論文

査読有り
2021年10月

Validation of Soil Moisture Data Products from the NASA SMAP Mission

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  • Andreas, Colliander
  • Reichle, Rolf
  • Crow, Wade
  • Cosh, Michael
  • Chen, Fan
  • Chan, Steven
  • Das, Narendra Narayan
  • Bindlish, Raja
  • Chaubell, J
  • Kim, Seungbum
  • Liu, Qing
  • OaNeill, Peggy
  • Dunbar, Sco
  • Dang, Land
  • Kimball, John S
  • Jackson, Thomas
  • Al-Jassar, Hala
  • Asanuma, Jun
  • Bhattacharya, Bimal
  • Berg, Aaron
  • Bosch, David
  • Bourgeau-Chavez, Laura
  • Caldwell, Todd
  • Calvet, Jean-Christophe
  • Collins, Chandra
  • Jensen, Karsten
  • Livingston, Stan
  • Lopez-Baeza, Ernesto
  • Martinez-Fernandez, Jose
  • McNairn, Heather
  • Moghaddam, Mahta
  • Montzka, Carsten
  • Notarnicola, Claudia
  • Pellarin, Thierry
  • Greimeister-Pfeil, Isabella
  • Pulliainen, Jouni
  • Ramos, Judith
  • Hernandez, Judith
  • Gpe. Ramos
  • Seyfried, Mark
  • Starks, Patrick
  • Su, Bob
  • van der Velde, R
  • Zeng, Yijian
  • Thibeault, Marc
  • Vreugdenhil, Mariette
  • Walker, Jeffrey
  • Zribi, Mehrez
  • Entekhabi, Dara
  • Yueh, Simon
  • 全て表示

15
開始ページ
364
終了ページ
392
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1109/JSTARS.2021.3124743
出版者・発行元
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

The National Aeronautics and Space Administration Soil Moisture Active Passive (SMAP) mission has been validating its soil moisture (SM) products since the start of data production on March 31, 2015. Prior to launch, the mission defined a set of criteria for core validation sites (CVS) that enable the testing of the key mission SM accuracy requirement (unbiased root-mean-square error <0.04 m(3)/m(3)). The validation approach also includes other ("sparse network") in situ SM measurements, satellite SM products, model-based SM products, and field experiments. Over the past six years, the SMAP SM products have been analyzed with respect to these reference data, and the analysis approaches themselves have been scrutinized in an effort to best understand the products' performance. Validation of the most recent SMAP Level 2 and 3 SM retrieval products (R17000) shows that the L-band (1.4 GHz) radiometer-based SM record continues to meet mission requirements. The products are generally consistent with SM retrievals from the European Space Agency Soil Moisture Ocean Salinity mission, although there are differences in some regions. The high-resolution (3-km) SM retrieval product, generated by combining Copernicus Sentinel-1 data with SMAP observations, performs within expectations. Currently, however, there is limited availability of 3-km CVS data to support extensive validation at this spatial scale. The most recent (version 5) SMAP Level 4 SM data assimilation product providing surface and root-zone SM with complete spatio-temporal coverage at 9-km resolution also meets performance requirements. The SMAP SM validation program will continue throughout the mission life; future plans include expanding it to forested and high-latitude regions.

リンク情報
DOI
https://doi.org/10.1109/JSTARS.2021.3124743
ID情報
  • DOI : 10.1109/JSTARS.2021.3124743
  • ISSN : 1939-1404

エクスポート
BibTeX RIS