
ON POSITIVE KNOTS OF GENUS TWO

IN DAE JONG AND KENGO KISHIMOTO

Abstract. We show that positive knots of genus two are positive-alternating or al-

most positive-alternating. We also show that positive knots of genus two are quasi-

alternating. In addition, we show that every prime positive knot of genus two is obtained

from one of certain fourteen positive diagrams by t′2 moves.

1. Introduction

A diagram is positive if the signs of all crossings are positive, and a link is positive if

it has a positive diagram. A diagram is alternating if over-crossings and under-crossings

appear alternately along every component of the diagram, and a link is alternating if it

has an alternating diagram. A link is positive-alternating if it has a diagram which is

positive and alternating.

Proposition 1.1 ([12]). If a link is positive and alternating, then the link is positive-

alternating.

A diagram is almost alternating (resp. almost positive-alternating) if a single cross-

ing change turns it into an alternating diagram (resp. a positive-alternating diagram)

(cf. [2]), and a link is almost alternating (resp. almost positive-alternating) if it has an

almost alternating (resp. an almost positive-alternating) diagram and no alternating

(resp. positive alternating) diagram.

Note that every positive and almost alternating knot is almost positive-alternating

with up to eleven crossings (cf. [4]). Then the following question comes to mind.

Question 1.2. Let K be a positive knot. If K is almost alternating, then is K almost

positive-alternating ?

In this paper, we show that the answer to Question 1.2 is affirmative up to genus two.

Precisely, we show the following theorem.

Theorem 1.3. Positive knots up to genus two are positive-alternating or almost positive-

alternating.

On the other hand, an almost alternating knot is one of generalizations of an alternat-

ing knot. In terms of a dealternating number (see [1], [2]), the class of almost alternating

knots is “nearest” to that of alternating knots. By Theorem 1.3, positive knots up to

genus two is “near” to the class of alternating knots. Here we consider another gener-

alization of an alternating knot, that is, a quasi-alternating knot [14] which is closely

related to both of the Khovanov homology and the knot Floer homology [10].

Theorem 1.4. Positive knots up to genus two are quasi-alternating.
1
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This paper is organized as follows: In Section 2, we prove Theorem 1.3. The proof is

achieved by using the generators for canonical genus two knots, which are introduced by

Stoimenow [16], and some properties of the Jones polynomial. In Section 3, we refine

Stoimenow’s generators for positive knots of genus two (Theorem 3.1). In Section 4, we

prove Theorem 1.4.

2. Proof of Theorem 1.3.

First we review the generators for positive knots of genus two and some properties of

the Jones polynomial, and then we prove Theorem 1.3.

2.1. Generators. A diagram depicted in Figure 1 is called a generator (for positive

knots of genus two). We denote by G+
2 the set of generators. We say that a positive knot

(of genus two) is generated by a generator G ∈ G+
2 if the knot has a diagram obtained

by applying t′2 moves on the generator G. Here a t′2 move is a local move on diagrams

applied at a crossing as shown in Figure 2.

Lemma 2.1 ([16]). Every prime positive knot of genus two is generated by one of the

twenty four generators in G+
2 .

Remark 2.2. Throughout this paper, unless otherwise specified, we use the notation of

KnotScape [5] for knots.

Remark 2.3. The generators 5+1 , 7+5 , 8+15, 9+23, 9+38, 10+101, 10+120, 11+123, 11+329, 12+1097,

and 13+4233 are positive-alternating diagrams. The generators 6+2 , 6
+
3 , 7

+
6 , 7

+
7 , and 8+12

represent the alternating knot 51. The generator 8+14 represents the alternating knot

75. The generators 9+25 and 10+58 represent the alternating knot 815. The generator 10+97
represents the alternating knot 938. The generator 11+148 represents the alternating knot

10101. The generators 9+39 and 9+41 represent the non-alternating knot 949. The generator

12+1202 represents the non-alternating knot 12n881.

2.2. Jones polynomial. The Jones polynomial [6] VL(t) of a link L is the Z[t 1
2 , t−

1
2 ]-

valued invariant of a link, which satisfies the skein relationship

t−1V
��I
(t)− tV

@I�
(t) = (t

1
2 − t−

1
2 )V

�I
(t).

We define the Jones polynomial of a diagram D as that of the link L represented

by D: VD(t) = VL(t). For a non-zero polynomial f(t) ∈ Z[t 1
2 , t−

1
2 ], we denote by

maxdeg f (resp. mindeg f) the maximal degree (resp. the minimal degree) of f(t), and

by maxdegcf f the leading coefficient of f(t). Let span f = maxdeg f − mindeg f . We

give two lemmas needed to prove Theorem 1.3.

Lemma 2.4 ([9], [11], [17]). For a link L with the crossing number c(L), we have

spanVL ≤ c(L) .

Lemma 2.5 ([15, Theorem 3.1]). Let L be a positive link. Then we have

mindeg VL = (1− χ(L))/2 .

Here χ(L) is the Euler characteristic of L.
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Figure 1. The generators of positive knots of genus two

t2'

Figure 2. t′2 move

2.3. Proof of Theorem 1.3. Let G be a generator and c1, . . . , cn the crossings of G.

We denote by G(a1, . . . , an) the diagram obtained from G by applying t′2 moves ai times

at ci for i = 1, . . . , n. Here a1, . . . , an are non-negative integers. Note that the crossing

number of the diagram G(a1, . . . , an) is equal to n + 2(a1 + · · · + an). We represent
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continuous twists by a white or a shaded box as shown in Figure 3. A white (resp. a

shaded) box contains odd (resp. even) number of crossings.

Figure 3

Proof of Theorem 1.3. A positive knot of genus one is a pretzel knot of type (−2p −
1,−2q − 1,−2r − 1) for some non-negative integers p, q, and r, and then, it is positive-

alternating. Since a positive diagram of a non-prime positive knot is non-prime [13], every

non-prime positive knot of genus two is the connected sum of two positive pretzel knots

of genus one. Thus, every non-prime positive knot of genus two is positive-alternating.

By Lemma 2.1, it remains to prove that every positive knot generated by each generator

in G+
2 is positive-alternating or almost positive-alternating. It is clear that positive

knots generated by alternating generators (5+1 , 7
+
5 , 8

+
15, 9

+
23, 9

+
38, 10

+
101, 10

+
120, 11

+
123, 11

+
329,

12+1097, and 13+4233) are positive-alternating. As shown in Figures 4 and 5, positive knots

generated by each one of the generators 6+2 , 6
+
3 , 7

+
6 , 7

+
7 , 8

+
12, 8

+
14, 9

+
25, 10

+
58, 10

+
97, and

11+148 have positive-alternating diagrams, and positive knots generated by each one of

the generators 9+39, 9
+
41, and 12+1202 have almost positive-alternating diagrams. Thus, it

suffices to show that positive knots generated by each one of the generators 9+39, 9
+
41,

and 12+1202 are non-alternating. Since the Jones polynomial of an alternating link is

monic [17], the following three claims (Claim 2.6, 2.7, and 2.8) guarantee that positive

knots generated by each one of the generators 9+39, 9
+
41, and 12+1202 are non-alternating.

Claim 2.6. For the diagram D = 9+39(a1, . . . , a9), we have

maxdegcf VD = −2,

maxdeg VD = c(D).

Proof. We prove the claim by induction on α = a1 + · · · + a9. If α = 0, that is,

a1 = · · · = a9 = 0, then D = 9+39 is a positive diagram of the knot 949. Calculating the

Jones polynomial, we have V9+39
(t) = V949(t) = −2t9+3t8−4t7+5t6−4t5+4t4−2t3+ t2,

and thus, the claim is true. Assuming that the claim is true for α = k ≥ 0, we prove it

for α = k+1. Then there exists m ∈ {1, . . . , 9} such that am ≥ 1. We denote by D′ and

D0 the diagrams which differ from D = 9+39(a1, . . . , a9) only in a small neighborhood of

cm as shown in Figure 6. By the skein relationship of the Jones polynomial, we have

VD(t) = t2VD′(t) + (t
3
2 − t

1
2 )VD0(t).

The diagram D′ is obtained from 9+39 by applying t′2 moves (α − 1) times. By the

assumption of induction, we have maxdeg VD′ = c(D′) = c(D) − 2 and maxdegcf VD′ =

−2. Therefore it suffices to show that maxdeg VD0 ≤ c(D) − 5/2 holds. Now we show

that this inequality holds for each m = 1, . . . , 9.

Case 1. m = 1, . . . , 6: We show only the case where m = 1, since other cases (m =

2, . . . , 6) are proved in the same way. Let D′
0 be the diagram obtained from D0 by
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Figure 4. We label crossings as shown in the figure.

reducing nugatory crossings as shown in Figure 7. Note that D0 and D′
0 represent

the same positive 2-component link. Since a1 ≥ 1, we have

c(D′
0) = c(D)− ((2a1 + 1) + (2a2 + 1))

≤ c(D)− 4.

By Lemma 2.4, we have

spanVD0 = spanVD′
0
≤ c(D)− 4.

On the other hand, the diagram D′
0 represents a positive link. Notice that the

Euler characteristic of the link represented by D′
0 is equal to −2 (see [4]). Then,

by Lemma 2.5, we have mindeg VD0 = 3/2. Therefore we have

maxdeg VD0 = mindeg VD0 + spanVD0

≤ 3/2 + (c(D)− 4)

= c(D)− 5/2.

Case 2. m = 7: As shown in Figure 8, the diagram D0 is equivalent to the diagram

D′′
0 . Since a7 ≥ 1, we have

c(D′′
0) = c(D)− (2a7 + 1)− 1 ≤ c(D)− 4.

Then we can show that maxdeg VD0 ≤ c(D)− 5/2 by the same argument applied

in Case 1.
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Figure 5

Figure 6

Case 3. m = 8: As shown in Figure 9, the diagram D0 is equivalent to the diagram

D′′
0 . Since a8 ≥ 1, we have

c(D′′
0) = c(D)− (2a8 + 1)− 1 ≤ c(D)− 4.

Then we see that maxdeg VD0 ≤ c(D) − 5/2 by the same argument applied in

Case 1.
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Figure 7

Case 4. m = 9: As shown in Figure 10, the diagramD0 is equivalent to the diagram

D′′
0 . Since a9 ≥ 1, we have

c(D′′
0) = c(D)− (2a9 + 1)− 1 ≤ c(D)− 4.

Then we see that maxdeg VD0 ≤ c(D) − 5/2 by the same argument applied in

Case 1.

Now we complete the proof of Claim 2.6. □

Figure 8

Figure 9

Figure 10
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Claim 2.7. For the diagram D = 9+41(a1, . . . , a9), we have

maxdegcf VD = −2,

maxdeg VD = c(D).

Proof. We prove the claim by induction on α = a1 + · · ·+ a9. If α = 0, then D = 9+41 is

a positive diagram of the knot 949. Calculating the Jones polynomial, we have V949(t) =

−2t9 + 3t8 − 4t7 + 5t6 − 4t5 + 4t4 − 2t3 + t2, and thus the claim is true. Assuming that

the claim is true for α = k ≥ 0, we prove it for α = k + 1. Then there exists some

m ∈ {1, . . . , 9} such that am ≥ 1.

Case 1. m = 1, . . . , 6: We omit the proof since it is similar to that of Case 1 in the

proof of Claim 2.6.

Case 2. m = 7, 8: We show only the case where m = 7, since the case where m = 8

is proved by the same argument. As shown in Figure 11, the diagram D0 is

equivalent to the diagram D′′
0 . The rest of the proof is similar to that of Case 1

in the proof of Claim 2.6.

Case 3. m = 9: As shown in Figure 12, the diagramD0 is equivalent to the diagram

D′′
0 . The rest of the proof is similar to that of Case 1 in the proof of Claim 2.6.

Figure 11

Figure 12

Now we complete the proof of Claim 2.7. □
Claim 2.8. For the diagram D = 12+1202(a1, . . . , a12), we have

maxdegcf VD = 2,

maxdeg VD = c(D).
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Proof. We prove Claim 2.8 by induction on α = a1+ · · ·+ a12. If α = 0, then D = 12+1202
is a positive diagram of the knot 12n881. Calculating the Jones polynomial, we have

V12n881(t) = 2t12 − 6t11 + 10t10 − 16t9 + 19t8 − 20t7 + 19t6 − 14t5 + 10t4 − 4t3 + t2, and

then the claim is true. Assuming that the claim is true for α = k ≥ 0, we prove it for

α = k+1. The rest of the proof is similar to that of Case 1 in the proof of Claim 2.6. □

Now we complete the proof of Theorem 1.3. □

3. Minimal set of generators for positive knots of genus two

In Section 2, we use Stoimenow’s twenty four generators to study positive knots of

genus two. In this section, we show that just fourteen generators are needed to study

positive knots of genus two.

Theorem 3.1. Every prime positive knot of genus two is generated by one of the follow-

ing fourteen generators: 5+1 , 7
+
5 , 8

+
15, 9

+
23, 9

+
38, 9

+
39, 9

+
41, 10

+
101, 10

+
120, 11

+
123, 11

+
329, 12

+
1097,

12+1202, 13
+
4233. Furthermore, the set of the fourteen generators is minimal to obtain all

prime positive knots of genus two.

For two generators G1, G2 ∈ G+
2 , we say that G1 and G2 are independent if one of two

sets of knots generated by G1 and G2 is not a subset of the other.

Proof of Theorem 3.1. As shown in the proof of Theorem 1.3, prime positive knots gen-

erated by the generators in G+
2 except for 9+39, 9

+
41, and 12+1202 are positive-alternating.

Therefore we need only the following eleven generators for prime positive-alternating

knots of genus two: 5+1 , 7
+
5 , 8

+
15, 9

+
23, 9

+
38, 10

+
101, 10

+
120, 11

+
123, 11

+
329, 12

+
1097, and 13+4233.

Note that these eleven generators are mutually independent (see [7, 8] or [16]).

Next we show that the generators 9+39, 9
+
41, and 12+1202 are also mutually independent.

For a generator G ∈ G+
2 , we denote by Kn(G) the set of all knots obtained from G by

applying t′2 moves at most n times. Observing the case where n = 3, we see that

K3(9
+
39) = { 949, 11n171, 11n181, 13n4365, 13n4795, 13n4879, 13n4929, 13n4975, 13n4996, 13n5105,

15n135929, 15n150753, 15n152806, 15n154713, 15n158454, 15n159290, 15n159866, 15n160477,

15n160544, 15n162263, 15n162490, 15n162543, 15n167671, 15n167688, 15n167734, 15n167843,

15n168014 },
K3(9

+
41) = { 949, 11n171, 11n181, 13n4365, 13n4795, 13n4879, 13n4975, 13n4996, 13n5105, 15n135929,

15n150753, 15n152806, 15n158454, 15n159290, 15n159866, 15n160415, 15n162263, 15n162490,

15n162543, 15n167671, 15n167688, 15n167843, 15n168014}.

As in the proofs of Claims 2.6 and 2.7, a t′2 move on the generator 9+39 or 9+41 increases

the span degree of the Jones polynomial. Thus, by Lemma 2.4, Kn(939) and Kn(941) do

not contain the knot with crossing number twelve. Then the generator 12+1202 and each

of 9+39 and 9+41 are independent. Further, we see that the generators 9+39 and 9+41 are also

independent. In fact, the knot 15n160415 cannot be generated by the generator 9+39 and

that the knots 13n4929, 15n154713, 15n160477, 15n160544, and 15n167734 cannot be generated

by the generator 9+41. □
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Figure 13. A-splice and B-splice

4. Positive knots of genus two are quasi-alternating

An A-splice (or a B-splice) is a local move on diagrams as shown in Figure 13. For a

diagram D and a crossing c of D, let DA
c (resp. DB

c ) be the diagram obtained from D

by applying A-splice (resp. a B-splice) at c. For a diagram D, we denote by L(D) the

link represented by the diagram D. The set Q of quasi-alternating links is the smallest

set of links satisfying the following properties:

• The unknot is in Q.

• If the link L has a diagram D with a crossing c such that

(1) L(DA
c ) and L(DB

c ) are in Q, and

(2) det(L) = det(L(DA
c )) + det(L(DB

c )),

then L is in Q, where det(L) is the determinant of the link L.

Then we say that D is quasi-alternating at c.

Remark 4.1. A non-split alternating link is quasi-alternating.

We consider a crossing c of a diagram as a 2-tangle diagram. According to whether

the overstrand has positive or negative slope, we set ε(c) = ±1. We say that a rational

tangle diagram with the Conway notation R = C(a1, . . . , am) extends a crossing c if R

contains c, and ε(c) · ai ≥ 1 for i = 1, . . . ,m. Then R is an alternating rational tangle

diagram.

Lemma 4.2 ([3]). Let D be quasi-alternating at a crossing c, and let D′ be obtained by

replacing c of D with a rational tangle diagram that extends c. Then the link L(D′) is

quasi-alternating.

Proof of Theorem 1.4. Since an alternating knot is quasi-alternating, it suffices to prove

that non-alternating positive knots of genus two are quasi-alternating. Actually, we show

that the diagrams G(a1, . . . , an) for G = 9+39, 9
+
41, and 12+1202 are quasi-alternating.

Case 1. G = 9+39: Put D′ = 9+39(a1, . . . , a9). Let D and c be the diagram and the

crossing of D as shown in Figure 14. Let bi = 2ai + 1 and bi,j = bi + bj. Using a

checkerboard surface and the Goeritz matrix, we calculate the determinants, and

then, we have the following:

det(L(D)) = − b7 − b9 − b1,2 − b7b8 − b7b9 − b8b9 − b1,2b7 − b1,2b8

+ b1,2b5,6b8 + b1,2b5,6b9 + b5,6b7b8 + b5,6b7b9 + b5,6b8b9

+ b1,2b5,6b7b8 + b1,2b5,6b7b9 + b1,2b5,6b8b9 .

det(L(DA
c )) = − b7 − b9 − b1,2 + b1,2b5,6b8 + b1,2b5,6b9 + b5,6b7b8

+ b5,6b7b9 + b5,6b8b9 .

det(L(DB
c )) = − b7b8 − b7b9 − b8b9 − b1,2b7 − b1,2b8 + b1,2b5,6b7b8

+ b1,2b5,6b7b9 + b1,2b5,6b8b9 .
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Figure 14

Figure 15

Then the equality det(L(D)) = det(L(DA
c )) + det(L(DB

c )) holds. On the other

hand, the diagrams DA
c and DB

c can be deformed into connected alternating

diagrams as shown in Figure 15. Thus, by Remark 4.1, the links L(DA
c ) and

L(DB
c ) are in Q. Therefore D is quasi-alternating at c. By Lemma 4.2, the link

L(D′) is quasi-alternating.

Case 2. G = 9+41: Put D′ = 9+41(a1, . . . , a9). Let D and c be the diagram and the

crossing as shown in Figure 16. Calculating the determinants of the diagrams,

we have the following:

det(L(D)) = 1− b1,2 − b5,6 − b1,2b7 − b3,4b7 − b3,4b8 − b5,6b8 + b1,2b3,4b7

+ b1,2b3,4b8 + b1,2b5,6b7 + b1,2b5,6b8 + b3,4b5,6b7 + b3,4b5,6b8

+ b1,2b3,4b7b8 + b1,2b5,6b7b8 + b3,4b5,6b7b8 .

det(L(DA
c )) = − b1,2 − b5,6 + b1,2b3,4b7 + b1,2b3,4b8 + b1,2b5,6b7 + b1,2b5,6b8

+ b3,4b5,6b7 + b3,4b5,6b8 .

det(L(DB
c )) = 1− b1,2b7 − b3,4b7 − b3,4b8 − b5,6b8 + b1,2b3,4b7b8

+ b1,2b5,6b7b8 + b3,4b5,6b7b8 .

Then the equality det(L(D)) = det(L(DA
c )) + det(L(DB

c )) holds. On the other

hand, the diagrams DA
c and DB

c can be deformed into connected alternating

diagrams as shown in Figure 17. Therefore D is quasi-alternating at c. By

Lemma 4.2, the link L(D′) is quasi-alternating.

Case 3. G = 12+1202: Put D
′ = 12+1202(a1, . . . , a12). Let D and c be the diagram and

the crossing as shown in Figure 18. Calculating the determinants of the diagrams,
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Figure 16

Figure 17

we have the following:

det(L(D)) = 1− b9,10 − b11,12 − b3,4b7,8 − b3,4b9,10 − b5,6b7,8 − b5,6b11,12

+ b3,4b7,8b9,10 + b3,4b7,8b11,12 + b3,4b9,10b11,12 + b5,6b7,8b9,10

+ b5,6b7,8b11,12 + b5,6b9,10b11,12 + b3,4b5,6b7,8b9,10

+ b3,4b5,6b7,8b11,12 + b3,4b5,6b9,10b11,12 .

det(L(DA
c )) = − b9,10 − b11,12 + b3,4b7,8b9,10 + b3,4b7,8b11,12 + b3,4b9,10b11,12

+ b5,6b7,8b9,10 + b5,6b7,8b11,12 + b5,6b9,10b11,12 .

det(L(DB
c )) = 1− b3,4b7,8 − b3,4b9,10 − b5,6b7,8 − b5,6b11,12

+ b3,4b5,6b7,8b9,10 + b3,4b5,6b7,8b11,12 + b3,4b5,6b9,10b11,12 .

Then the equality det(L(D)) = det(L(DA
c )) + det(L(DB

c )) holds. On the other

hand, the diagrams DA
c and DB

c can be deformed into connected alternating

diagrams as shown in Figure 19. Therefore D is quasi-alternating at c. By

Lemma 4.2, the link L(D′) is quasi-alternating.

This completes the proof of Theorem 1.4. □
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Figure 18

Figure 19
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