論文

査読有り 国際誌
2019年8月4日

Cationic Fluorescent Nanogel Thermometers based on Thermoresponsive Poly(N-isopropylacrylamide) and Environment-Sensitive Benzofurazan.

Polymers
  • Teruyuki Hayashi
  • ,
  • Kyoko Kawamoto
  • ,
  • Noriko Inada
  • ,
  • Seiichi Uchiyama

11
8
記述言語
英語
掲載種別
DOI
10.3390/polym11081305

Cationic nanogels of N-isopropylacrylamide (NIPAM), including NIPAM-based cationic fluorescent nanogel thermometers, were synthesized with a cationic radical initiator previously developed in our laboratory. These cationic nanogels were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and fluorescence spectroscopy, as summarized in the temperature-dependent fluorescence response based on the structural change in polyNIPAM units in aqueous solutions. Cellular experiments using HeLa (human epithelial carcinoma) cells demonstrated that NIPAM-based cationic fluorescent nanogel thermometers can spontaneously enter the cells under mild conditions (at 25 °C for 20 min) and can show significant fluorescence enhancement without cytotoxicity with increasing culture medium temperature. The combination of the ability to enter cells and non-cytotoxicity is the most important advantage of cationic fluorescent nanogel thermometers compared with other types of fluorescent polymeric thermometers, i.e., anionic nanogel thermometers and cationic/anionic linear polymeric thermometers.

リンク情報
DOI
https://doi.org/10.3390/polym11081305
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/31382693
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723757
ID情報
  • DOI : 10.3390/polym11081305
  • PubMed ID : 31382693
  • PubMed Central 記事ID : PMC6723757

エクスポート
BibTeX RIS