論文

2022年1月

Sparse multivariate regression with missing values and its application to the prediction of material properties

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
  • Keisuke Teramoto
  • ,
  • Kei Hirose

123
2
開始ページ
530
終了ページ
546
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1002/nme.6867
出版者・発行元
WILEY

In the field of materials science and engineering, statistical analysis and machine learning techniques have recently been used to predict multiple material properties from an experimental design. These material properties correspond to response variables in the multivariate regression model. In this study, we conduct a penalized maximum likelihood procedure to estimate model parameters, including the regression coefficients and covariance matrix of response variables. In particular, we employ l1-regularization to achieve a sparse estimation of The regression coefficients and inverse covariance matrix of response variables. In some cases, there may be a relatively large number of missing values in the response variables, owing to the difficulty of collecting data on material properties. We therefore propose a method that incorporates a correlation structure among the response variables into a statistical model to improve the prediction accuracy under the situation with missing values. The expectation maximization algorithm is also constructed, which enables application to a dataset with missing values in the responses. We apply our proposed procedure to real data consisting of 22 material properties.

リンク情報
DOI
https://doi.org/10.1002/nme.6867
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000719065400001&DestApp=WOS_CPL
ID情報
  • DOI : 10.1002/nme.6867
  • ISSN : 0029-5981
  • eISSN : 1097-0207
  • Web of Science ID : WOS:000719065400001

エクスポート
BibTeX RIS