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Abstract. We consider an integral region choice problem on a knot projection

with two prohibited regions, where the use of these regions is restricted. We

show that solvability of the problem is closely related to the difference between

Alexander numbers of the two prohibited regions. In particular, if the difference

of Alexander numbers is equal to one, then there exists a unique solution for the

problem. We also provide a necessary and sufficient condition for solvability when

the difference is not equal to one.

1. Introduction

We consider an integral region choice problem on a knot projection proposed by

Ahara and Suzuki [1], which is a generalization of a region choice game originally

proposed by Kawauchi, Kishimoto, and Shimizu based on a study of a region crossing

change operation [6].

The rules of the integral region choice problem are as follows. Let P be a knot

projection with n crossings C1, . . . , Cn. Throughout this paper, we assume that a

knot projection contains at least one crossing. Each crossing Ci is equipped with

an integer ci for i = 1, . . . , n, referred to as its color [3]. Colors can be changed by

assigning an integer r to a region R of P as follows:
ci 7→ ci + 2r (if ∂R touches Ci twice),

ci 7→ ci + r (if ∂R touches Ci once),

ci 7→ ci (if Ci 6∈ ∂R).

Here ∂R denotes the boundary of a region R. This rule for changing colors is called

the double count rule in [1]. Another rule, the single count rule, is defined by:{
ci 7→ ci + r (if ∂R touches Ci),

ci 7→ ci (if Ci 6∈ ∂R).
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Recently, Batal and Gügümcü [3] introduced more general rules defined by:
ci 7→ ci + air (if ∂R touches Ci twice),

ci 7→ ci + r (if ∂R touches Ci once),

ci 7→ ci (if Ci 6∈ ∂R).

Here ai is an integer called an increment number of Ci [3]. Note that setting each

ai equal to two (resp. one) results in the double (resp. single) count rule. If a knot

projection P is reduced, that is, P contains no nugatory crossings, then there are

no difference among these rules. In this paper, we employ the double count rule

for a technical reason (cf. Lemma 2.2). For studies based on other rules, refer to

Section 4. Let R1, . . . , Rn+2 be regions of P . Note that there are two more regions

than crossings. The goal of the integral region choice problem is to find suitable

integers r1, · · · , rn+2 assigned to the regions, which transform all colors to zeros.

See Figure 1 for an example.
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Figure 1. Given colors are c1 = 3, c2 = 5, c3 = −2, c4 = 2 re-

spectively. Assigning integers to regions as r1 = 0, r2 = 0, r3 = −2,

r4 = 0, r5 = 4, r6 = −7, all colors are changed to zeros.

The region choice matrix (of the double count rule) of P is the matrix A(P ) =(
aij

)
of size n× (n+ 2) defined by

aij =


2 (if ∂Rj touches Ci twice),

1 (if ∂Rj touches Ci once),

0 (if Ci 6∈ ∂R).

Then the goal of the integral region choice problem on P with colors c1, . . . , cn is

equivalent to finding a vector r =
(
ri
)
∈ Zn+2 which satisfies

A(P )r + c = 0 (1)

for c =
(
ci
)
∈ Zn. A vector r ∈ Zn+2 in Equation (1) is called a solution for an

integral region choice problem on a knot projection P with colors c. On the other

hand, a vector u ∈ Zn+2 satisfying

A(P )u = 0 (2)



AN INTEGRAL REGION CHOICE PROBLEM WITH TWO PROHIBITED REGIONS 3

is called a kernel solution1 for a knot projection P in [1]. Note that a kernel solution

does not depend on colors c. We call the set of all kernel solutions for P the kernel

solution space of P , which is a free Z-module.

Ahara and Suzuki proved the following.

Proposition 1.1 ([1, Theorem 3.1]). There exists a solution for any knot projection

and colors.

That is to say, an integral region choice problem is always solvable.

Proposition 1.2 ([1, Theorem A.2]). For any knot projection P with n crossings,

rankA(P ) = n.

Example 1.3. For an integral region choice problem of Figure 1, c =


3

5

−2

2

 and

A(P ) =


1 1 0 0 1 1

1 0 1 0 1 1

0 1 1 1 1 0

1 1 1 1 0 0

. Then r =



0

0

−2

0

4

−7


is a solution, that is,

A(P )r + c =


1 1 0 0 1 1

1 0 1 0 1 1

0 1 1 1 1 0

1 1 1 1 0 0




0

0

−2

0

4

−7


+


3

5

−2

2

 =


0

0

0

0

 .

Since the size of A(P ) is n× (n+ 2), considering Proposition 1.2, it is natural to

ask whether a solution exists or not by setting (n + 2) − n = 2 prohibited regions,

namely, the regions where we cannot assign integers to change colors. Here, we call

such a problem an integral region choice problem with two prohibited regions. We

denote by rjk a solution for the problem when Rj and Rk are prohibited regions. In

other words, rjk represents a solution for an integral region choice problem, which

satisfies rj = rk = 0. As a preceding result on this problem, Batal and Gügümcü

proved the following in their modified rules [3, Theorem 3.7].

Proposition 1.4. If two prohibited regions Rj and Rk are adjacent, then there exists

a unique solution rjk.

We note that Shimizu [7] showed the same result with modulo 2 reduction.

1It is called a null pattern for P in [3].
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In this paper, we provide a necessary and sufficient condition for the solvability

of an integral region choice problem with two prohibited regions. One of key in-

gredients is an Alexander numbering, which is originally introduced in [2] to give a

combinatorial definition of a now well-known polynomial invariant. For the defini-

tion of Alexander numbers, see Section 2.

Let R1 be the unbounded region, and R2 a region adjacent to R1. As shown in

Section 2, there exists a ‘canonical’ solution b =
(
bi
)
∈ Zn+2 with prohibited regions

R1 and R2 (for details, see Lemma 2.6). The following is the main theorem of this

paper.

Theorem 1.5. Consider an integral region choice problem on a knot projection P

with prohibited regions Rj and Rk. Let d be the absolute value of the difference

between Alexander numbers of Rj and Rk. Let bj (resp. bk) be the j-th (resp. k-th)

element of b =
(
bi
)
∈ Zn+2, as defined in Lemma 2.6.

(i) Assume that d = 1. Then there exists a unique solution rjk.

(ii) Assume that d ≥ 2. Then there exists a solution rjk if and only if bj ≡ (−1)dbk
(mod d). In this case, the solution is unique if it exists.

(iii) Assume that d = 0. Then there exists a solution rjk if and only if bj = bk. In

this case, we have infinitely many solutions if it exists.

Remark 1.6. Theorem 1.5 (i) is a generalization of Proposition 1.4 since if Rj and

Rk are adjacent, then d = 1.

Organization of the paper. In Section 2, we recall the definition of Alexander

numbers and construct a basis of the kernel solution space using Alexander numbers.

In Section 3, we prove Theorem 1.5. In Section 4, we provide concrete examples of

Theorem 1.5 and propose some problems for future studies.

2. A Basis of the kernel solution space

In this section, we construct a basis of the kernel solution space of a given knot

projection using Alexander numbers.

Let P be an oriented knot projection with n + 2 regions R1, . . . , Rn+2. As intro-

duced in [2], for each region Ri, one can assign an integer a(Ri) called an Alexander

number (or an Alexander index ) satisfying the following condition: When Ri and

Rj share an oriented edge of P and Ri (resp. Rj) is on the left side (resp. right

side) of the edge as depicted in Figure 2, a(Rj) = a(Ri) + 1 holds. Assigning such

numbers on all regions is called an Alexander numbering (or an Alexander indexing).

Note that an Alexander numbering may begin with an arbitrary region assigned an

arbitrary integer, called the initial number, for the given oriented knot projection.

Ri Rj

Figure 2. a(Rj) = a(Ri) + 1



AN INTEGRAL REGION CHOICE PROBLEM WITH TWO PROHIBITED REGIONS 5

Example 2.1. Let P be the oriented knot projection depicted in Figure 3. Let −P

be the same knot projection as P but with the opposite orientation. Assigning the

initial number 0 to R1, we obtain an Alexander numbering of P as depicted in the

center of Figure 3. On the other hand, assigning to the initial number 1 to R1, we

obtain an Alexander numbering of −P as depicted in the right side of Figure 3.

P

0

1 1

2

0

−1

−P

1

0 0

−1

1

2R1

R2 R3

R4

R5

R6

Figure 3. Example of Alexander numbering

Lemma 2.2. Let P be an oriented knot projection with n+2 regions R1, . . . , Rn+2,

where R1 is unbounded and R2 is adjacent to R1. Take an Alexander numbering so

that a(R1) = 0 and a(R2) = 1 by reversing the orientation of P if necessary. Let

aj = a(Rj), and set uj = (−1)aj−1aj, u
′
j = uj + (−1)aj . Then two vectors u =

(
ui

)
,

u′ =
(
u′
i

)
∈ Zn+2 form a basis of the kernel solution space of P .

Proof. Four regions near a crossing Ci of P have Alexander numbers a, a+ 1, a+ 1,

and a + 2 for some a ∈ Z as depicted in Figure 4. Thus, the i-th row of A(P )u is

given by: {
−a+ 2(a+ 1)− (a+ 2) = 0 if a is even,

a− 2(a+ 1) + (a+ 2) = 0 if a is odd.

This follows from the double count rule. Hence, u is a kernel solution for P . Simi-

larly, the i-th row of A(P )u′ is given by:{
−a+ 1 + 2a− (a+ 1) = 0 if a is even,

a− 1− 2a+ (a+ 1) = 0 if a is odd.

Hence, u′ is also a kernel solution for P . Notice that u and u′ are linearly in-

dependent since u1 = 0, u2 = 1 and u′
1 = 1, u′

2 = 0 by construction. Since the

rank-nullity theorem holds for Z-modules, by Proposition 1.2, a basis of the kernel

solution space consists of two integral vectors. Thus, the conditions u1 = 0, u2 = 1

and u′
1 = 1, u′

2 = 0 guarantee that u and u′ span the kernel solution space of P . □

Remark 2.3. The construction of the kernel solution u in Lemma 2.2 was provided

by Kawamura [5, Lemma 7.1]. A key factor to construct the basis u,u′ is that a

knot projection admits just two orientations. By selecting an orientation of P such

that a(R1) = 0 and a(R2) = 1, and reversing the sign of even Alexander numbers,
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a

a+ 1

a+ 1

a+ 2

Figure 4. Alexander numbers of four regions around a crossing Ci

we obtain the kernel solution u. Subsequently, by reversing the orientation of P and

assigning Alexander numbers such that a(R1) = 1 and a(R2) = 0, and reversing the

sign of even Alexander numbers, we obtain the kernel solution u′.

Remark 2.4. The absolute value of the difference between Alexander numbers of

two regions does not depend on the orientation of a knot projection and the initial

number.

Example 2.5. For a knot projection in Figure 3, u =



0

1

1

−2

0

−1


, u′ =



1

0

0

−1

1

−2


.

By Proposition 1.4 and Lemma 2.2, we have the following.

Lemma 2.6. Let P be a knot projection with n crossings. For any colors c ∈ Zn,

there exists a unique solution b =
(
bi
)
∈ Zn+2 satisfying b1 = b2 = 0 such that any

solution r ∈ Zn+2 for A(P )r + c = 0 is given by

r = b+ αu+ βu′ (α, β ∈ Z). (3)

Here, u and u′ are the kernel solutions constructed in Lemma 2.2.

The ‘canonical’ solution b coincides with the solution of the integral region choice

problem with two prohibited regions R1 and R2, denoted as r12. Since R1 is adjacent

to R2, r12 exists uniquely by Proposition 1.4.

Setting r =
(
ri
)
, Equation (3) is represented as:

r1
r2
r3
...

rn+2

 =


b1 = 0

b2 = 0

b3
...

bn+2

+ α


u1 = 0

u2 = 1

u3
...

un+2

+ β


u′
1 = 1

u′
2 = 0

u′
3
...

u′
n+2

 (α, β ∈ Z). (4)

Note that u and u′ depend on P , but not on colors c. Also note that the solution

b depends on u,u′ (and P ), and colors c. Lemma 2.6 provides all solutions for

an integral region choice problem. Although we can directly obtain the basis u,u′

of the kernel solution space from P without solving simultaneous linear equations,

obtaining the solution b is not as straightforward. See Question 4.1 in Section 4.
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Remark 2.7. Equation (4) ensures that one can solve an integral region choice prob-

lem by assigning an arbitrary pair of integers (α, β) to an adjacent region pair.

Furthermore, for a given pair of integers, the solution is unique. This fact is also

observed in [3, Proposition 3.10].

Example 2.8. Consider an integral region choice problem on Figure 1. Notice that

the solution r in Example 1.3 coincides with b in Lemma 2.6, meaning that the first

and second elements are zeros. Thus, by Examples 1.3 and 2.5, all solutions are

given by:

r =



0

0

−2

0

4

−7


+ α



0

1

1

−2

0

−1


+ β



1

0

0

−1

1

−2


(α, β ∈ Z).

3. Proof of Theorem 1.5

Let P be a knot projection with n+2 regions R1, . . . , Rn+2, where R1 is unbounded

and R2 is adjacent to R1. From now on, by Lemma 2.6, we may assume that

any solution for an integral region choice problem on P with color c is given by

Equation (4).

Proof of Theorem 1.5. Recall that

uj = (−1)aj−1aj,

u′
j = uj + (−1)aj = (−1)aj−1(aj − 1),

where aj is an Alexander number of Rj such that a1 = 0 and a2 = 1. Without loss

of generality, we may assume that ak = aj + d with an integer d ≥ 0. Extracting

the j-th and k-th rows of Equation (4), we have(
rj
rk

)
=

(
bj
bk

)
+ α

(
uj

uk

)
+ β

(
u′
j

u′
k

)
=

(
bj
bk

)
+

(
(−1)aj−1aj (−1)aj−1(aj − 1)

(−1)ak−1ak (−1)ak−1(ak − 1)

)(
α

β

)
=

(
bj
bk

)
− (−1)aj

(
aj aj − 1

(−1)d(aj + d) (−1)d(aj + d− 1)

)(
α

β

)
. (5)

There is a one-to-one correspondence between a solution with two prohibited regions

Rj and Rk, denoted as rjk with rj = rk = 0, and a solution of the following equation

with integral variables α, β, obtained by setting rj = rk = 0 in Equation (5):(
0

0

)
=

(
bj
bk

)
− (−1)aj

(
aj aj − 1

(−1)d(aj + d) (−1)d(aj + d− 1)

)(
α

β

)
. (6)

We proceed with a case-by-case argument depending on the value of d.
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(i) Assume that d = 1. Then Equation (6) becomes:(
0

0

)
=

(
bj
bk

)
− (−1)aj

(
aj aj − 1

−aj − 1 −aj

)(
α

β

)
. (7)

Solving Equation (7), we obtain the unique integral solution:(
α

β

)
= (−1)aj

(
−bk + (bj + bk)aj
−bj − (bj + bk)aj

)
.

(ii) Assume that d ≥ 2. Note that

∣∣∣∣ aj aj − 1

(−1)d(aj + d) (−1)d(aj + d− 1)

∣∣∣∣ = (−1)dd.

Since d ≥ 2, the matrix (−1)aj
(

aj aj − 1

(−1)d(aj + d) (−1)d(aj + d− 1)

)
is singular

over Z, but regular over Q. Solving Equation (6) over Q, we have(
α

β

)
=

(
(−1)aj

(
aj aj − 1

(−1)d(aj + d) (−1)d(aj + d− 1)

))−1 (
bj
bk

)
=

(−1)aj

d

(
aj + d− 1 (−1)d(−aj + 1)

−(aj + d) (−1)daj

)(
bj
bk

)

= (−1)aj

bj +
(aj − 1)(bj − (−1)dbk)

d

−bj −
aj(bj − (−1)dbk)

d

 . (8)

Assuming that bj ≡ (−1)dbk (mod d), both α and β become integers, leading

to a unique solution rjk with two prohibited regions Rj and Rk. Conversly, if a

solution rjk exists, making α and β in the LHS of Equation (8) integers, then

bj ≡ (−1)dbk (mod d) must hold since aj − 1 and aj are coprime.

(iii) Assume that d = 0. Then Equation (6) becomes:(
0

0

)
=

(
bj
bk

)
− (−1)aj

(
aj aj − 1

aj aj − 1

)(
α

β

)
. (9)

If bk = bj, then Equation (9) is equivalet to:

ajα + (aj − 1)β = (−1)ajbj .

Since aj and aj − 1 are coprime, this equation has infinitely many integral

solutions {α, β} Conversely, if a solution exists for Equation (9), then bk = bj
must hold.

This completes the proof. In fact, we have shown that for d = 1, there exists a unique

solution rjk. For d ≥ 2, a solution rjk exists if and only if bj ≡ (−1)dbk (mod d),

and it is unique when it exists. Additionally, for d = 0, a solution rjk exists if and

only if bj = bk, and there are infinitely many solutions when it exists. □

4. Example and problems

In this section, we present concrete examples of Theorem 1.5 and propose some

problems for future studies.
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4.1. Example. Let P be the knot projection depicted in Figure 5. Assigning the

initial number 0 to R1, we obtain the Alexander numbering as depicted in the right

side of Figure 5.

0

1

1

−1

0

2

1

1

R1

R2

R3

R4

R5

R6

R7

R8

4

1

−3

1

−2

8

Figure 5

Consider the region choice problem with two prohibited regions, as depicted in the

left side of Figure 5, where the initial colors are provided. By solving simultaneous

linear equations, we find

r12 = b =



b1
b2
b3
b4
b5
b6
b7
b8


=



0

0

13

−15

11

−14

6

0


.

See the left side of Figure 6. Now we consider three cases (i) d = 1, (ii) d = 2, and

(iii) d = 0 as stated in Theorem 1.5.

(i) Let R3 and R5 be the prohibited regions. They are not adjacent each other,

but d = |a(R3) − a(R5)| = 1. By Theorem 1.5 (i), there is a unique solution

r35. Actually, we can find r35 =



−11

−13

0

20

0

23

−7

−13


. See the right side of Figure 6.

(ii) Let R1 and R6 be the prohibited regions. We have d = |a(R1) − a(R6)| = 2,

and b1 = 0, b6 = −14. Then b1 ≡ (−1)2b6 (mod 2) holds. By Theorem 1.5 (ii),
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0

0

13

−15

11

−14

6

0

4

1

−3

1

−2

8

−11

−13

0

20

0

23

−7

−13

4

1

−3

1

−2

8

Figure 6. b = r12 (left side) and r35 (right side)

there is a unique solution r16. Actually, we can find r16 =



0

−7

6

−8

11

0

−1

−7


. See the left

side of Figure 7.

On the other hand, let R5 and R6 be the prohibited regions. We have

d = |a(R5)− a(R6)| = 2, and b5 = 11, b6 = −14. Then b5 6≡ (−1)2b6 (mod 2).

By Theorem 1.5 (ii), there is no solution. In this case, we have the ‘non-integral

solution’



−11

−3/2

23/2

17/2

0

0

9/2

−3/2


. See the right side of Figure 7.

(iii) Let R2 and R8 be the prohibited regions. We have d = |a(R2) − a(R8)| = 0,

and b2 = b8(= 0). By Theorem 1.5 (iii), there are infinitely many solutions.

Actually, we can find r28 =



α

0

13

−2α− 15

α + 11

−α− 14

6

0


for any α ∈ Z. See Figure 8.
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0

−7

6

−8

11

0

−1

−7

4

1

−3

1

−2

8

−11

−3/2

23/2

17/2

0

0

9/2

−3/2

4

1

−3

1

−2

8

Figure 7. r16 (left side) and “non-integral solution” (right side)

On the other hand, let R2 and R3 be the prohibited regions. We have

d = |a(R2)− a(R3)| = 0 and b2 6= b3. Hence, there is no solution. In this case,

there are no ‘non-integral solutions’.

α

0

13

−2α− 15

α + 11

−α− 14

6

0

4

1

−3

1

−2

8

Figure 8. Infinitely many solutions r28

4.2. Problems. Finally, we propose some problems for future research. As previ-

ously mentioned, a basis {u,u′} of the kernel solution space is directly obtained

from a given knot projection P by using Alexander numberings without the need

to solve any simultaneous linear equations. According to Lemma 2.6, if we can also

obtain b = r12 directly, we could solve every integral region choice problem without

resorting to linear algebra. Of course, we can determine b = r12 by utilizing a square

matrix A′(P ), derived by removing the first and second columns from A(P ). More

precisely, assume that R1 and R2 are adjacent, then A′(P ) is regular over Z, and
thus we have

b = −A′(P )−1c .

Problem 4.1. For a given knot projection P and colors c, can we obtain the ‘canon-

ical’ solution b = r12 without linear algebra? In other words, can we derive b directly

from P and c?
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Throughout this paper, the double count rule has been applied. As mentioned

in Section 1, there are other rules by utilizing increment numbers introduced in

[3], which contain the single and the double count rule originally introduced in [1].

Changing the rules makes a difference when the knot projection is reducible. For a

reducible knot projection, the following problem is one of interest.

Problem 4.2. Let P be a reducible knot projection. Study an integral region choice

problem on P with two prohibited regions using the modified rule that assigns incre-

ment numbers to reducible crossings.

We can consider subspecies of a region choice problem, that is, a region freeze

version [4], alternating version [5], and so on. The case where a projection has more

than one components is also interest.

Problem 4.3. Study an integral region choice problem with prohibited regions on a

link projection.
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