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Abstract—With low-delay switches on the horizon, end-to-
end latency in large-scale High Performance Computing (HPC)
interconnects will be dominated by cable delays. In this context
we define a new network topology, Skywalk, for deploying low-
latency interconnects in upcoming HPC systems. Skywalk uses
randomness to achieve low latency, but does so in a way that
accounts for the physical layout of the topology so as to lead
to further cable length and thus latency reductions. Via graph
analysis and discrete-event simulation we show that Skywalk
compares favorably (in terms of latency, cable length, and
throughput) to traditional low-degree torus and moderate-degree
hypercube topologies, to high-degree fully-connected Dragonfly
topologies, to the HyperX topology, and to recently proposed
fully random topologies.

Keywords—Interconnection network, network topology, cabinet
layout, high performance computing

I. INTRODUCTION

An acknowledged objective of next generation High Per-
formance Computing (HPC) systems is to achieve ultra-low
end-to-end latencies, e.g., under 1 us across an exascale
system [1]. This objective is being partially achieved thanks to
decreasing switch delays. At the time of this writing Cisco’s
SFS7000D InfiniBand DDR switch achieves less than 200
ns, QLogic’s 12300 InfiniBand QDR switch achieves 140 ns,
and some Mellanox switches achieve less than 100 ns delays.
Furthermore, the clock rate of commercial ASIC switching
fabric (e.g., 200MHz-1GHz under 65nm or 90nm) is behind
state-of-the-art processor technology. One can thus expect the
latency (which correlates with data rate and clock rate) to
decrease in upcoming technology, even if new functionalities
are added. Finally, the pipeline structure of switches may be
improved. For instance, the RHiINET-2/SW switch has a 160 ns
pipeline delay (125 MHz, 20 cycles), and the RHiNET-3/SW
switch has a 240 ns pipeline delay (100MHz, 24 cycles) [2].
These pipelines include various stages (e.g., routing computa-
tion, switch allocation, output allocation, switch transfer, ECC
decoder and encoding). Aggressive speculation may allow to
execute some stages in parallel so as to decrease delay [3].

The main motivation for this work is that once switch
delays become very low (e.g., 60 ns), cable delays (e.g.,
5 ns/m) will dominate the latency in large-scale topology
deployments. Consequently, it will be physical cable lengths
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Fig. 1. Maximum latency of shortest-hop paths vs. switch delay in 256-
cabinet, 2,048-switch networks. Links between switches and compute nodes
are not considered. For each topology, the legend indicates degree and
diameter.

rather than hop counts that drive network latencies in future
large-scale HPC systems.

Figure 1 shows the maximum end-to-end latency vs. the
switch delay for a 2,048-switch network laid out in 256
cabinets. Data points are shown for the traditional hypercube
and torus topologies, and for two fully random topologies with
different degrees. For each topology the legend in the figure
indicates degree and diameter (i.e., the hop count of the longest
shortest path). A conventional shortest-hop routing method is
assumed. See Section III for all details on the topologies, their
physical layout in cabinets, and the models used for comput-
ing latency and cable length. Random topologies have been
proposed recently as a practical way to achieve low diameter
with only moderate degree, thus leading to low latencies [4]—
[6]. In spite of their low diameters, the random topologies lead
to higher latency than a hypercube when switch delay is low,
say below 60 ns. For hypothetical 20 ns switch delays, the
random topologies would even have higher latencies than tori!
The overall lesson is that, when switch delays are comparable
to or lower than link delays, one should not design topology
solely (or at all) to reduce diameter.

In this work we propose a new variable-degree topology,
Skywalk, combined with the use of a routing scheme, to
achieve low end-to-end network latencies in the upcoming low-
delay switch era. Skywalk uses randomness to reduce latency,
but it does so in a way that accounts for the physical layout
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Fig. 2. An instance of Skywalk with 256 switches (z = 4 switches in each
of ¢ = 64 cabinets), with at each switch d; = 3 intra-cabinet links, ds = 3
inter-cabinet straight links, and dq = O inter-cabinet diagonal links.

of the topology. Our main findings are that:

e When compared to traditional low- to moderate-degree
tori and hypercubes, a same-degree Skywalk leads to
lower latency and lower cable length;

When compared to the high-degree, low-latency fully-
connected Dragonfly topology [7], a smaller-degree Sky-
walk leads to only marginally higher latency while reduc-
ing cable length by several factors;

A similar observation can be made when comparing
Skywalk to the high-degree HyperX topology [8], albeit
with a more modest cable length reduction;

When compared to recently proposed low-latency fully
random topologies, a same-degree Skywalk leads to im-
provements in both latency and cable length;

Even though Skywalk is primarily designed to reduce
latency, it achieves relatively high throughput without
requiring high degree.

This paper is organized as follows. Section II introduces
Skywalk. Sections III and IV evaluate Skywalk and compare
it to previously proposed topologies using graph analysis and
discrete-event simulation, respectively. Section V discusses
related work. Finally, Section VI summarizes our contributions
and gives guidelines for deploying Skywalk in practice.

II. THE SKYWALK TOPOLOGY

A. Rationale

Reducing hop count, i.e., the number of links along paths
between each source and destination compute node, has been a
main focus of network topologies proposed for HPC intercon-
nects. Recently, randomly generated topologies have received
a fair amount of attention because they have low diameter at
low degree and afford other attractive features (fault-tolerance,
arbitrary numbers of vertices, expandability) [4]-[6]. However,
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TABLE 1. PARAMETERS OF SKYWALK.

Number of cabinets

Number of switches in a cabinet

Number of intra-cabinet links at a switch

Number of inter-cabinet straight links at a switch
Number of inter-cabinet diagonal links at a switch

Qaan o

(=%

in a future in which switch delays are below 100 ns, shortening
physical cable lengths along each path can become more
crucial than reducing hop counts. For instance, a switch delay
of 60 ns is equivalent to a link delay on a 12 m cable (optical
cable delays are 5 ns/m). Inter-cabinet optical links in physical
deployments can reach tens of meters and would then be the
main contributors to end-to-end delay. Note that large cable
lengths also contribute to large topology deployment costs.

Based on these observations, we propose a topology that is
randomized, but that also distinguishes between intra-cabinet
and inter-cabinet sub-topologies. The objective is to minimize
out-of-cabinet cable lengths while requiring a reasonably low
number of cables and switch ports.

B. Topology Specification

We assume a grid-like alignment of cabinets on a machine
room floor, as depicted in Figure 2. We name our topology
Skywalk by analogy to skywalks between skyscrapers in an
urban center. Skywalk, like any cabinet-conscious topology
that distinguishes the intra-cabinet layer and the inter-cabinet
layer, can be seen as an instance of the Dragonfly meta-
topology in [7].!

Table I lists the parameters that define our topology. Given
¢ cabinets, each cabinet hosts z switches for a total of N = zc¢
switches. These cabinets are arranged in a 2-D grid on a
machine room floor. Skywalk consists of three separate sub-
topologies for (i) intra-cabinet links, (ii) inter-cabinet straight
links (along a cabinet row or column), and (iii) inter-cabinet
diagonal links (spanning multiple cabinet rows and columns).
di, ds, and dgq denote the number of intra-cabinet, inter-
cabinet straight, and inter-cabinet diagonal links at each switch,
respectively. We define d,, the number of inter-cabinet links
at a switch as d, = ds + dgq. The degree of the topology,
i.e., the maximum number of links at a switch excluding links
between the switch and the compute nodes, is d = d;+d,. The
upper bound on d; iS dimax = 2 — 1. Given an x X y grid of
cabinets, the upper bound on d is dsmax = [(x +y — 2)/2]
and the upper bound on dq is damax = [(z — 1)(y — 1)/2]. If
di = dimax and do = dsmax + ddmax, then Skywalk is identical
to the fully-connected Dragonfly topology in [7].

In this work we use the term “switch” to refer to a small
cluster of m compute nodes connected to a single switch.
Therefore, if a p-port switch is used, then we must have
d+ m < p, since d does not include the number of links
between a switch and its compute nodes. The total number of
compute nodes is mN.

The original Dragonfly is described as “three-layered,” including compute
nodes, but in this work we ignore compute nodes and consider only intra- and
inter-cabinet links.
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Fig. 3. Maximum and average latency vs. total cable length for Skywalk with
8 switches per cabinet and 64, 256, and 1024 cabinets, for different mixes of
straight and diagonal links.

C. Topology Construction

Each sub-topology of Skywalk employs a dj-degree Uni-
form Random topology (di € {di,ds,dq}). A Uniform Ran-
dom topology is generated by the following algorithm, where
V denotes the set of all relevant vertices (switches or cabinets,
depending on which sub-topology is being constructed):

1)

2)
3)

Make a copy of V, say W;

Randomly pick a vertex vy in W

Randomly pick another vertex vz in W so that v; and
v9 are not already connected and satisfy some constraints
(described below);

If such a vy is found connect vy and vy with a link,
otherwise do nothing;

Remove vy and vy (if it was found) from W

If W is not empty go to step 2;

Repeat dj, times.

4)

5)
6)
7)

Links between vertices v; and vy above are constrained for
each sub-topology so that the links are either (i) intra-cabinet,
(ii) inter-cabinet straight, or (iii) inter-cabinet diagonal. When
the vertices are the cabinets, for cases (ii) and (iii), a new
link is added between two cabinets by picking its endpoint
switches in a cyclic manner. In other words, for each cabinet
we keep track of the index of the switch that should be the
endpoint of the next inter-cabinet link involving this cabinet,
and increment this index once that link is added.

Due to randomness in the algorithm, the constructed in-
stances have different number of links, and they may even
be disconnected if the degree is very low. We construct 10
topology instances, each obtained with a different random seed
of the random number generator, and pick among these 10
instances the one that is connected and has the largest number
of generated links. Although results are not presented here
due to lack of space, we have confirmed that using 10 random
samples is sufficient to obtain stable results (i.e., all samples
are connected, most of them have almost identical numbers of
links while only a few have notably fewer links).

D. Straight vs. Diagonal Links

Given a specified number of inter-cabinet cables, d, =
ds + dgq, one must pick appropriate dy and dgq values. In
other words, which fraction of the inter-cabinet links at a
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Fig. 4. Maximum and average latency vs. hop count, depending on routing
scheme, in 256-cabinet, 2,048-switch networks of 60-ns switches.

switch should be straight or diagonal? We assume rectilinear
(“Manhattan”) cabling between cabinets, as done in practice
for physical deployments of production topologies. With this
cabling scheme diagonal links lead to longer cable lengths,
thus suggesting building Skywalk by using straight links
whenever possible rather than diagonal links.

To verify this intuition Figure 3 shows maximum and
average latency vs. total cable length for three instances of
Skywalk, each with z = 8 switches per cabinet and ¢ cabinets,
with ¢ € {64, 256, 1024}. The models used to compute latency
and cable length are described in Section III, and the routing
scheme is described in Section II-E. For each topology instance
several data points are shown. Each data point corresponds to
a different (ds,dq) couple, ranging from (d,,0) (only straight
cables) to (0,d,) (only diagonal cables), and going from left
to right along the horizontal axis since the total cable length
increases as dq increases. For simplicity, in this experiment we
assume that d, = min(dsmax, ddmax)-

We see that for the three Skywalk instances the maximum
latency is smallest when all links are straight links. Interest-
ingly, the maximum latency does not increase monotonically
with the number of diagonal links. In the case of the average
latency, we find that using only straight links does not nec-
essarily lead to the lowest value, but to a value close to the
lowest value. For instance, for ¢ = 64 cabinets, (d,,0) leads
to average latency 0.50% higher than (d, — 1, 1). As the scale
of the topology increases this difference becomes smaller. For
instance, it becomes only 0.38% for ¢ = 1024 cabinets.

We conclude that prioritizing straight links over diago-
nal links leads to the lowest total cable length, the lowest
maximum latency, and close to the lowest average latency.
Consequently, unless specified otherwise, in the rest of this
paper we use the following straight-first linking scheme.
Given a specified number of inter-cabinet links at a switch
do, we first create the maximum number of possible straight
links, up to ds = min(d,, dsmax) per switch. We then create
diagonal links to use the possibly remaining switch ports, up
to dg = min(do — ds, damax) per switch.

E. Routing

Most existing routing algorithms rely on a shortest-hop
path search technique [9], which we call Nearest Routing (NR)



in this work. As switch delay decreases and no longer domi-
nates end-to-end network latencies, this routing approach is no
longer sensible. Instead, routing should be done along lowest-
latency paths, which we call Fastest Routing (FR). Such paths
can be computed using Dijkstra’s well-known polynomial-
time algorithm by defining distances in a way that accounts
for cable delays and switch delays. Using a priority-queue
implementation of the algorithm [10], we find for instance
that all paths can be computed for a 16k-switch Skywalk in
under 140 seconds on a 3.47 GHz Intel Xeon X5690 processor.
Therefore, path computation to be used with topology-agnostic
deadlock-free routing can be done at large scale in practice. To
implement a deterministic topology-agnostic routing, we can
use either table-based distributed routing or source routing.

We carry out a simple experiment to quantify the advantage
of FR vs. NR when switch delay is 60 ns. Figure 4 shows
the maximum and the average latency vs. the corresponding
hop count when using NR and FR for various topologies,
assuming 2,048 switches in 256 cabinets. We refer the reader
to Section III for all details on the topologies, their physical
layout in cabinets, and the models used for computing network
latencies. These results show that FR achieves either equal
or smaller latency when compared to NR, while possibly
increasing the hop count. In the rest of this paper we only
present results using FR.

FE. Expandability and Maintainability

An advantage of random topologies is that they can be
easily expanded to increase the scale of the network [4]-[6].
They can also be easily maintained because, provided they
have a sufficient number of cables, faulty cables do not have
a high impact on the overall performance of the network.
Similarly, Skywalk can be expanded and maintained easily
after an initial deployment, though such incremental expansion
is of course possible only if existing switches have available
ports. If the deployed switches are at full port capacity, then a
time-consuming and expensive re-cabling of the topology must
be done to include new switches in possibly new cabinets. Note
that, in this case, the expanded Skywalk will not achieve as
high a performance because its degree is unchanged while its
scale is increased.

III. GRAPH ANALYSIS

A. Physical Layouts and Network Topologies

We consider topologies deployed as sets of compute nodes,
switches, and cables for the following physical layout. The
compute nodes and the switches are enclosed in cabinets
arranged on a machine room floor in a 2-D grid pattern. The
cabinets are 0.6 m wide and 2.1 m deep including space for
the aisle, following the recommendations in [11]. Given ¢
cabinets, we assume an x X y grid, with z = [/c | (number
of cabinet rows) and y = [¢/z] (number of cabinet columns).
We compute cable lengths as follows. The intra-cabinet cables
are 2 m long. The inter-cabinet cables have 4 m overhead (2
m at each end) in addition to the Manhattan distance between
source and destination cabinets. This cable length computation
is similar to but more conservative than that in [12].

Given the above physical layout and the notations in
Table I, we consider five topologies:
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Skywalk(z, ¢, d;, d,): A Skywalk topology of degree d; +
do. If dy < dgmax then dg = d, and dgq = 0; otherwise
ds = dgmax and dq = dy — dgmax (see Section II-D).
Dragonfly(z, ¢, d): A fully-connected Dragonfly topology
of degree d = z—1+[ <17, as described in [7]. A cabinet
corresponds to a “group of routers” or a “virtual router”
in [7]. All the switches (routers) in a cabinet (group) are
fully connected, and all the cabinets (groups) are also
fully connected.

HyperX(z,¢,d): A HyperX topology of degree d =
T + y + z — 3 tailored to map onto the physical layout
of cabinets as described in [8]. Note that the popular
Flattened Butterfly topology [12] is subsumed by the
HyperX topology.

Hypercube(N, d): A d-dimensional hypercube of degree
d = [logy N1.

Torus(z,¢,d): An n-dimensional Torus topology of de-
gree d = 2n. We set the size of first dimension to z and
the remaining n— 1 dimensions to ¢'/(®~1)_ For instance,
a 3-D Torus with 2,048 switches, 256 cabinets, with 8
switches per cabinet, is generated as a 8 X 16 X 16 torus.
Random(N, d): An unstructured Uniform Random topol-
ogy [4]-[6] of degree d generated using the method in
Section II-C, but considering all IV individual switches as
vertices, without imposing any constraints on the links.

When deploying a topology of switches over a cabinet
layout an important question is that of assigning each switch
to a particular cabinet. Skywalk, Dragonfly, and HyperX are
constructed given the physical layout of the switches in the
cabinets (rather than mapping the switches to cabinets once a
topology graph has been constructed). For Torus and Hyper-
cube, we assign switches to cabinets sequentially considering
switches in the topological order (i.e., by increasing order of
the canonical numbering of the vertices), as done in production
physical deployments. For Random the switches are assigned
arbitrarily to the cabinets.

Given the above and a switch delay value, for each
topology and its physical deployment into cabinets we can
compute the end-to-end latencies of all network paths. For
this computation we assume that cable delay is 5 ns/m and
that the packet injection/reception delay is 300 ns (150 ns at
each end). We present results for the maximum and the average
latency. Another important metric to evaluate the performance
of a topology is the bisection bandwidth. We refer the reader to
Section IV in which we present simulation results for various
traffic patterns that quantify the achieved throughput, which is
correlated with the bisection bandwidth.

B. Switch Delay

Before presenting more detailed analysis results, we as-
sess whether Skywalk achieves its main objective: to pro-
vide low end-to-end latencies in a future in which low-
delay switches are available. Figure 5 shows latency vs.
switch delay for a physical deployment of 2,048 switches
over 256 cabinets using each of the topologies in the
previous section: Skywalk(8, 256, 7, 4), Dragonfly(8, 256, 39),
HyperX(8,256,37), Hypercube(2048,11), Torus(8,256,6),
and Random(2048, 11). These results, unlike those in Figure 1,
are obtained using Fastest Routing instead of Nearest Routing.
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For each topology, the degree and the total cable length are
indicated. At one extreme, Torus has degree 6 and a 31km
total cable length and is thus expected to lead to low cost but
to high latency. At the other extreme, Dragonfly has degree
39 and a 615km total cable length, and HyperX has degree 37
and a 372km total cable length. Both these topologies are thus
expected to lead to low latency but at high cost. Hypercube,
Random, and Skywalk all have degree 11, with total cable
lengths of 80km, 207km, and 59km, respectively.

Results show that the maximum latency of Skywalk is
always lower than that of Torus, Hypercube, and Random (as
long as switch delays are lower than 500 ns). It is particularly
notable that Skywalk achieves lower latency than Random
with the same degree and a total cable length more than 3
times shorter. Dragonfly, resp. HyperX, leads to maximum
latency lower than that of Skywalk but cable length more
than 10 times, resp. 6 times, larger. At 60 ns switch delay,
Skywalk leads to a maximum latency only 19% larger than that
of Dragonfly/HyperX. In terms of average latency, Skywalk
leads to better results than Torus and Hypercube across the
board. It leads to lower average latency than Random for
switch delays under 200 ns. As mentioned in Section I, 100-
ns switches are already commercially available. Consequently,
Skywalk is already an attractive topology with current switch-
ing technology when compared to a fully random topology.
Like for the maximum latency results, the only topologies
that outperform Skywalk in these results are Dragonfly and
HyperX. But Skywalk leads to an average latency only 17%
larger assuming a 60 ns switch delay, for more than 10-fold,
resp. 6-fold, savings in total cable length when compared to
Dragonfly, resp. HyperX.

We conclude that Skywalk is promising not only for future
deployments with low-delay switches, but already for today’s
fastest switches. Nevertheless, to focus on switches in the near
future, in all that follows we set the switch delay to 60 ns.

C. Degree

In this section we evaluate how the latencies of the topolo-
gies vary with the degree. The degree of a topology of switches
is an important metric. Given a switch radix, the higher the
degree the lower the number of ports that remain available
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Maximum and average latency vs. switch delay in 256-cabinet, 2,048-switch networks.

to connect to compute hosts, thus limiting the scale of the
system. Torus, Hypercube, Dragonfly, and HyperX all have
fixed degree for a given number of switches, but for Skywalk
and Random the degree can be chosen arbitrarily. We pick
di € {1,4,7} and d, € {1,2,4,6,8,12,16,20, 24,28} for
Skywalk and d € {4,5,6,7,9,11,15,19,23,27,31,35,39}
for Random. Figure 6 shows latency vs. degree, showing three
curves for Skywalk depending on the d; value, for a 2048-
switch topology deployed in 256 cabinets.

These results show that Skywalk achieves lower latency
than Torus and Hypercube of the same degree. For example,
the maximum latency of Skywalk(8,256,7,4) is 34% lower
than that of Hypercube(2048,11). When comparing Skywalk
to Random, we see that Skywalk almost always leads to lower
latency with a few exceptions. The exceptions correspond to
cases in which d, is low. It is a remarkable result that Skywalk
outperforms Random, since previous work has shown that fully
random topologies lead to drastic reductions in latency [5].
Skywalk uses less randomness, but by being cabinet-conscious
it lowers inter-cabinet cable lengths and thus cable delays. Note
that the three Skywalk curves have crossover points, which
means that the latency decreases non-monotonically as the
degree increases. We see that Dragonfly, not surprisingly, leads
to the lowest maximum latency because it has a high degree of
39. Interestingly, due to the fact that Dragonfly(8, 256, 39) is
cabinet-conscious, it outperforms Random(2048, 39). HyperX
leads to results similar to that of Dragonfly, with a slightly
lower degree (37 vs. 39) and a marginally higher maximum
latency. The average latency results are similar and more to
the advantage of Skywalk. In particular, Skywalk(8, 256, 7, )
achieves latency similar to that of Dragonfly(8,256,39) or
HyperX(8, 256, 37), but at much lower degrees. For instance,
Skywalk(8,256,7,12) leads to average latency only 5.98%
higher than that of Dragonfly(8,256,39), for about half the
degree (19 compared to 39). Similarly, Skywalk(8, 256, 7,12)
leads to average latency only 4.27% higher than that of
HyperX(8, 256, 37) for a degree of 19 compared to 37.

D. Network Size

In this section we evaluate topology scalability, i.e., how
latency increases with network size. Figure 7 shows latency vs.
N, the total number of switches, assuming that there are z =
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switches/cabinet networks of 60-ns switches.

8 switches per cabinet. Results are shown for Torus (degree
6), Hypercube (degree log, IV between 7 and 13), Dragonfly
(degree between 9 and 135), HyperX (degree between 13 and
69), and Skywalk (degrees 8, 16, 32, 64, and 128) instances.

For all topologies, latency increases as the network size
increases. As expected, Hypercube and Torus are the least
scalable topologies among the topologies we consider. Two
observations can be made regarding Skywalk’s scalability.
The first observation is that the latency of Skywalk increases
slowly. At degree 8 it has behavior comparable to that of
Hypercube, even though Hypercube has a higher degree at
large scale. At degree 16, when the network size is increased
4-fold from N = 2048 to N = 8192, the maximum, resp.
average, latency increases a mere 31%, resp. 18%. For such a
large network (assuming 16 compute nodes per switch for 32-
port switches the network can comprise 8192 x 16 = 131,072
compute nodes), Skywalk with degree 16 achieves maximum
latency of only 1,149 ns and average latency of only 811 ns.
The second observation is that the payoff of increasing the
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Dragonfly has degree 135 and HyperX has degree 69. We find
that Skywalk with degree 64 leads to maximum latency, resp.
average latency, at most 1.0% larger, resp. 2.3% larger, than
either topology. We conclude that Skywalk leads to results
comparable to that of Dragonfly and HyperX but with lower
degree. In the next section we show that Skywalk leads to
significantly shorter cable lengths.

E. Total Cable Length

Cable length is one of the drivers of topology deployment
cost. Large-scale low-delay networks can be “cable mon-
sters” [13], and randomness can lead to even larger cable
lengths [14]. In this section we assess the total cable length of
Skywalk and compare it to that of other topologies.

Figure 8 shows latency vs. total cable length for all our
topologies. As seen before, Torus and Hypercube lead to high
latencies, which can be achieved by Skywalk and Random at
lower cable lengths. The degrees of Skywalk and Random are
the same as in Section III-C, each leading to a different cable
length. These results show that, for a given latency target, the
total cable length of Skywalk is drastically smaller than that
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Since Skywalk accounts for the distribution of switches
across cabinets, z, the number of switches per cabinet, impacts
latency. Figure 9 shows the latency vs. z for networks with
N = 2048 switches for Skywalk topologies of degrees 8,
16, and 32. In all cases, and for both the maximum and the
average latency, the curves are concave with a minimum at
z = 32, which corresponds to 64 cabinets. This is because
for very low or very high 2z values Skywalk becomes similar
to Random, which is outperformed by Skywalk as seen in
previous sections. The results in Figure 9 show that there is

Fig. 8. Maximum and average latency vs. total cable length in 256-cabinet, 2,048-switch networks of 60-ns switches.
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Fig. 9. Maximum and average latency vs. number of switches per cabinet

in 2,048-switch networks of 60-ns switches.

of Random. Results also show that Skywalk compares well
to Dragonfly and HyperX. For example, Skywalk(8,256,7,4)
and Skywalk(8, 256, 7,12) require 90% and 65% lower cable
length than Dragonfly(8,256,39) while achieving maximum
latency only 19% and 10% higher, respectively, as indicated
in the left-hand side of the figure. The cable length savings
of Skywalk when compared to HyperX are still large but
not as large as when compared to Dragonfly. For instance,
Skywalk(8, 256, 7,4) and Skywalk(8, 256, 7,12) require 84%
and 42% lower cable length than HyperX(8,256,37) while
achieving maximum latency only 17.7% and 8.8% higher,
respectively. These latency vs. cable length trade-offs are thus
in favor of Skywalk given the cost associated with cable length.

An interesting observation is that the latency decreases
monotonically as the cable length increases, without crossover
points between the Skywalk curves. Given the non-monotonic
observation made in Section III-C we find that with low
switch delay it is the cable length, rather than the degree, that
correlates directly with the latency. Results for the average
latency on the right-hand side of the figure show that Skywalk
can lead to average latency similar to that of Dragonfly at
much lower cable lengths.
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an optimal cabinet size in terms of latency, which achieves
the best balance between intra- and inter-cabinet connections.
In practice, one should thus generate a Skywalk topology for
each feasible cabinet size in order to pick the cabinet size
that minimizes latency. Alternatively, one may wish to pick a
cabinet size that leads to latency close to the minimum latency
but that has other desirable features, such as low cabinet cost.

G. Limiting Inter-Cabinet Cabling

One approach to reduce cable length when creating a
random topology is to bound the cable lengths of random
links. This approach has been shown to lead to topologies
that maintain the low latency of fully random topologies but
with substantial savings in cable length [14]. In this section
we evaluate this approach in the context of Skywalk. When
picking the v; and vy vertices in the algorithm in Section II-C,
we enforce that the distance between the cabinet hosting v, and
the cabinet hosting v2, measured using the Manhattan distance,
is bounded above by r X [.x. Parameter r can be chosen
arbitrarily between 0 and 1. [,,x is the maximum possible
cable length, i.e., the diagonal distance of the machine room
floor measured using the Manhattan distance. A value of r = 1
corresponds to the original Skywalk, while a smaller value
leads to reduced cable length.

Figure 10 shows latency vs. total cable length for
Skywalk(8, 256,7,d,), with d, € {4,6,8,12,16, 20, 24, 28}.
For each of these topologies a curve with five data points
is shown. Each of these data points corresponds to a value



11

] Maximum
r=0.4
1 -
- r=0.5
= r=0.6
< r=0.7
2 r=1.0
-
0.9 A
08 T T T T T
0 100 200 300 400 500

Total cable length [km]

08 1 Average

Skywalk(8,256,7,4)
—o— Skywalk(8,256,7,6)
Skywalk(8,256,7,8)
—n— Skywalk(8,256,7,12)
—— Skywalk(8,256,7,16)
—+— Skywalk(8,256,7,20)
Skywalk(8,256,7,24)
Skywalk(8,256,7,28)

0.7

Latency [ps]

ettt

0.6 T T T T T

100 200 300 400 500
Total cable length [km]

Fig. 10. Maximum and average latency vs. total cable length, depending on limitation on individual cable length, in 256-cabinet, 2,048-switch networks of
60-ns switches. r» = 1.0 corresponds to no limitation on the length of individual cables.

of r, with » € {0.4,0.5,0.6,0.7,1.0}. Too low a value of
r may make constructing Skywalk unfeasible, but in these
experiments r > 0.4 was sufficient for always generating the
topology successfully. Given that the total cable length in-
creases monotonically with r, the data points are for increasing
r values from left to right on the horizontal axis.

Results show that the maximum latency decreases almost
monotonically as r increases. Consequently, picking a partic-
ular r value achieves a particular trade-off between maximum
latency and cable length. For low-degree Skywalk topologies,
the savings in cable length achieved by picking » < 1
are marginal while the increases in maximum latency are
substantial (i.e., the curves are close to being vertical), and
a value 7 = 1 should be used. At higher degree the curves
are closer to the anti-diagonal, meaning that different values
of r achieve different possibly desirable trade-offs. The results
for the average latency are similar but the curves are more
flat, meaning that picking r < 1 can reduce cable length
without large increases in average latency. In a few cases the
average latency even increases slightly as r increases. Picking a
moderate value of r, say, around 0.5, empirically leads to good
trade-offs between average latency and total cable length.

We conclude that, depending on the degree of the topology,
different values of 7 can lead to desirable trade-offs between
cable length and latency. In all that follows we use r 1,
aiming to achieve the lowest latency with increased total cable
length.

IV. DISCRETE-EVENT SIMULATION
A. Method

We use a cycle-accurate network simulator written in
C++ [5]. Every simulated switch is configured to use virtual
cut-through switching. A header flit transfer requires 60 ns,
including routing, virtual-channel allocation, switch allocation,
and flit transfer from an input channel to an output channel
through a crossbar. Link delay is assumed to be 5 ns/m on an
optical cable and the length of each cable is computed based
on the cabinet layout. We use the FR scheme described in
Section II-E. In this work we use the adaptive deadlock-free
routing scheme described in [15] with four virtual channels,
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which is known to lead to well-distributed paths. To guarantee
deadlock freedom, the routing restrictions stated in [15] are
imposed when applying Dijkstra’s path search. Interestingly,
it has been reported that a random topology with the above
routing performs better than a non-random topology with cus-
tom routing [5], and furthermore reducing end-to-end latency
can be crucial in improving throughput. Simulation results
show that our FR routing scheme sometimes improves not only
latency but also throughput when compared to traditional min-
hop custom routing.

We simulate three synthetic traffic patterns that deter-
mine source-and-destination pairs, namely random uniform,
bit-reversal and matrix-transpose. These traffic patterns are
commonly used for measuring the performance of large-scale
interconnects [16]. The hosts inject packets into the network
independently of each other. In each synthetic traffic the packet
size is set to 33 flits (one of which is for the header) and each
flit is set to 256 bits. We pick relatively small packet sizes since
we wish to study the performance of latency-sensitive traffic
that consists of small messages. Effective link bandwidth is
set to 96 Gbps. In all the experiments in this section there are
8 hosts per switch, so that the maximum accepted traffic per
host can be 12 Gbps.

Our results quantify two metrics: latency and throughput.
The latency is the elapsed time (in ns) between the generation
of a packet at a source host and its delivery at a destination
host. The throughput is the largest amount of traffic (in Gbps)
accepted by the network before saturation.

Because discrete event simulation is compute intensive,
we simulate networks with “only” 256 switches. But the
results obtained in simulation are consistent with the results
in Section III, which are obtained with up to 8,129 switches
and show stable trends as the number of switches increases.

B. Results

Figure 11 shows latency (averaged over all messages) vs.
accepted traffic (the load that is injected into the network
in Gbps/host) for all three traffic patterns, for networks with
256 switches located in 64 cabinets. The latency of a given
topology is the value of the corresponding curve on the left
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Fig. 11.

of the horizontal axis. The achieved throughput is quantified
by the point at which the latency curve “shoots up.” Results
are shown for Torus with degree 6, Hypercube with degree 8,
Random with degree 7, 9, and 11, Skywalk with degree 7, 9,
and 11, Dragonfly with degree 19, and HyperX with degree
17. Note that at degree 7, given the number of switches and
of cabinets, due to our straight-first linking method Skywalk
comprises only straight inter-cabinet links.

Latency results are consistent across the three traffic pat-
terns and in line with the results in Section III. Torus and
Hypercube lead to the highest latency. Skywalk achieves
latency lower than that of Random for the same degree. Only
Dragonfly, resp. HyperX, has latency lower than Skywalk but
with a much higher degrees of 19, resp. 17, when compared
to Skywalk’s degree of at most 11 in these results.

In terms of throughput, as expected Torus leads to the
worst results. Skywalk leads to similar or better results than
Random for the same degree. The only exception is for the bit-
reversal traffic. For this traffic, at low degree Skywalk leads
to a throughput roughly halved when compared to that of
Random. Skywalk with degree 11 approaches the throughput
of Hypercube for all three traffic patterns. Dragonfly does
not lead to high throughput in spite of its high degree, with
particularly low throughput for the bit reversal traffic pattern.
Only HyperX leads to better throughput than Skywalk for all
three traffic patterns.

An important result is that Skywalk outperforms the fully
random topology. In spite of its high degree, Dragonfly can
lead to poor throughput while HyperX’s high degree allows it
to achieve the best throughput overall. We conclude that Sky-
walk makes it possible to achieve low latency and reasonably
high throughput provided its degree is high enough, while not

Accepted traffic [Gbit/sec/host]

(b) bit-reversal traffic

271

Accepted traffic [Gbit/sec/host]

(c) matrix-transpose traffic

Average latency vs. throughput. The same symbol is used for Random and Skywalk of same degree (one white, one black).

requiring a degree as high as that of Dragonfly or HyperX.

V. RELATED WORK

In this work we design a topology of switches with physical
layout considerations in mind. Several other layout-conscious
topologies have been proposed. Among these, the Dragonfly
topology [7] has received a fair amount of attention. In fact,
Dragonfly is not a topology per se but a meta-topology. It
distinguishes between groups of switches, but does not specify
actual topologies for intra- and inter-group connections. In
[7] the authors use a fully connected scheme that makes it
possible to incur only one inter-group hop between any pair
of switches. However, with low-delay switches, maintaining
a single inter-group hop is no longer crucial since the cable
length drives end-to-end delay rather than the number of hops.
We have compared Skywalk to the fully-connected Dragonfly
and the HyperX topologies. Both these topologies are designed
explicitly to reduce cable length by accounting for the physical
layout of cabinets. Other topologies have been proposed that
distinguish between inter- and intra-cabinet communications.
The Cube Connected Cycle (CCC) topology connects cabinets
using a hypercube topology while using a ring topology for
intra-cabinet connections [17], maintaining degree 3 even at
large scale. Hypernet is a hierarchical topology that consists of
subnets, which can be within cabinets, interconnected together
by a fully connected topology [18]. Complete Connection of
Torus Hypercube (CCT-Cube) is similar to hypernet, but has
better diameter and degree properties [19]. We do not compare
Skywalk to these topologies because they can support only a
fixed number of nodes or because they strive to maintain very
low degree, which is not necessary when using modern high-
radix switches.



Our work relates to those works that have studied ran-
domness in network topologies. Random shortcuts have been
discussed in the graph theory literature. In particular, the low
diameter properties of a ring with random chordal shortcuts
are well known [20]. The effectiveness of random shortcuts
to reduce diameter has been observed for real-world complex
networks, e.g., social networks and Internet topology. The
small-world property of these networks has received a fair
amount of attention in the literature, such as the WS model
by Watts and Strogatz [21]. Other small-world networks rely
on a lattice structure plus random links that are generated by
accounting for the distance along the lattice structure [22].
Using random topologies has been proposed in the context
of datacenter interconnects, not only motivated by the low-
diameter properties of such topologies, but also by fault-
tolerance and expandability properties [4], [6]. In [5], [14]
random topologies have been proposed as a way to reduce
latency in HPC interconnects. The low hop count advantage of
these random topologies does not necessarily translate to low
latency for networks of low-delay switches. While Skywalk
employs some randomness, it does so in a way that is cabinet-
conscious, accounting for the fact that low cable length will be
as important as or more important than switch delay in future
networks. We have quantified the advantages of Skywalk over
purely random topologies.

VI. CONCLUSION

In this work we have proposed Skywalk, a novel network
topology for HPC interconnects. With current and upcoming
low-delay switches, the traditional focus on reducing the
number of switch hops along network paths in large-scale
topologies of switches is no longer justified. The reason is
that cable delays can exceed switch delays. Cable length is
thus no longer only a driver of cost but also a driver of
latency. In this context, the design goals of Skywalk are
to achieve both low latency and low cable length. This is
accomplished by using randomness and by distinguishing
between intra-cabinet and inter-cabinet topologies. Routing
is done by transferring packets along lowest-latency paths
rather than along shortest-hop paths. Using both graph analysis
and discrete-event simulation we have evaluated Skywalk and
compared it to Torus, Hypercube, Random, fully-connected
Dragonfly, and HyperX topologies. These topologies achieve
various trade-offs between latency and cable length, and our
results show that Skywalk leads to more desirable such trade-
offs across a broad topology design space. Although Skywalk
is designed for low latency, we find that it achieves relatively
high throughput at moderate degree.

Our key finding is that Skywalk is promising because
scalable, low-latency, moderate-degree, and with low cable
length. Our results also suggest several guidelines for deploy-
ing Skywalk in practice, assuming a cable length budget. There
should be balanced numbers of intra- and inter-cabinet links
at each switch. The intra-switch topology should be dense,
and possibly fully connected. The same recommendation holds
for the inter-cabinet topologies along cabinet rows and cabinet
columns on the machine room floor. If the cable length budget
allows it, then sparse diagonal inter-cabinet links should be
added to reduce end-to-end latency further.

272

(11

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

K. Scott Hemmert et al, “Report on Institute for Advanced Architectures
and Algorithms, Interconnection Networks Workshop 2008,” http://ft.
ornl.gov/pubs-archive/iaa-ic-2008-workshop-report-final.pdf.

S. Nishimura et al, “RHiNET-3/SW: an 80-Gbit/s high-speed network
switch for distributed parallel computing,” in Hot Interconnects 9, 2001,
pp. 119-123.

L. Peh and W. J. Dally, “A delay model and speculative architecture
for pipelined routers,” in Proc. of the International Symposium on High
Performance Computer Architecture (HPCA), 2001, pp. 255-266.

J. Y. Shin, B. Wong, and E. G. Sirer, “Small World Data Centers,” in
Proc. of the Symposium on Cloud Computing, Oct. 2011.

M. Koibuchi, H. Matsutani, H. Amano, D. F. Hsu, and H. Casanova,
“A Case for Random Shortcut Topologies for HPC Interconnects,” in
Proc. of the International Symposium on Computer Architecture (ISCA),
2012, pp. 177-188.

A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Net-
working Data Centers Randomly,” in Proc. of USENIX Symposium on
Network Design and Implementation (NSDI), 2012.

J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-Driven, Highly-
Scalable Dragonfly Topology,” in Proc. of the International Symposium
on Computer Architecture (ISCA), 2008, pp. 77-88.

J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“HyperX: topology, routing, and packaging of efficient large-scale
networks,” in Proc. of the Conference on High Performance Computing
Networking, Storage and Analysis (SC), 2009, pp. 1-11.

J. Flich, T. Skeie, A. Mejia, O. Lysne, P. Lopez, A. Robles, J. Duato,
M. Koibuchi, T. Rokicki, and J. C. Sancho, “A Survey and Evalua-
tion of Topology Agnostic Deterministic Routing Algorithms,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 3, pp.
405425, 2012.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms (3rd ed.). The MIT Press, Jul. 2009.

HP, “Optimizing facility operation in high density data center envi-
ronments, technoloogy brief,” 2007. [Online]. Available: http://h18004.
www 1.hp.com/products/servers/technology/whitepapers/datacenter.html

J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: a cost-efficient
topology for high-radix networks,” in Proc, of the International Sym-
posium on Computer Architecture (ISCA), 2007, pp. 126-137.

J. Mudigonda, P. Yalagandula, and J. Mogul, “Taming the flying cable
monster: A topology design and optimization framework for data-
center networks,” USENIX ATC, pp. 1-14, 2011. [Online]. Available:
http://static.usenix.org/events/atc11/tech/final_files/Mudigonda.pdf

M. Koibuchi, I. Fujiwara, H. Matsutani, and H. Casanova, “Layout-
conscious Random Topologies for HPC Off-chip Interconnects,” in
Proc. of the International Symposium on High Performance Computer
Architecture(HPCA), 2013.

F. Silla and J. Duato, “High-Performance Routing in Networks of
Workstations with Irregular Topology,” IEEE Transactions on parallel
and distributed systems, vol. 11, no. 7, pp. 699-719, 2000.

W. D. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2003.

F. P. Preparata and J. Vuillemin, “The cube-connected cycles: a ver-
satile network for parallel computation,” Communications of the ACM,
vol. 24, no. 5, pp. 300-309, 1981.

K. Hwang and J. Ghosh, “Hypernet: A communication-efficient ar-
chitecture for constructing massively parallel computers,” IEEE Trans.
Comput., vol. 36, no. 12, pp. 1450-1466.

T. Ishikawa, “CCT-Cube: A Highly Parallel Network Featuring Short
Diameter and Few Links,” IEICE Transactions, vol. J73-D-I, no. 6, pp.
559-602, 1990.

B. Bollobas and F. R. K. Chung, “The Diameter of a Cycle Plus a
Random Matching,” SIAM J. Discrete Math., vol. 1, no. 3, pp. 328—
333, 1988.

D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440-442, 1998.

J. Kleinberg, “The small-world phenomenon and decentralized search,”
SIAM News, vol. 37, no. 3, pp. 1-2, 2004.



