2010年12月
HYPER-PARAMETER SELECTION IN BAYESIAN STRUCTURAL EQUATION MODELS
Bulletin of informatics and cybernetics
- ,
- ,
- ,
- 巻
- 42
- 号
- 開始ページ
- 55
- 終了ページ
- 70
- 記述言語
- 英語
- 掲載種別
- 出版者・発行元
- Research Association of Statistical Sciences
In the structural equation models, the maximum likelihood estimates of error variances can often turn out to be zero or negative. In order to overcome this problem, we take a Bayesian approach by specifying a prior distribution for variances of error variables. Crucial issues in this modeling procedure include the selection of hyper-parameters in the prior distribution. Choosing these parameters can be viewed as a model selection and evaluation problem. We derive a model selection criterion for evaluating a Bayesian structural equation model. Monte Carlo simulations are conducted to investigate the effectiveness of the proposed modeling procedure. A real data example is also given to illustrate our procedure.
- リンク情報
-
- CiNii Articles
- http://ci.nii.ac.jp/naid/120005208805
- CiNii Books
- http://ci.nii.ac.jp/ncid/AA10634475
- URL
- http://hdl.handle.net/2324/25906
- ID情報
-
- ISSN : 0286-522X
- CiNii Articles ID : 120005208805
- CiNii Books ID : AA10634475