MISC

2010年12月

HYPER-PARAMETER SELECTION IN BAYESIAN STRUCTURAL EQUATION MODELS

Bulletin of informatics and cybernetics
  • Hirose Kei
  • ,
  • Kawano Shuichi
  • ,
  • Miike Daisuke
  • ,
  • Konishi Sadanori

42
開始ページ
55
終了ページ
70
記述言語
英語
掲載種別
出版者・発行元
Research Association of Statistical Sciences

In the structural equation models, the maximum likelihood estimates of error variances can often turn out to be zero or negative. In order to overcome this problem, we take a Bayesian approach by specifying a prior distribution for variances of error variables. Crucial issues in this modeling procedure include the selection of hyper-parameters in the prior distribution. Choosing these parameters can be viewed as a model selection and evaluation problem. We derive a model selection criterion for evaluating a Bayesian structural equation model. Monte Carlo simulations are conducted to investigate the effectiveness of the proposed modeling procedure. A real data example is also given to illustrate our procedure.

リンク情報
CiNii Articles
http://ci.nii.ac.jp/naid/120005208805
CiNii Books
http://ci.nii.ac.jp/ncid/AA10634475
URL
http://hdl.handle.net/2324/25906
ID情報
  • ISSN : 0286-522X
  • CiNii Articles ID : 120005208805
  • CiNii Books ID : AA10634475

エクスポート
BibTeX RIS