfare.

Figure 5 and 6 show orders and allocation results in the
spot market. The supply of service B is less than the demand.
As a result, user 2 lost the competition and bought nothing.
Indeed provider 1 still has enough capacity for service A, but
it is not allocated to user 2 since it does not fulfill the
combinational order of user 2.

Figure 5. Combinational orders in the spot market

Figure 6. Combinational allocation in the spot market

$60 for all

$40 for all

$9

$15

$20

user1
<buy>

user2
<buy>

provider3
<sell>

provider2
<sell>

provider1
<sell>

service A 40unit

service B 20unit

service A 20unit
service B 20unit

service B 20unit

service A 10unit
service B 30unit

pays $40.8

could not
get

earns
$17.1

earns
$14.2

earns
$9.48

user1
<buy>

user2
<buy>

provider3
<sell>

provider2
<sell>

provider1
<sell>

$9.48

$14.2

$17.1

Figure 3. Combinational orders in the forward market

Figure 4. Combinational allocation in the forward market

0h

$60 for all

$40 for all

$9/h

$15/h

$20/h

user1
<buy>

user2
<buy>

provider3
<sell>

provider2
<sell>

provider1
<sell>

1h 2h 3h 4h

service A 40unit

service B 30unit

service B 30unit

service A 10unit

service A 20unit
service B 20unit

service B 30unit

0h

pays
$58.0

pays
$32.0

earns
$18.2

earns
$20.7

earns
$51.1

user1
<buy>

user2
<buy>

provider3
<sell>

provider2
<sell>

provider1
<sell>

1h 2h 3h 4h

$6.67 $6.67

$10.36 $10.36

$6.21

$10.36
$6.67
$10.36

$12.00

$10.36

TABLE I. SIMULATION PARAMETERS (A)

Number of timeslots ܶ ൌ 4
Number of users |ܰ| ൌ 2

Number of providers |ܯ| ൌ 3
Number of services |ܩ| ൌ 2

Number of combined
services

ݒݎݏ݊ ൌ 2

Length of a task 1 ൑ ݈݁݊ ൑ 4 ݈݁݊ ൌ 1 for
spot market

Start time of a task 0 ൑ ݐݐݏ ൑ ܶ െ ݐݐݏ 1 ൌ 0 for
spot market

12121212

B. Estimating Scalability
Mixed integer programming tends to consume a long

time when faced with a large problem. In this section, we
evaluate the scalability of the proposed mechanism in order
to confirm its practicality in a cloud computing environment.
The evaluation assesses the impact of the number of users
and timeslots on the runtime.

1) Experimental Settings
We carried out the simulation by generating a set of

orders and running the market mechanism. Since the
evaluation aims to assess the scalability, we assume that the
rounds are independent; i.e., the result of matchmaking of
orders does not affect the next orders.

The number of timeslots has a range of {1, 24, 120, 240,
480, 720}. The case of #slots ൌ 1 represents trading in the
spot market, and other cases represent trading in the forward
market. The actual time span covered by timeslots depends
on the length of the timeslot. For example, #slots ൌ 720
represents one month with a timeslot of one hour, or
represents one year with a timeslot of 12 hours. We refer to
the example of the Japanese electricity exchange for the time

Figure 7. Sell orders in the simulation Figure 8. Buy orders in the simulation

Figure 9. Overall runtime

Figure 10. Solver runtime

t = 0

$1/slot•unit

$1/slot•unit

$1/slot•unit

provider4

provider2

provider1

t = T

service A : 100 units

service B : 100 units

service D : 100 units

$1/slot•unitprovider5 service E : 100 units

$1/slot•unitprovider6 service F : 100 units

$1/slot•unitprovider7 service G : 100 units

$1/slot•unitprovider8 service H : 100 units

$1/slot•unitprovider3 service C : 100 units

$1/slot•unitprovider9 service I : 100 units

$1/slot•unitprovider10 service J : 100 units

t = 0

$3/slot•unituser1

t = T

service X : 1 unit
service Y : 1 unit
service Z : 1 unit

1 to 5 services
co‐allocated

1 to 12 slots0 to (T‐12) slots

$3/slot•unituser2 service X : 1 unit

$3/slot•unituserN

service V : 1 unit
service W : 1 unit
service X : 1 unit
service Y : 1 unit
service Z : 1 unit

:: :

0

50

100

150

200

250

300

350

100 400 700 1000

O
ve
ra
ll
Ru

nt
im

e
[s
ec
]

Number of Users

720

480

240

120

24

1

Number of Timeslots

0

0.5

1

1.5

2

2.5

3

100 400 700 1000

So
lv
er
 R
un

ti
m
e
[s
ec
]

Number of Users

720

480

240

120

24

1

Number of Timeslots

TABLE II. SIMULATION PARAMETERS (B)

Number of timeslots ܶ א ሼ1, 24, 120, 240, 480, 720ሽ
Number of users |ܰ| א ሼ100, 400, 700, 1000ሽ

Number of providers |ܯ| א ሼ10ሽ
Number of services |ܩ| א ሼ10ሽ

Number of combined
services

1 ൑ ݒݎݏ݊ ൑ 5 , uniform distribution

Length of a task 1 ൑ ݈݁݊ ൑ 12 ,
uniform distribution

݈݁݊ ൌ 1 for
spot market

Start time of a task 0 ൑ ݐݐݏ ൑ ܶ െ 12 ,
uniform distribution

ݐݐݏ ൌ 0 for
spot market

Selling quantity 100 units
Buying quantity 1 unit for each service
Seller’s valuation $1 per timeslot per unit
Buyer’s valuation $3 per timeslot per unit

Number of simulation runs 10 times

TABLE III. SIMULATION ENVIRONMENT

CPU AMD Opteron 8218 HE (2.6 GHz) 16 cores
RAM 32GB

OS CentOS 5.1 (Linux kernel 2.6.18-92.el5)
JRE Sun Java SE 1.6.0_11

Solver ILOG CPLEX 11.200

13131313

granularity. We consider this extent of granularity to be
applicable to the cloud computing environment.

The number of providers is set to 10, while the number of
users has a range of {100, 400, 700, 1000}. Figure 7 shows
the sell orders of the providers. Each provider offers a unique
service and all the services are available anytime. Figure 8
shows the buy orders of the users. Each user requires one to
five services chosen randomly out of 10 services to be co-
allocated. The task length varies from one to 12 timeslots.
The time margin between ordering and starting a task varies
from zero to ሺ#slots െ 12ሻ timeslots. This setting is
intended to reflect the current situation of cloud computing,
where some big companies provide their own services and
many small consumers use services to execute their tasks.

Other parameters are set constant for the sake of
simplicity. The quantity (throughput) of a service is 100 units
for selling and one unit for buying. The valuation of a service
is $1/ሺslot · unitሻ for selling and $3/ሺslot · unitሻ for buying.
This setting means a loose supply-demand situation with no
price competition, where the buyer's requirements are likely
to be fulfilled. Table II shows the formulations. The
simulation was conducted 10 times for each setting with
different random seeds, and the average results are presented.
The hardware and software configuration is identical.

2) Results
For the forward market, the desirable matchmaking time

is less than the length of a timeslot because the allocation for
the next timeslot must be determined within the current
timeslot. For the spot market, it is preferable to finish the
matchmaking as soon as possible, i.e. within one minute.

Figure 9 shows the overall runtime consumed by the
market mechanism to perform a round of matchmaking. For
the forward market, it takes more than five minutes with 720
timeslots and 1000 users. However, it is still shorter than the
length of a timeslot, which we assume to be one hour or 12
hours. The result for the spot market is shown as "Number of
Timeslots = 1". For the spot market, it takes less than one
second. The overall runtime is essentially proportional to
|ܯ| ൈ |ܰ| ൈ |ܩ| ൈ ܶ, which is the number of iterations to
build the model and parse the results.

Figure 10 shows the runtime of the solver, i.e. excluding
the time to build the model, etc. It takes less than 3 seconds
in the worst case. The solver runtime is mainly affected by
the difficulty to find the optimal solution, which is more
sensitive to the number of conflicted orders than the number
of timeslots.

The simulation results show that the proposed
mechanism will scale beyond 720 timeslots, 1000 users, 10
providers and 10 services. In addition, the current
implementation of the market mechanism is not intended to
maximize the speed; it leaves room for improvement.
Consequently, we conclude that the proposed mechanism
will work practically with probable settings in the cloud
computing environment.

VI. CONCLUSIONS AND FUTURE WORK
We described a market-based resource allocation for

cloud computing environments. It allows users to order an
arbitrary combination of services from different providers.

The forward market and the spot market run independently
to make predictable and flexible allocations at the same time.
The preliminary evaluation showed that the proposed
mechanism worked with a realistic overhead under the
probable settings of a cloud computing environment.

Our goal is to design an efficient public marketplace for
cloud computing environments. We are interested in the
autonomous behavior of the market price, particularly the
interaction between the forward market and the spot market,
where the forward price is expected to be a forecast of the
spot price. An understanding of such behavior will help us to
design and operate the cloud marketplace. We will
investigate the market behavior by means of multi-agent
simulations.

We are also interested in applying a market mechanism
to enforce Green IT solutions. Our market model is aimed
only at maximizing the total welfare in an economic sense,
but this is not necessarily a desirable goal in an ecologic
sense. Our future work will thus include optimization of
energy consumption by means of a market mechanism.

REFERENCES
[1] B. Schnizler, D. Neumann, D. Veit, and D. Weinhardt, "Trading grid

services - a multi-attribute combinatorial approach," European
Journal of Operational Research, vol. 187, no. 3, 2008, pp. 943-961.

[2] Z. Tan and J. R. Gurd, "Market-based grid resource allocation using a
stable continuous double auction," Proc. 8th IEEE/ACM Int. Conf. on
Grid Computing (Grid 2007) , 2007, pp. 283-290.

[3] L. Amar, J. Stosser, and E. Levy, "Harnessing migrations in a market-
based grid OS," Proc. 9th IEEE/ACM Int. Conf. on Grid Computing
(Grid 2008) , 2008, pp. 85-94.

[4] K. Hoki, "Outline of Japan Electric Power Exchange (JEPX)",
Transactions of the Institute of Electrical Engineers of Japan, vol.
125, no. 10, 2005, pp. 922-925.

[5] H. Sato, Y. Koyama, K. Kurumatani, Y. Shiozawa, and H. Deguchi,
"U-Mart: A Test Bed for Interdisciplinary Research in Agent Based
Artificial Market", Evolutionary Controversies in Economics, 2001,
pp. 179-190.

[6] M. A.Sattherthwaite, S. R.Williams, “The Bayesian Theory of the k-
Double Auction”, In: D. Friedman, J. Rust (Eds.), The Double
Auction Market - Institutions, Theories, and Evidence, Addison-
Wesley, Ch. 4, 1993, pp. 99-123.

[7] R. B. Myerson and M. A. Satterthwaite, “Efficient mechanisms for
bilateral trading”, Journal of Economic Theory, Vol. 29, No. 2, 1983,
pp. 265-281.

[8] What is the 'itayose' method?, http://www.tse.or.jp/english/faq/list/
stockprice/p_b.html , viewed Feb. 13, 2010.

[9] IBM ILOG CPLEX, http://www-01.ibm.com/software/integration/
optimization/cplex/, viewed Feb. 13, 2010.

[10] lp_solve, http://tech.groups.yahoo.com/group/lp_solve/, viewed Feb.
13, 2010.

14141414

