
1

Swap-and-randomize: A Method for Building
Low-latency HPC Interconnects

Ikki Fujiwara, Member, IEEE, Michihiro Koibuchi, Member, IEEE, Hiroki Matsutani, Member, IEEE,
and Henri Casanova, Member, IEEE

Abstract—Random network topologies have been proposed to create low-diameter, low-latency interconnection networks in
large-scale computing systems. However, these topologies are difficult to deploy in practice, especially when re-designing
existing systems, because they lead to increased total cable length and cable packaging complexity. In this work we propose
a new method for creating random topologies without increasing cable length: randomly swap link endpoints in a non-random
topology that is already deployed across several cabinets in a machine room. We quantitatively evaluate topologies created in this
manner using both graph analysis and cycle-accurate network simulation, including comparisons with non-random topologies
and previously-proposed random topologies.

Index Terms—Network topologies, cabinet layout, interconnection networks, high-performance computing.

F

1 INTRODUCTION

Large parallel applications to be deployed on next
generation High Performance Computing (HPC) sys-
tems will suffer from communication latencies that
could reach hundreds of nanoseconds [1], [2]. There
is thus a strong need for developing low-latency net-
works for these systems. Switch delays (e.g., about 100
nanoseconds in InfiniBand QDR) are large compared
to the wire and flit injection delays even including
serial and parallel converters. To achieve low latency,
a topology of switches should thus have low diameter
and low average shortest path length, both measured
in numbers of switch hops.

Traditional topologies have regular structures that
can match application communication patterns. For
example, lattice communication, which occurs in
many scientific parallel applications, fits naturally to
n-dimensional torus interconnection networks [3], [4].
However, these topologies have relatively high aver-
age shortest path length and high maximum short-
est path length, or diameter. As a result, latency-
sensitive parallel applications that do not map well
to a regular structure typically experience poor per-
formance. These include datacenter applications with
dynamic workload, and irregular parallel applications
with non-deterministic and/or complex communica-

• I. Fujiwara and M. Koibuchi are with National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, JAPAN 101-8430. M. Koibuchi
is also with the Graduate University for Advanced Studies (SOK-
ENDAI).
E-mail: {koibuchi,ikki}@nii.ac.jp

• H. Matsutani is with Keio University, 3-14-1 Hiyoshi, Kohoku-ku,
Yokohama, Kanagawa, JAPAN 223-8522.
E-mail: matutani@arc.ics.keio.ac.jp

• H. Casanova is with the University of Hawai‘i at Manoa, 1680 East-
West Road, Honolulu, HI 96822, U.S.A.
E-mail: henric@hawaii.edu

tion patterns. For these applications, it is difficult
to compute an efficient mapping of the processes to
the compute nodes in a structured topology. Another
drawback of traditional topologies is that their regular
structures strictly define network size (e.g., kn vertices
in a k-ary n-cube topology) even though the scale of
a system should be determined based on electrical
power budget, surface area, and cost. Furthermore,
additional mechanisms must often be used as part of
routing algorithms so as to maintain topological struc-
ture in the face of network component failures [3], [4].
Also, a potentially large number of redundant backup
cables may need to be installed at deployment.

Random topologies have been proposed to alleviate
the above drawbacks [5]–[7]. Randomness affords low
diameter and average shortest path lengths, so that
good performance can be achieved by arbitrarily map-
ping the processes of irregular applications to com-
pute nodes. Also, random topologies can be generated
for any network size and can also be built incremen-
tally. Finally, no or fewer backup cables are needed
as these topologies are inherently fault-tolerant. A
practical concern is the long cable length in physical
deployments [6], [7]. This is because these random
topologies use “random shortcuts” to bypass switches
between possibly distant cabinets in a machine room.
Total cable length already reaches astronomical pro-
portions in deployed systems that use non-random
network topologies (∼2,000km for the first generation
Earth Simulator [8] and ∼1,000km for the K-computer
[4]). The use of random shortcuts further increases
cable length, and thus cost, significantly.

In this work, we address the above cable length
concern by proposing a method, which we term
permutation, for generating random topologies and
their physical layouts [9]. Using a known good phys-
ical layout for a non-random topology as a starting

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2014.2340863

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

point, permutation swaps endpoints between pairs
of links in a way that conserves cable length. An
advantage of this approach is that it can be applied
to systems that are already deployed in a machine
room: swap the endpoints of some pairs of physi-
cal links and update the routing tables. Our main
finding is that a permuted topology has identical or
better performance properties than its non-random
counterpart (lower diameter, lower latency, identical
bisection bandwidth, identical or higher throughput).
The performance improvement is admittedly lower
than that achieved by previously proposed random
shortcut topologies [7], but it comes at no increase in
cable length whatsoever.

The rest of this paper is organized as follows.
Section 2 discusses related work. Section 3 details our
topology permutation methods. Section 4 describes
the topologies we consider, along with their layouts
in physical cabinets. Sections 5, 6, and 7 evaluate
our proposed topologies and compare them to com-
petitors in terms of graph properties, latency and
throughput, and cable length, respectively. Section 8
concludes with a summary of our main findings.

2 RELATED WORK

2.1 Topologies of HPC Systems

A few topologies have been traditionally used to
interconnect compute nodes in HPC systems, and
these topologies are also used in large systems to in-
terconnect high-radix switches [10]. In direct topologies
each switch connects directly to compute nodes as
well as to other switches. Popular direct topologies
are k-ary n-cubes, which include tori, meshes, and
hypercubes. Each topology leads to a different trade-
off between degree and diameter. All these topologies
are regular, meaning that all switches have the same
degree (i.e., each switch has the same fixed number
of links to other switches).

Indirect topologies, i.e., topologies in which some
switches are connected only to other switches, have
also been proposed. They have low diameter at the
expense of larger numbers of switches when com-
pared to direct topologies. The best known indirect
topologies are Fat trees, Clos network and related
multi-stage interconnection networks (MINs) such as
the Omega and Butterfly networks. MINs have uni-
form access latency, and they use different schemes
by which endpoints are “shuffled” deterministically
at each stage, so that re-arrangeable or non-blocking
data transfers are possible.

2.2 Graphs with Low Diameter

The problem of maximizing the number of vertices
in a graph for given diameter and degree has been
studied by graph theoreticians for decades, striving to

approach the famous Moore bound [11]. Several low-
diameter large graphs have been proposed for inter-
connection networks [12], [13]. Another approach is to
augment known topologies with additional edges in
a hierarchical manner [14]–[20]. Most of these graphs
are constructed for fixed numbers of switches and/or
strive to achieve a switch degree as low as possible.
As a result, switch degree is often non-uniform, which
would complexify network deployment.

Another type of known low-diameter graphs are
random graphs [21], recently popularized by the
study of real-world networks with small-world proper-
ties [22], [23]. Random networks have been proposed
for designing data centers with increased expandabil-
ity, fault tolerance, and throughput capabilities [5],
[6]. In [7] random networks have been proposed for
low-latency HPC interconnects because the use of ran-
dom shortcuts drastically decreases graph diameter
and average shortest path length when compared to
same-degree non-random topologies that are tradi-
tionally used in HPC systems. A drawback of random
networks is that topology-agnostic routing must be
used, requiring routing-table or source-routing im-
plementations because the network does not have a
simple structure. We note that 83.8% of the systems
on the November 2013 Top500 supercomputer list
are based on Ethernet or InfiniBand, both of which
use routing tables in their switches. However, the
remaining 16.2% usually use custom routing on non-
random topologies. In this context, random networks,
including the topology proposed in this work, cannot
be used directly for these systems (i.e., additional
mechanisms would be needed to support routing).
Another documented drawback of random networks,
whether for a data center that uses a top-of-rack
switch for inter-cabinet connection or an HPC system
in which a large number of switches are connected by
inter-cabinet links [24], is that the total cable length
and the complexity of cable packaging are increased
when compared to non-random networks with similar
numbers of network links [6], [7].

2.3 Cabinet Layout of Topologies

The layout of cabinets on a floorplan and the as-
signment of switches to these cabinets are important
concerns when designing large systems because they
affects costs [24], [25]. The salient features of a layout
include cabinet footprint, number of compute nodes
and switches per cabinet, and cabinet spacing. For
instance, in the case of the Cray BlackWidow system,
it is estimated that each cabinet has a 0.57m×1.44m
footprint, with 128 nodes per cabinet, and that the
nodes/m2 density should be 75 [25]. A common ap-
proach is to specify the widths of the aisles between
rows of cabinets. The ANSI/TIA/EIA-942 standard
recommends site layouts with alternating cold and
hot aisles with width at least 4ft and 2ft, respectively.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2014.2340863

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

Link before permuta�on
Link a�er permuta�on

v
1

v
3

v
2

v
4

v
3

v
1

v
2

v
4

v
1

v
2

v
3

v
4

v
1

v
2

v
4

v
3

(a) Intra-cabinet
permuta�on

(b) Inter-cabinet permuta�on
between two cabinets

(c) Inter-cabinet permuta�on among
three cabinets

(d) Permuta�on in/between
two cabinets

Switch

Switch

Switch

Fig. 1. Topology permutation methods. Two-cab permutation invokes (a) and then (b). Three-cab permutation
invokes (a) and then (b) ∪ (c). One-step permutation invokes (a) ∪ (b) ∪ (d).

A similar specification is found in [26]. In this work
we assume that some 2-D physical layout of cabinets
has been determined to comply with the power/heat
constraints of the system to be deployed.

The topologies used traditionally in HPC systems
exhibit both highly regular structures and low de-
grees (e.g., the 3-D torus in BlueGene/L). As a result,
they map naturally to a simple 2-D grid-like cabinet
layout with low (or even optimally low) total cable
length. This is no longer the case for high-degree
topologies, and especially topologies that use ran-
dom shortcuts. System designers are thus faced with
the difficult task of mapping switches to a physical
layout so as to reduce total cable length. In [27] a
metaheuristics-based scheme is proposed to compute
such a mapping, but the resulting total cable length is
still much larger than that of non-random topologies.
In addition, many cables reach a large length, which
is problematic because the cost of the cabling medium
increases with the length (e.g., for InfiniBand the
typical maximum length of passive copper is 10m,
while embedded optical is 100m [28]). Two options
were explored in our previous work [9] to reduce
cable lengths. The first option consists in generating
random shortcut links that are constrained to connect
switches that are not too distant. The second option
is the topology permutation approach studied in this
work. The results therein show topology permutation
to be superior to the first option. In this work we build
on these results, proposing an alternate link endpoint
swapping method, applying topology permutation to
indirect topologies, and comparing permuted topolo-
gies to non-random high-degree topologies.

3 TOPOLOGY PERMUTATION

3.1 Direct Networks

Consider an arbitrary physical layout of cabinets on
a floorplan, so that each cabinet contains the same
number of switches (and possibly compute nodes
connected to these switches). The switches are inter-
connected in some traditional non-random topology
that maps well to the cabinet layout in terms of total

cable length. We use the notation x ↔ y to denote
a link between switch x and switch y. We define two
permutation methods, namely two-cab permutation and
three-cab permutation, as described below.

The two-cab permutation method proceeds in two
steps: first swap all intra-cabinet links, and then swap
inter-cabinet links that connect the same pair of cabi-
nets. More formally, in the first step, for each cabinet
i, determine Ei, the set of all intra-cabinet links that
connect two switches in cabinet i. Consider two links
picked randomly in Ei, say v1 ↔ v2 and v3 ↔ v4. If
all four switches v1, v2, v3 and v4 are distinct, and if
none of the links v1 ↔ v4 and v3 ↔ v2 already exists,
then replace v1 ↔ v2 by v1 ↔ v4 and v3 ↔ v4 by
v3 ↔ v2, otherwise do nothing. Remove both links
from consideration, and repeat until all links in Ei

have been considered. Figure 1 (a) shows an example
permutation of intra-cabinet links. In the second step,
consider all pairs of cabinets (i, j) with i 6= j and let
Ei,j be the set of all inter-cabinet links connecting a
switch in cabinet i to a switch in cabinet j. Swap the
endpoints of the links in Ei,j using the same method
as in the first step for the links in Ei. Figure 1 (b)
shows an example permutation of inter-cabinet links
between two cabinets. Because all permutations are
for links between the same pair of cabinets, cable
length is conserved.

The three-cab permutation method also proceeds in
two steps. Its first step is identical to the first step
of the two-cab method. In the second step, consider
all triads of cabinets (i, j, k) with i 6= j 6= k. Let
Ei,j,k = Ei,j∪Ej,k∪Ek,i, i.e., the set of all inter-cabinet
links among the three cabinets i, j and k. Randomly
pick two links in Ei,j,k, say v1 ↔ v2 and v3 ↔ v4 such
that v1 and v3 are in the same cabinet. If all switches
v1, v2, v3 and v4 are distinct, and if none of the links
v1 ↔ v4 and v3 ↔ v2 already exists, then replace
v1 ↔ v2 by v1 ↔ v4 and v3 ↔ v4 by v3 ↔ v2, otherwise
do nothing. Remove both links from consideration
and repeat until all links in Ei,j,k have been consid-
ered. Figure 1 (c) shows an example permutation of
inter-cabinet links among three cabinets. Note that the
three-cab permutation is a superset of the two-cab

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2014.2340863

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

permutation, i.e., the four switches v1, v2, v3 and v4 are
distributed over two or three cabinets. In this sense
the three-cab permutation method leads to “more
random” topologies than the two-cab method, which
should be to its advantage since it has been shown
in the literature that more randomness in a topology
leads to lower path lengths [5]–[7]. The number of
intra-cabinet links and the number of inter-cabinet
links between any two cabinets are identical to those
in the base topology, meaning that total cable length
is conserved.

3.2 Indirect Networks
We also consider applying topology permutation to
indirect topologies, e.g., fat-tree, Clos and Myrinet-
Clos. These topologies have hierarchical structures
and their deployment of switches to cabinets may also
be hierarchical, i.e., some cabinets contain only upper-
tier switches without any compute nodes while others
contain leaf switches connected to compute nodes.
A two-step permutation of inter-cabinet and intra-
cabinet links does not make sense in such a hierar-
chical structure because there are no direct links be-
tween leaf switches. For these hierarchically deployed
topologies we define another permutation method,
one-step permutation.

The one-step permutation method swaps two links
without using two separate steps for intra- and inter-
cabinet links. For each pair of cabinets i and j with
i 6= j, let Êi,j = Ei,j ∪Ei ∪Ej , i.e., the set of all intra-
cabinet and inter-cabinet links with both endpoints
in cabinets i and/or j. Randomly pick two links in
Êi,j , say v1 ↔ v2 and v3 ↔ v4. If all switches v1,
v2, v3 and v4 are distinct, and if none of the links
v1 ↔ v4 and v3 ↔ v2 already exists, and if the
two links are not both intra-cabinet links in different
cabinets, then replace v1 ↔ v2 by v1 ↔ v4 and
v3 ↔ v4 by v3 ↔ v2, otherwise do nothing. Remove
both links from consideration and repeat until all links
in Êi,j have been considered. Figure 1 (d) shows an
example one-step permutation of links in and between
two cabinets. The total numbers of intra- and inter-
cabinet cables are unchanged after each permutation
operation. The total cable length is thus conserved.

3.3 Topology Generation
For both direct and indirect topologies the topology
generation procedures we have described can in prin-
ciple produce a topology that has a lower bisection
bandwidth than the original topology (or even a
topology that is partitioned). In our experiments we
have never seen a decrease in bisection bandwidth
due to topology permutation, which likely indicates
that such reduction happens with low probability. As
a result, it is possible to keep invoking the generation
procedure until a topology is generated that has the
desirable bisection bandwidth.

In all the results presented in the rest of the paper
we generate 20 random trials for each permuted
topology. Among these 20 trials we pick the one
with the lowest diameter, breaking ties using the
average shortest path length. In all our experiments
we observe at most a 1% coefficient of variation in
average shortest path length across the 20 trials.

4 TOPOLOGIES AND PHYSICAL LAYOUTS

4.1 Direct Topologies

We consider the following direct topologies as starting
points for topology permutation:

• 2DTORUS: A 2-dimensional torus of degree 4;
• 5DTORUS: A 5-dimensional torus of degree 10;
• HYPERCUBE: A hypercube of degree n for N =

2n switches;
• FHYPERCUBE: A folded hypercube of degree n+

1 for N = 2n switches, in which a link is added
between each switch and its most distant multi-
hop neighbor [15].

The two-cab and three-cab permuted versions of
topology topo are denoted by P2-topo and P3-topo,
respectively. For the 2DTORUS and 5DTORUS topolo-
gies we always opt for a shape that has the smallest
maximum dimension, so as to make the topology as
close as possible to a cube. For instance, we generate a
29-switches 5DTORUS with dimensions 4×4×4×4×2
(instead of, e.g., 2× 4× 8× 4× 2).

We compare the above permuted topologies to the
following competitors:

• RING-n: A DLN [7] of degree n, which consists
of a ring plus n− 2 random shortcut links at each
switch;

• DRAGONFLY-a-h: A Dragonfly [24] of degree
a − 1 + h, which has a fully-connected switches
in each group and h inter-group links at each
switch;

• HYPERX-s1-s2-s3: A 3-dimensional HyperX [29]
of degree s1 + s2 + s3 − 3, which has s1 switches
in each cabinet, s2 switches along cabinets row,
and s3 switches along cabinets column.

For all these topologies, we assume that each cabi-
net stores 16 switches. We assign switches taken in the
canonical topological order sequentially to cabinets,
i.e., the first 16 switches go into the first cabinet, the
next 16 switches go into the second cabinet, and so on.
Topology permutation does not affect the assignment
of switches to cabinets.

4.2 Indirect Topologies

We consider the following indirect topology as start-
ing points for topology permutation:

• MYRICLOS: The Myrinet Clos [30] built from 16-
port switches for N compute nodes.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2014.2340863

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

TABLE 1
Structural parameters of MYRICLOS.

N = #nodes 32 64 128 256 512 1024 2048 4096
#switches 6 12 24 80 160 320 896 1792

4th !er ― ― ― ― ― ― 128 256

3rd !er ― ― ― 16 32 64 256 512

2nd !er 2 4 8 32 64 128 256 512

1st !er 4 8 16 32 64 128 256 512

#enclosures 1 1 1 6 12 24 48 96

#cabinets 2 2 2 4 7 14 28 56

switch-only 1 1 1 2 3 6 12 24

node-only 1 1 1 2 4 8 16 32

���������	
�������� ����	�

��������

�	�

��

Fig. 2. Example deployment of 80-switch 256-node
MYRICLOS (top), its topological view (bottom left) and
its permuted version P1-MYRICLOS (bottom right).

The one-step permuted version of MYRICLOS is
denoted by P1-MYRICLOS. For the MYRICLOS topol-
ogy, we follow the deployment guidelines provided
in [30], which are summarized in Table 1. We assume
that 128 compute nodes or four M3-E128 switch en-
closures (i.e., 512 switch ports) can fit in a cabinet.
An M3-E128 switch enclosure has 128 switch ports
and works either as 16 8-port switches or as 8 16-port
switches. We assign all compute nodes to node-only
cabinets in the canonical order, and then assign all
switch enclosures to switch-only cabinets from lower
tier to upper tier. See Figure 2 for an example with 256
compute nodes, i.e., corresponding to the 4th column
in Table 1. The figure also shows an instance of the
one-step permutation of this topology.

The Myrinet Clos topology may also be built us-
ing recent high-radix switches. For a given number
of nodes, as the number of switch ports increases,
the diameter and the average shortest path length

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

5 6 7 8 9 10 11 12

D
ia

m
e

te
r

[h
o

p
s]

Network size [n = log2N]

2DTORUS

P2-2DTORUS

P3-2DTORUS

RING-4

0

4

8

12

16

20

24

28

32

5 6 7 8 9 10 11 12

A
v

e
ra

g
e

 S
h

o
rt

e
st

 P
a

th
 L

e
n

g
th

 [
h

o
p

s]

Network size [n = log2N]

2DTORUS

P2-2DTORUS

P3-2DTORUS

RING-4

Fig. 3. Diameter (left), average shortest path length
(right) vs. network size for 2DTORUS and the same-
degree RING-n.

become lower in both the permuted and the original
topologies. The advantage of topology permutation
is thus expected to be maintained, even when using
high-radix switches.

5 GRAPH ANALYSIS

5.1 Methodology
In this section we use graph analysis to evaluate the
merits of topology permutation when compared to
non-random topologies and to previously proposed
random shortcut topologies. Unless otherwise spec-
ified, all comparisons are between topologies with
the same degree so as to be fair. All analyses are
performed using R with the igraph library to compute
topology diameters and average shortest path lengths.

5.2 Main Results
Figure 3 shows the diameter and the average shortest
path length for 2DTORUS, its two permuted versions
P2-2DTORUS and P3-2DTORUS, and RING-4 vs. the
number of switches, N = 2n, up to N = 212. Note
that N = 212 already represents a large-scale sys-
tem. Assuming switches with 36 ports, each switch
would support 32 compute nodes for more than
131k compute nodes in total. We see that all random
topologies improve both metrics over the non-random
2DTORUS. P2-2DTORUS leads to equivalent or better
results than P3-2DTORUS, showing that swapping
links between two cabinets is more effective than
swapping among three cabinets. This same result is
observed for all the topologies discussed hereafter.
In terms of diameter, P2-2DTORUS is outperformed
by RING-4 but improves significantly over 2DTORUS
(e.g., for n = 12 its diameter is larger than that of
RING-4 by 25 hops but lower than that of 2DTORUS
by 29 hops). Similarly, P2-2DTORUS leads to larger
average shortest path lengths than RING-4 but still
improves over 2DTORUS (e.g., for n = 12 its average
shortest path length is 11.59 hops larger than that of
RING-n but 13.50 hops lower than that of 2DTORUS).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2014.2340863

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

0

2

4

6

8

10

12

14

5 6 7 8 9 10 11 12

D
ia

m
e

te
r

[h
o

p
s]

Network size [n = log2N]

5DTORUS

P2-5DTORUS

P3-5DTORUS

RING-10

0

1

2

3

4

5

6

7

5 6 7 8 9 10 11 12

A
v

e
ra

g
e

 S
h

o
rt

e
st

 P
a

th
 L

e
n

g
th

 [
h

o
p

s]

Network size [n = log2N]

5DTORUS

P2-5DTORUS

P3-5DTORUS

RING-10

Fig. 4. Diameter (left), average shortest path length
(right) vs. network size for 5DTORUS and the same-
degree RING-n.

0

1

2

3

4

5

6

7

8

9

10

11

12

5 6 7 8 9 10 11 12

D
ia

m
e

te
r

[h
o

p
s]

Network size [n = log2N]

MYRICLOS

P1-MYRICLOS

0

1

2

3

4

5

6

7

8

5 6 7 8 9 10 11 12

A
v

e
ra

g
e

 S
h

o
rt

e
st

 P
a

th
 L

e
n

g
th

 [
h

o
p

s]

Network size [n = log2N]

MYRICLOS

P1-MYRICLOS

Fig. 5. Diameter (left), average shortest path length
(right) vs. network size for MYRICLOS.

The gap between P2-2DTORUS and RING-4 is large
because 2DTORUS has very low degree (4) and RING-
n is known to achieve low path lengths even at very
low degrees [7].

Figure 4 shows results for the 5DTORUS topologies.
The trends are similar to those shown for 2DTORUS,
but the gap between the topologies are reduced be-
cause of the higher degree (10). For n = 12, P2-
5DTORUS leads to diameter, resp. average shortest
path lengths, larger than that of RING-10 by 5 hops,
resp. 1.48 hops, but lower than that of 5DTORUS by
4 hops, resp. 1.61 hops. We note an inflection point
at n = 10. This is because the dimensions of the 210-
switch 5DTORUS are 4 × 4 × 4 × 4 × 4. With more
switches one of these dimensions becomes 8, which
leads to longer path lengths. This is also the reason
for the inflection points seen in Figure 3.

Results for HYPERCUBE and FHYPERCUBE are
provided and discussed in Section 1 of the supple-
mentary material. They show similar trends and lead
to the same overall observations.

Figure 5 shows results for the MYRICLOS and its
one-step permuted version P1-MYRICLOS. We see
that topology permutation leads to some improve-
ments, at most one hop in diameter and up to 1.51
hops in average shortest path length (for n = 12).

We conclude that topology permutation leads to

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40

A
v

e
ra

g
e

 s
h

o
rt

e
st

 p
a

th
 l

e
n

g
th

 [
h

o
p

s]

Degree

P2-2DTORUS

P2-5DTORUS

P2-HYPERCUBE

P2-FHYPERCUBE

DRAGONFLY-32-4

HYPERX-16-16-16

0

5

10

15

20

25

30

35

0 10 20 30 40

D
ia

m
e

te
r

[h
o

p
s]

Degree

P2-2DTORUS

P2-5DTORUS

P2-HYPERCUBE

P2-FHYPERCUBE

DRAGONFLY-32-4

HYPERX-16-16-16

Fig. 6. Diameter (left) and average shortest path length
(right) vs. degree for 4,096-switch direct networks in-
cluding DRAGONFLY and HYPERX.

improved diameter and average shortest path length
when compared to original non-random topologies,
both for direct and indirect topologies. Surprisingly,
the three-cab permutation method, although it leads
to “more random” topologies, is slightly outper-
formed by the two-cab method. The notion that more
randomness is better in terms of path lengths [5]–
[7] does not necessarily hold true in the context of
topology permutation.

5.3 Comparison with High-degree Topologies
The analysis in the previous section is confined to
direct topologies with relatively low degree (at most
1 + log n), and only presents comparisons between
same-degree topologies. Due to the availability of
high-radix switches, several high-degree topologies
have been proposed. Two well-known such topologies
are Dragonfly [24] and HyperX [29] (which subsumes
the Flattened Butterfly topology [25]). In this sec-
tion we consider DRAGONFLY-32-4 (degree 35)1 and
HYPERX-16-16-16 (degree 45). These configuration
parameters are chosen to match well with the physical
deployment of N = 212 switches stored in 28 cabinets
laid out in a 16× 16 grid on a floor.

Figure 6 shows diameter and average shortest path
length vs. degree for the four permuted direct topolo-
gies evaluated in the previous section in comparison
with Dragonfly and HyperX. The results show that
Dragonfly achieves sensibly the same path lengths
as HyperX, with a lower degree. As expected, P2-
2DTORUS leads to the poorest results. The three
other permuted topologies are clustered in the same
neighborhood, each corresponding to a different and
possibly desirable trade-off between degree and path
length. P2-FHYPERCUBE (degree 13) achieves lower
path lengths than P2-5DTORUS (degree 10) and P2-
HYPERCUBE (degree 12). Dragonfly outperforms P2-
FHYPERCUBE by 2 hops for the diameter, and 0.87

1. This setting of Dragonfly is not balanced when assuming 8
compute nodes per switch, but has the same path length as the
balanced counterpart DRAGONFLY-32-16 (degree 47).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2014.2340863

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

0

2

4

6

8

10

12

14

5 6 7 8 9 10 11 12

D
ia

m
e

te
r

[h
o

p
s]

Network size [n = log2N]

5DTORUS

P2-5DTORUS 5%

P2-5DTORUS 25%

P2-5DTORUS 50%

P2-5DTORUS 100%

0

1

2

3

4

5

6

7

5 6 7 8 9 10 11 12

A
v

e
ra

g
e

 S
h

o
rt

e
st

 P
a

th
 L

e
n

g
th

 [
h

o
p

s]

Network size [n = log2N]

5DTORUS

P2-5DTORUS 5%

P2-5DTORUS 25%

P2-5DTORUS 50%

P2-5DTORUS 100%

Fig. 7. Diameter (left), average shortest path length
(right) vs. network size for 5DTORUS and P2-
5DTORUS with 100%, 50%, 25%, and 5% swappable
links.

hops for the average shortest path length. These im-
provements, however, come at the cost of a much
larger degree (35 vs. 13). High degrees are feasible
given the availability of high-radix switches, but using
more ports per switch reduces the number of compute
nodes that a system can support. We conclude that our
proposed permuted topologies can provide a viable
alternative to non-random high-degree topologies.

5.4 Fraction of Swappable Links

For topology swapping to be feasible links must be
swappable. In practice groups of links can be im-
plemented as printed circuit cards rather than with
actual cables. As an example, the midplane of the Blue
Gene/Q supercomputer “hard wires” a 5-D Torus
over 512 compute nodes. Link swapping would thus
require that multiple such cards be produced, which
may incur high cost. Nevertheless, a fraction of the
links are still implemented as physical cables, and
can thus be swapped. Furthermore, it is expected that
more links will become optical and thus be imple-
mented as optical cables. The results in Section 5.2
assume that 100% of the links are swappable. In
this section we attempt to answer the question: does
topology permutation still work if only a fraction of
the links are swappable?

We modify our topology permutation procedure so
that a swapping operation is allowed with a proba-
bility p. While not necessarily representative of actual
physical deployment scenarios, which may impose
some structure on the set of links that are swappable,
this method allows us to gauge the impact of unswap-
pable links on topology permutation in a broad sense.
Figure 7 shows path length results for 5D-TORUS and
P2-5DTORUS with p = 100%, p = 50%, p = 25%,
and p = 5%. We see that results for p = 50% and
p = 25% are close to those for p = 100%. Even
with p as low as 5% topology permutation achieves
significant improvement over the base topology (e.g.,
several hops of diameter). We conclude that topology

permutation can remain effective even in scenarios in
which many links are not swappable.

6 NETWORK PERFORMANCE SIMULATION

6.1 Methodology
In this section we use a cycle-accurate network sim-
ulator written in C++ [7] to evaluate the network
latency and throughput of permuted topologies. Ev-
ery simulated switch is configured to use virtual cut-
through switching. A header flit transfer requires over
100ns that include routing, virtual-channel allocation,
switch allocation, and flit transfer from an input chan-
nel to an output channel through a crossbar. The flit
injection delay and link delay together are set to 20ns.

Although both adaptive and deterministic routing
schemes can be supported in all the topologies used
in our experiments, we use adaptive routing so as
to achieve better performance. Routing in hyper-
cubes and tori is done with the protocol proposed
by Duato [31], and we use dimension-order routing
for the escape paths. For random topologies we use
the topology-agnostic adaptive routing scheme with
escape paths described in [32]. The path calculation
cost has previously been shown to be acceptable [9]. In
our simulation, four virtual channels (VCs) are used
in all topologies. Simulation results are essentially
unchanged when using more VCs, but are markedly
poorer when only two VCs are used. We also present
results for the Myrinet-Clos topology [30], for which
we use up*/down* routing.

We simulate three synthetic traffic patterns that
determine each source-and-destination pair: random
uniform, bit-reversal, and matrix-transpose. These traffic
patterns are commonly used for measuring the per-
formance of large-scale interconnection networks [10].
The compute nodes inject packets into the network
independently of each other. In each synthetic traffic
the packet size is set to 33 flits (one of which is for
the header). Each flit is set to 256 bits, and effective
link bandwidth is set to 96 Gbit/sec. We pick rela-
tively small packet sizes since we wish to study the
performance of latency-sensitive traffic that consists
of small messages [1].

Because discrete event simulation is compute inten-
sive, we simulate networks with at most 512 switches.
However, our simulation results are consistent with
the graph analysis results presented in the previous
section, which are for networks with up to 4,096
switches and show stable trends as the number of
switches increases.

6.2 Results
We have conducted simulation experiments for 64-,
256-, and 512-switch direct topologies (2DTORUS,
5DTORUS, HYPERCUBE) with 256, 2,048, and 4,096
compute nodes, respectively, for the three traffic pat-
terns. Each cabinet stores 8 switches for 64-switch

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2014.2340863

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 2 4 6 8 10 12

L
a
te

n
c
y
 [
n
s
e
c
]

Accepted traffic [% max injection rate]

5DTORUS
P3-5DTORUS
P2-5DTORUS

RING-10

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 2 4 6 8 10 12

L
a
te

n
c
y
 [
n
s
e
c
]

Accepted traffic [% max injection rate]

MYRICLOS
P1-MYRICLOS

Fig. 8. Latency vs. accepted traffic for the uniform
traffic pattern for 512-switch 4,096-node 5DTORUS
topologies (left) and 320-switch 1,024-node MYRIC-
LOS topologies (right).

networks or 16 switches for 256- and 512-switch
networks. Our results quantify two metrics: latency
and throughput. The latency is the elapsed time (in
nanoseconds) between the generation of a packet at a
source node and its delivery at a destination node. The
throughput is the largest amount of accepted traffic
relative to the maximum injection rate (96 Gbit/sec).

Figure 8 shows the results for the 512-switch 4,096-
node 5DTORUS topology, for its P2- and P3- per-
muted versions, and for the same-degree RING-10
topology, for the uniform traffic pattern. Results for
all topologies and traffic patterns are presented in
a similar manner (see Figures 3–17 in Section 2 of
the supplementary material). All results show similar
trends. As observed in Section 5, the P3- versions of
the topologies are outperformed by their P2- coun-
terparts. Unsurprisingly, RING-n leads to the best
or close to the best results for both latency and
throughput. In line with the results in Section 5, the
permuted topologies are in between the base topology
and RING-n. For instance, results for topologies of
degree 10 show that RING-10 leads to latency lower
than that of 5DTORUS by 25.0%, 25.4%, and 26.1%,
for the uniform, matrix-transpose, and bit-reversal
traffic, respectively. By comparison, the latency of
P2-5DTORUS improves over that of 5DTORUS by
18.7%, 19.2%, and 19.3%. The differences in through-
put among these topologies with degree 10 are small.
Significant differences in throughput can be seen for
the 2DTORUS (degree 4) topologies. For these topolo-
gies, network saturation is reached first by the P3-
2DTORUS, then P2-2DTORUS and the base topology,
and then RING-4, with throughputs ranging roughly
between 1 and 6 % maximum injection rate (see Fig-
ures 4 and 5 in Section 2 of the supplementary mate-
rial). A final observation is that the advantage of per-
muted topologies over the baseline topology increases
as network size increases. For instance, considering
5DTORUS and the uniform traffic pattern, the relative
latency improvement of P2-5DTORUS over 5DTORUS

is 12.4%, 16.7%, and 18.7% for topologies with 64,
256, and 512 switches, respectively. Similar trends
are observed for the other two traffic patterns (see
Tables 1 in Section 2 of the supplementary material).
Overall, our simulation results for direct topologies
corroborate the graph analysis results in the previous
section (because network latency is correlated with
path length).

We have conducted network simulation experi-
ments for the high-degree Dragonfly and HyperX
topologies. More specifically, we present results for
a 256-switch, 2,048-node configuration (each switch
has 8 nodes), for which we pick DRAGONFLY-8-4
(degree 11, imbalanced), DRAGONFLY-16-8 (degree
23, balanced), and HYPERX-16-4-4 (degree 21). La-
tency and throughput values are shown in Figure 9
for all our direct topologies, including Dragonfly and
HyperX. These results are for the uniform traffic pat-
tern (results are consistent across all traffic patterns
and are provided in Section 2 of the supplementary
material). The horizontal axis in the figure is explained
in Section 7. We see that the maximum improvements
in latency and throughput of these two topologies are
not large. For instance, across all three traffic patterns,
when compared to P2-5DTORUS, which has degree
10, Dragonfly improves latency by at most 20.2%
and leads to similar throughput (relative differences
between −1.6% and 0.4%), while HyperX improves
latency by up to 15.2% and also leads to similar
throughput (relative differences between −1.5% and
1.3%). As in Section 5.3, we conclude that our pro-
posed permuted topology can provide an attractive
alternative to high-degree non-random topologies.

Finally, we show results for the indirect MYRICLOS
topology and its permuted version P1-MYRICLOS
with 320 switches and 1,024 compute nodes in Fig-
ure 8. Results for 80-switch 256-node, and 160-switch
512-node configurations show similar trends (see Sec-
tion 2 of the supplementary material). The original
and permuted topologies achieve almost the same
throughput, but the permuted topology improves la-
tency by up to 21.4% for the 320-switch configuration.
Since MYRICLOS belongs to the Fat-tree family, we
expect similar conclusions to hold for Fat-tree topolo-
gies as used in most datacenter networks.

Overall, we conclude that topology permutation is
effective in reducing latency and achieving compara-
ble throughput both for direct and indirect topologies.

7 CABLE LENGTH

7.1 Methodology
In this section we estimate the cable length required
for deploying the topologies onto a physical layout
of cabinets. We assume a physical floorplan that is
sufficiently large to align all cabinets on a 2-D grid.
Formally, assuming c cabinets, the number of cabinet
rows is q = d

√
c e and the number of cabinets per row

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2014.2340863

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

(a) latency (b) throughput

400

600

800

1000

1200

0 2 4 6 8 10 12

La
te

n
cy

 [
n

se
c]

Total cable length [km]

2

4

6

8

10

12

14

0 2 4 6 8 10 12

T
h

ro
u

g
h

p
u

t
[%

 m
a

x
 i

n
je

c!
o

n
 r

a
te

]

Total cable length [km]

2DTORUS

5DTORUS

HYPERCUBE

P2-2DTORUS

P2-5DTORUS

P2-HYPERCUBE

RING-4

RING-8

RING-10

DRAGONFLY-8-4

DRAGONFLY-16-8

HYPERX-16-4-4

Fig. 9. Latency (a) and throughput (b) vs. total cable
length in 256-switch, 2,048-node, direct networks with
the uniform traffic pattern.

is r = dc/qe. For each topology, and given the map-
ping of switches to the cabinets, we attempt to place
cabinets onto the floorplan in a way that minimizes
total cable length. Instead of using regular, but pos-
sibly vastly sub-optimal placement, we compute the
placement using Simulated Annealing (SA) [33], using
the total cable length as the objective function. We
use Taillard’s implementation of Simulated Annealing
[34], which we run for 100 million iterations, picking
the best solution out of five independent trials. The
distance between any two cabinets is computed using
the Manhattan distance. Following the recommenda-
tions in [26] we assume that each cabinet is 0.6m
wide and 2.1m deep including space for the aisle. We
estimate total cable length using the approach in [25].
However, our estimation is more conservative since
we consider 2m intra-cabinet cables and a 2m wiring
overhead added to the length of inter-cabinet cables at
each cabinet so that a switch can be placed in any slot
within a cabinet. We ignore cables between compute
nodes and switches since their lengths are constant
regardless of the layout.

7.2 Results

Figure 9 plots latency and throughput vs. total cable
length for 256-switch direct topologies for the uniform
traffic pattern (results for all traffic patterns are consis-
tent and provided in Section 3 of the supplementary
material). Latency and throughput values are com-
puted from simulation experiments similar to (and
including) those presented in the previous section.
As explained earlier, latency values are the network
delays measured in low load conditions. Throughput
values are the largest accepted traffic we observed,
regardless of the latency. To avoid clutter, these results
exclude P3- topologies since they are almost always
inferior to their P2- counterparts. Each figure shows
one data point for each topology. In Figure 9(a), better
points are located toward the bottom-left corner of the
figure (low length, low latency), while in Figure 9(b)
better points are located toward the top-left corner of

the figure (low length, high throughput).
In all results, as expected, a topology topo is either

equivalent to or outperformed by the P2-topo topology
since both topologies have the same cable length.
Let us first discuss the latency results, considering
all traffic patterns. For the topologies with degree 4,
RING-4 leads to latency about between 15.4% and
16.6% lower than P2-2DTORUS but at the expense
of up to 27.6% longer total cable length. For topolo-
gies with degree 8, we find that RING-8 leads to
latency only between 3.4% and 4.6% lower than P2-
HYPERCUBE, but incurs an increase in cable length
of 43.1%. Finally, for topologies with degree 10, RING-
10 leads to latency only about between 8.5% and 9.2%
lower than P2-5DTORUS, while incurring an increase
in cable length of 89.4%.

Throughput results paint a similar picture. RING-
4 improves on P2-2DTORUS by between 85.1% and
135.2%. RING-8 improves on P2-HYPERCUBE by be-
tween 0.8% and 16.0%. Similar results are seen when
comparing RING-10 to P2-5DTORUS.

When considering the high-degree Dragonfly and
HyperX topologies, we find that HyperX leads to very
large cable length, which likely does not justify its
moderate gains in terms of latency (at most 15.2% im-
provement over P2-5DTORUS across the three traffic
patterns) and throughput (at most 1.3% improvement
over P2-5DTORUS across the three traffic patterns).
Dragonfly has cable length higher than but compa-
rable to that of our permuted topologies. It leads to
improvements in latency (at most 20.2% improvement
over P2-5DTORUS), while achieving similar through-
put (between −0.4% and 1.6% higher). Given these
results, once again we conclude that our proposed
permitted topologies can provide an attractive alter-
native to high-degree non-random topologies.

The overall conclusion is that topology permutation
makes it possible to combine low cable length with
good performance. RING-n may be preferred in low
degree situation because it can lead to good perfor-
mance even with only a few shortcut links. However,
as the degree increases, a permuted topology leads
to performance similar to that of RING-n at a much
lower cabling expense. Finally, permuted topologies
provide a viable alternative to non-random high-
degree topologies such as Dragonfly or HyperX.

8 CONCLUSION
In this work we have proposed and evaluated
a method for generating random topologies. Our
method consists in randomly swapping link end-
points in a non-random topology. Our results show
that, when compared to the base topology, the per-
muted topology improves path lengths, improves la-
tency, conserves bisection bandwidth, and leads to
comparable or even slightly higher throughput. These
results are obtained for both direct and indirect non-
random base topologies.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2014.2340863

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

One advantage of our method is that a permuted
topology has the same cable length as the original
non-random topology. Since traditional non-random
topologies can often be deployed with low cable
length onto a standard cabinet layout, then the cable
length of the permuted topology is also low. Another
advantage of topology permutation is that it can be
applied to a topology that is already deployed. These
two advantages are in sharp contrast with previously
proposed fully random topologies. A drawback of
random topologies in general is the increase in net-
work packaging complexity. With a random topology
it may not be possible to use regular building blocks
for deploying physical network connections, leading
to a significant additional labor and cost overhead at
deployment time. Determining whether this overhead
is worth the benefit depends on the intended work-
load and the network technology in use. However, we
note that this overhead would be lower for permuted
random topologies than for previously proposed fully
random topologies.

Overall, while the performance of our permuted
topology is not as high as that of the fully random
shortcut topology proposed in [7], its cabling length,
its cable packaging complexity, and thus its overall
network costs, are significantly lower. Our broad find-
ing is that randomizing a topology via link endpoint
swapping is an attractive approach for generating
low-latency random network topologies.

ACKNOWLEDGMENTS

This work was partially supported by JSPS KAKENHI
Grant Numbers 25280018 and 25730068, JST CREST,
and NSF Award CNS-0855245.

REFERENCES

[1] K. Scott Hemmert et al, “Report on Institute for Ad-
vanced Architectures and Algorithms, Interconnection Net-
works Workshop 2008,” http://ft.ornl.gov/pubs-archive/
iaa-ic-2008-workshop-report-final.pdf.

[2] J. Tomkins, “Interconnects: A Buyers Point of View,” ACS
Workshop, 2007.

[3] P. Coteus and et. al., “Packaging the Blue Gene/L supercom-
puter,” IBM Journal of Research and Development, vol. 49, no.
2/3, pp. 213–248, Mar/May 2005.

[4] Y. Ajima, S. Sumimoto, and T. Shimizu, “Tofu: A 6D
Mesh/Torus Interconnect for Exascale Computers,” IEEE Com-
puter, vol. 42, pp. 36–40, 2009.

[5] J. Y. Shin, B. Wong, and E. G. Sirer, “Small-World Data
Centers,” in Proc. of the Symp. on Cloud Computing, Oct. 2011.

[6] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish:
Networking Data Centers Randomly,” in Proc. of USENIX
Symposium on Network Design and Implementation (NSDI), 2012.

[7] M. Koibuchi, H. Matsutani, H. Amano, D. F. Hsu, and
H. Casanova, “A Case for Random Shortcut Topologies for
HPC Interconnects,” in Proc. of the Intl. Symp. on Computer
Architecture (ISCA), 2012, pp. 177–188.

[8] “Earth simulator project,” http://www.jamstec.go.jp/es/en/
index.html.

[9] M. Koibuchi, I. Fujiwara, H. Matsutani, and H. Casanova,
“Layout-conscious random topologies for hpc off-chip in-
terconnects,” in Proceedings of the 19th Intl. Symp. on High-
Performance Computer Architecture (HPCA), 2013, pp. 484–495.

[10] W. D. Dally and B. Towles, Principles and Practices of Intercon-
nection Networks. Morgan Kaufmann, 2003.

[11] M. Miller and J. Siran, “Moore graphs and beyond: A survey
of the degree/diameter problem,” Electronic Journal of Combi-
natorics, vol. DS14, 2005.

[12] M. R. Samatham and D. K. Pradhan, “The De Bruijn Multipro-
cessor Network: A Versatile Parallel Processing and Sorting
Network for VLSI,” IEEE Trans. on Computers, vol. 38, no. 4,
pp. 567–581, 1989.

[13] S. B. Akers, B. Krishnamurthy, and D. Harel, “The Star Graph:
An Attractive Alternative to the n-Cube,” in Proc. of the Intl.
Conf. on Parallel Processing (ICPP), 1987, pp. 393–400.

[14] K. Hwang and J. Ghosh, “Hypernet: A communication-
efficient architecture for constructing massively parallel com-
puters,” IEEE Trans. on Computers, vol. 36, no. 12, pp. 1450–
1466, 1987.

[15] A. El-Amawy and S. Latifi, “Properties and Performance of
Folded Hypercubes,” IEEE Trans. on Parallel Distrib. Syst.,
vol. 2, no. 1, pp. 31–42, 1991.

[16] K. Efe, “A Variation on the Hypercube with Lower Diameter,”
IEEE Trans. on Computers, vol. 40, no. 11, pp. 1312–1316, 1991.

[17] N.-F. Tzeng and S. Wei, “Enhanced Hypercubes,” IEEE Trans.
on Computers, vol. 40, no. 3, pp. 284–294, 1991.

[18] W. Dally, “Express Cubes: Improving the Performance of k-ary
n-cube Interconnection Networks,” IEEE Trans. on Computers,
vol. 40, pp. 1016–1023, 1991.

[19] E. Ganesan and D. K. Pradhan, “The Hyper-deBruijn Net-
works: Scalable Versatile Architecture,” IEEE Trans. on Parallel
Distrib. Syst., vol. 4, no. 9, pp. 962–978, 1993.

[20] Q. M. Malluhi and M. A. Bayoumi, “The Hierarchical Hyper-
cube: A New Interconnection Topology for Massively Parallel
Systems,” IEEE Trans. on Parallel Distrib. Syst., vol. 5, no. 1, pp.
17–30, 1994.

[21] B. Bollobás and F. R. K. Chung, “The Diameter of a Cycle Plus
a Random Matching,” SIAM J. Discrete Math., vol. 1, no. 3, pp.
328–333, 1988.

[22] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[23] J. Kleinberg, “The small-world phenomenon and decentralized
search,” SIAM News, vol. 37, no. 3, pp. 1–2, 2004.

[24] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-Driven,
Highly-Scalable Dragonfly Topology,” in Proc. of the Intl. Symp.
on Computer Architecture (ISCA), 2008, pp. 77–88.

[25] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: a cost-
efficient topology for high-radix networks,” in Proc, of the Intl.
Symp. on Computer Architecture (ISCA), 2007, pp. 126–137.

[26] HP, “Optimizing facility operation in high density data
center environments , technoloogy brief,” 2007. [Online].
Available: http://h18004.www1.hp.com/products/servers/
technology/whitepapers/datacenter.html

[27] I. Fujiwara, M. Koibuchi, and H. Casanova, “Cabinet Layout
Optimization of Supercomputer Topologies for Shorter Cable
Length,” in Proc. of Intl. Conf. on Parallel and Distributed Com-
puting, Applications and Technologies, Dec 2012, pp. 227–232.

[28] InfiniBand Trade Association, Pluggable Interfaces Passive
Copper, Active Copper and Optical Devices (White Paper),
http://www.infinibandta.org/, 2007.

[29] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.
Schreiber, “HyperX: topology, routing, and packaging of ef-
ficient large-scale networks,” in Proc. of the Conf. on High
Performance Computing Networking, Storage and Analysis (SC),
2009, pp. 1–11.

[30] Myricom, http://www.myricom.com/scs/myrinet/
m3switch/guide/myrinet-2000 switch guide.pdf.

[31] J. Duato, “A Necessary And Sufficient Condition For
Deadlock-Free Adaptive Routing In Wormhole Networks,”
IEEE Trans. on Parallel Distrib. Syst., vol. 6, no. 10, pp. 1055–
1067, 1995.

[32] F. Silla and J. Duato, “High-Performance Routing in Networks
of Workstations with Irregular Topology,” IEEE Trans. on Par-
allel Distrib. Syst., vol. 11, no. 7, pp. 699–719, 2000.

[33] D. T. Connolly, “An improved annealing scheme for the QAP,”
European Journal of Operational Research, vol. 46, no. 1, pp. 93–
100, May 1990.

[34] [Online]. Available: http://mistic.heig-vd.ch/taillard/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2014.2340863

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

Ikki Fujiwara received the BE and ME de-
grees from Tokyo Institute of Technology,
Tokyo, Japan, in 2002 and 2004, respec-
tively, and received the PhD degree from
the Graduate University for Advanced Stud-
ies (SOKENDAI), Tokyo, Japan, in 2012. He
is currently a Project Assistant Professor in
the Information Systems Architecture Re-
search Division, National Institute of Infor-
matics, Tokyo, Japan. His research interests
include the areas of high-performance com-

puting and optimization. He is a member of the IEEE.

Michihiro Koibuchi received the BE, ME,
and PhD degrees from Keio University, Yoko-
hama, Kanagawa, Japan, in 2000, 2002, and
2003, respectively. He is currently an Asso-
ciate Professor in the Information Systems
Architecture Research Division, National In-
stitute of Informatics, and the Graduate Uni-
versity for Advanced Studies (SOKENDAI),
Tokyo, Japan. His research interests include
the areas of high-performance computing
and interconnection networks. He is a mem-

ber of the IEEE.

Hiroki Matsutani received the BA, ME, and
PhD degrees from Keio University, Yoko-
hama, Kanagawa, Japan, in 2004, 2006, and
2008, respectively. He is currently an Assis-
tant Professor in the Department of Informa-
tion and Computer Science, Keio University.
From 2009 to 2011, he was a research fel-
low in the Graduate School of Information
Science and Technology, The University of
Tokyo, Tokyo, Japan, and awarded a Re-
search Fellowship of the Japan Society for

the Promotion of Science (JSPS) for Young Scientists (SPD). His
research interests include the areas of computer architecture and
interconnection networks. He is a member of the IEEE.

Henri Casanova received the BS degree
from the École Nationale Supérieure
d’Électronique, d’Électrotechnique,
d’Informatique et d’Hydraulique de Toulouse,
France, in 1993, the MS degree from the
Université Paul Sabatier, Toulouse, France,
in 1994, and the PhD degree from the
University of Tennessee Knoxville, U.S.A., in
1998. He is currently an Associate Professor
in the Information and Computer Science
Dept. at the University of Hawai‘i at Manoa.

His research interests are in the areas of parallel and distributed
computing. He is a member of the IEEE.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2014.2340863

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

