接続数(counter)
0 1 7 8 4 2 4 6
研究日誌(study diary)

研究ブログ

全く分からないResearchmap V2

# 1 過去の記事がリンク切れ

過去の記事が全部リンク切れになっている。

# 2 検索窓がない

リンクが切れていても、リンク切れを表示している窓でで再検索できればまだよい。

検索窓がわからない。

# 3 外部記事が更新できない

リンク切れになっている外部の何万という記事を更新するのに、

リンク先がわからないため更新できない。

自動で更新する仕組みを提供していればよいが、どこにそれはあるのだろう。

# 4 困ったことを書く場が見当たらない

直接、開発元に問い合わせるにしても、何を誰がどう問い合わせたかわからなければ、

無駄な問い合わせ、勘違いが集中するだけ。

多くの系(system)が利用者相互の意見交換の場で、支援をしている。

researchmapのそれはどこ。

 

 

0

交通死亡事故を減らすために

交 通 事 故 日 報 (令和 元年12月26日 現在暫定数)

愛知県および愛知県内の各方面のご努力により、16年ぶりに、交通死亡事故1位を返上できそうとのこと。

全国的には北海道で増加していたり、愛知県内でも市町村でみると増加しているところはある。

個々の事案を分析して、何をどうしたらいいかを議論するとよい。

愛知県内だけに限定すれば、特徴的な事項がいくつかある。

これまで、高齢者、自転車、歩行者の死亡事故が減少率が低く、課題とされてきた。

1. 高齢者

20人減と大幅に減った。

2 歩行者・自転車

20人減、12人減と大幅に減った。

その他が5人増えているのが気にかかる。その他に何を含んでいるか要確認。

3 時間帯
午後6時から午後10時の時間帯が21人減と大幅に減少している。

いずれも、愛知県警をはじめとする関係者が焦点を絞って対策を立ててきたところで減少している。

4 市町村
地域でみると名古屋市が20人減少している。

報道資料 令和元年11月25日発表  名古屋市交通死亡事故多発警報の発令について
http://www.city.nagoya.jp/shiminkeizai/cmsfiles/contents/0000123/123743/1125shiryo.pdf

 ????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

仮説・検証(21)交通事故死を減らすのにプログラマが協力できる仮説13選
https://qiita.com/kaizen_nagoya/items/4d46bbf0dde44d7bb99a

愛知県春日井市交通死亡事故
https://researchmap.jp/jo7800col-51292/


道路交通死亡事故
https://researchmap.jp/jovvs6g4n-51292/

0

他人のおにぎり問題

あなたは高校の教師である。ある日、授業の一環として稲刈りの体験作業があり、僻地の農家に田植えの体験授業に生徒を連れて出かけた。稲刈りの体験作業の後、農家のおばあさんがクラスの生徒全員におにぎりを握ってくれた。しかし、多くの生徒は他人の握ったおにぎりは食べられないと、たくさん残してしまった。

[問1]
あなたは、おにぎりを食べられない生徒に対しどのように指導しますか。

[問2]
あなたはこの事実をおばあさんにどのように話しますか。

(2019年 横浜市立大学 医学部医学科小論文試験 改題)

回答案1

おにぎりの成分分布と菌の生存分布を調べる。
どの菌が何の役にたつか。
どれくらい菌が存在していると健康的な生活が送れるか。
どれくらい菌が存在しないと、生命力が弱くなるか。
など、生命科学は、生物の確率と分布が重要であることを教える。
なにか正しいことがあるとか、社会的な理念以前に、測定可能なことに基づいて考えるとよい。

回答案2

子供が過保護で、無菌状態で育てられていて、生命力が弱くなっている。
生命力を強くするためには、理論的な理解を深めたい。
実験としても、いろいろな経験を積み重ねて、生命力が強くしたい。
子供に生命力を強めるには、生命科学の確率と分布を教えるたい。
生命力を強める経験をどのように組み立てていくかは、それぞれの生命の状態と
これまでの経験などに基づいて個別に対応するとよい場合がある。
0

set theory Thomas jech(2/2)


[1985] Determinacy and the structure of L(R). In “Recursion Theory”
(A. Nerode and R. A. Shore, eds.), Ithaca, N.Y., 1982. Proc. Sympos.
Pure Math. 42, Amer. Math. Soc., Providence, R.I., 1985, pp. 271–283.
MR 87d:03142; the entire collection MR 86f:03004.
[1980] A. S. Kechris and D. A. Martin
Infinite games and effective descriptive set theory. In “Analytic Sets”
(C. A. Rogers and J. J. E., eds.), Lectures delivered at a Conference
held at University College, University of London, London, July 16–
29, 1978. Academic Press, London-New York, 1980, pp. 403–470. MR
82m:03063.
[1972] A. S. Kechris and Y. N. Moschovakis
Two theorems about projective sets. Israel J. Math. 12 (1972), 391–
399. MR 48 #1900.
[1978] Notes on the theory of scales. In “Cabal Seminar 76–77” (A. S. Kechris
and Y. N. Moschovakis, eds.), Proc. Caltech-UCLA Logic Sem., 1976–
77. Lecture Notes in Mathematics 689, Springer, Berlin-New York,
1978, pp. 1–53. MR 83b:03059; the entire collection MR 80b:03004.
[1962] H. J. Keisler
Some applications of the theory of models to set theory. In “Logic,
Methodology and Philosophy of Science” (E. Nagel et al., eds.), Proc.
1960 Internat. Congr. Stanford Univ. Press, Stanford, Calif., 1962, pp.
80–86. MR 32 #7418; the entire collection MR 29 #3347.
[1963/64] H. J. Keisler and A. Tarski
From accessible to inaccessible cardinals. Results holding for all accessible
cardinal numbers and the problem of their extension to inaccessible
ones. Fund. Math. 53 (1963/64), 225–308. MR 29 #3385.
[1972/73] J. Ketonen
Strong compactness and other cardinal sins. Ann. Math. Logic 5
(1972/73), 47–76. MR 57 #9549.
[1973] Ultrafilters over measurable cardinals. Fund. Math. 77 (1973), no. 3,
257–269. MR 48 #8237.
[1976] On the existence of P-points in the Stone-ˇCech compactification of
integers. Fund. Math. 92 (1976), no. 2, 91–94. MR 55 #6363.
[1955] S. C. Kleene
Hierarchies of number-theoretic predicates. Bull. Amer. Math. Soc. 61
(1955), 193–213. MR 17,4f.
[1989] P. G. Koepke
An introduction to extenders and core models for extender sequences.
In “Logic Colloquium ’87” (H. D. Ebbinghaus et al., eds.), Granada,
1987. Stud. Logic Foundations Math. 129, North-Holland, Amsterdam-
New York, 1989, pp. 137–182. MR 90j:03094; the entire collection
90d:03004.
[1939] M. Kondˆo
Sur l’uniformisation des compl´ementaires analytiques et les ensembles
projectifs de la seconde classe. Japan. J. Math. 15 (1939), 197–230.
Zbl. 022.12301.
[1927] D. K¨onig
¨Uber eine Schlussweise aus dem Endlichen ins Undendliche. Acta Litt.
Acad. Sci. Hung. (Szeged) 3 (1927), 121–130.
[1905] J. K¨onig
Zum Kontinuumproblem. Math. Ann. 60 (1905), 177–180.
720 Bibliography
[1989] S. Koppelberg
“Handbook of Boolean Algebras,” Vol. 1, North-Holland Publishing
Co., Amsterdam, 1989. Edited by J. Donald Monk and Robert Bonnet.
MR 90k:06002.
[1993] Characterizations of Cohen algebras. In “Papers on General Topology
and Applications” (S. Andima et al., eds.), Madison, WI, 1991. Ann.
New York Acad. Sci. 704, New York Academy of Sciences, New York,
1993, pp. 222–237. MR 95e:06035; the entire collection MR 94m:54001.
[1967] S. Kripke
An extension of a theorem of Gaifman-Hales-Solovay. Fund. Math. 61
(1967), 29–32. MR 36 #3693.
[1972] D. W. Kueker
L¨owenheim-Skolem and interpolation theorems in infinitary languages.
Bull. Amer. Math. Soc. 78 (1972), 211–215. MR 45 #36.
[1977] Countable approximations and L¨owenheim-Skolem theorems. Ann.
Math. Logic 11 (1977), no. 1, 57–103. MR 56 #15406.
[1970] K. Kunen
Some applications of iterated ultrapowers in set theory. Ann. Math.
Logic 1 (1970), 179–227. MR 43 #3080.
[1971a] Elementary embeddings and infinitary combinatorics. J. Symbolic
Logic 36 (1971), 407–413. MR 47 #40.
[1971b] On the GCH at measurable cardinals. In “Logic Colloquium ’69”
(R. O. Gandy, ed.), Proc. Summer School and Colloq., Manchester,
1969. North-Holland Publishing Co., Amsterdam, 1971, pp. 107–110.
MR 43 #3081; the entire collection MR 42 #7479.
[1978] Saturated ideals. J. Symbolic Logic 43 (1978), no. 1, 65–76. MR
80a:03068.
[1980] “Set theory, An introduction to independence proofs.” North-Holland
Publishing Co., Amsterdam, 1980. MR 82f:03001.
[1970/71] K. Kunen and J. B. Paris
Boolean extensions and measurable cardinals. Ann. Math. Logic 2
(1970/71), no. 4, 359–377. MR 43 #3114.
[1922] K. Kuratowski
Une m´ethode d’´elimination des nombres transfinis des raisonnements
math´ematiques. Fund. Math. 3 (1922), 76–108.
[1936] Sur les th´eor`emes de s´eparation dans la The´orie des ensembles. Fund.
Math. 26 (1936), 183–191. Zbl. 014.05404.
[1948] Ensembles projectifs et ensembles singuliers. Fund. Math. 35 (1948),
131–140. MR 10,358d.
[1966] “Topology,” Vol. 1, Academic Press, New York-London, new, rewised
and augmented edition, 1966. MR 36 #840.
[1932] K. Kuratowski and S. Ulam
Quelques propri´et´es topologiques du produit combinatoire. Fund.
Math. 19 (1932), 247–251. Zbl. 005.18301.
[1935] -D. Kurepa
Ensembles ordonn´es et ramifi´es. Publ. Math. Univ. Belgrade 4 (1935),
1–138. Zbl. 014.39401.
[1976] R. Laver
On the consistency of Borel’s conjecture. Acta Math. 137 (1976),
no. 3-4, 151–169. MR 54 #10019.
Bibliography 721
[1978] Making the supercompactness of κ indestructible under κ-directed
closed forcing. Israel J. Math. 29 (1978), no. 4, 385–388. MR 57
#12226.
[1981] R. Laver and S. Shelah
The ℵ2-Souslin hypothesis. Trans. Amer. Math. Soc. 264 (1981), no. 2,
411–417. MR 82e:03049.
[1902] M. H. Lebesgue
“Int´egrale, Longuer, Aire.” Th`ese, Paris, 1902.
[1905] Sur les fonctions repr´esentables analytiquement. J. de Math. 1 (1905),
S´er 6, 139–216.
[1957] A. L´evy
Ind´ependance conditionnelle de V = L et d’axiomes qui se rattachent
au syst`eme de M.G¨odel. C. R. Acad. Sci. Paris 245 (1957), 1582–1583.
MR 19,626b.
[1960a] A generalization of G¨odel’s notion of constructibility. J. Symbolic Logic
25 (1960), 147–155. MR 26 #37.
[1960b] Axiom schemata of strong infinity in axiomatic set theory. Pacific J.
Math. 10 (1960), 223–238. MR 23 #A1522.
[1965a] A hierarchy of formulas in set theory. Mem. Amer. Math. Soc., No. 57
(1965), 76 pp. MR 32 #7399.
[1965b] Definability in axiomatic set theory. I. In “Logic, Methodology and
Philosophy of Science” (Y. Bar-Hillel, ed.), Proc. 1964 Internat. Congr.
North-Holland Publishing Co., Amsterdam, 1965, pp. 127–151. MR 34
#5653; the entire collection MR 34 #2426.
[1970] Definability in axiomatic set theory. II. In “Mathematical Logic
and Foundations of Set Theory” (Y. Bar-Hillel, ed.), Proc. Internat.
Colloq., Jerusalem, 1968. North-Holland Publishing Co., Amsterdam,
1970, pp. 129–145. MR 42 #2936; the entire collection MR 42 #1643.
[1967] A. L´evy and R. M. Solovay
Measurable cardinals and the continuum hypothesis. Israel J. Math. 5
(1967), 234–248. MR 37 #57.
[1955] J. Lo´s
Quelques remarques, th´eor`emes et probl`emes sur les classes d´efinissables
d’alg`ebres. In “Mathematical Interpretation of Formal Systems”
(T. Skolem et al., eds.). North-Holland Publishing Co., Amsterdam,
1955, 98–113. MR 17,700d.
[1999] B. L¨owe and J. R. Steel
An introduction to core model theory. In “Sets and Proofs” (S. B.
Cooper and J. K. Truss, eds.), Leeds, 1997. London Math. Soc. Lecture
Note Ser. 258, Cambridge University Press, Cambridge, 1999, pp. 103–
157. MR 2000k:03101; the entire collection 2000e:03005.
[1914] N. N. Luzin
Sur un probl`eme de M. Baire. C. R. Acad. Sci. Paris 158 (1914),
1258–1261.
[1917] Sur la classification de M. Baire. C. R. Acad. Sci. Paris 164 (1917),
91–94.
[1925] Sur les ensembles projectifs de M. Henri Lebesgue. C. R. Acad. Sci.
Paris 180 (1925), 1572–1574.
[1927a] Remarques sur les ensembles projectifs. C. R. Acad. Sci. Paris 185
(1927), 835–837.
[1927b] Sur les ensembles analytiques. Fund. Math. 10 (1927), 1–95.
722 Bibliography
[1930] “Le¸cons sur les Ensembles Analytiques.” Gauthier-Villars, Paris, 1930.
[1923] N. N. Luzin and W. Sierpi´nski
Sur un ensemble non mesurable B. J. de Math. 2 (1923), S´er 9, 53–72.
[1971a] M. Magidor
There are many normal ultrafilters corresponding to a supercompact
cardinal. Israel J. Math. 9 (1971), 186–192. MR 50 #110.
[1971b] On the role of supercompact and extendible cardinals in logic. Israel
J. Math. 10 (1971), 147–157. MR 45 #4966.
[1976] How large is the first strongly compact cardinal? or A study on identity
crises. Ann. Math. Logic 10 (1976), no. 1, 33–57. MR 55 #2578.
[1977a] On the singular cardinals problem. I. Israel J. Math. 28 (1977), no. 1-2,
1–31. MR 58 #10449a.
[1977b] On the singular cardinals problem. II. Ann. of Math. (2) 106 (1977),
no. 3, 514–547. MR 58 #10449b.
[1978] Changing cofinality of cardinals. Fund. Math. 99 (1978), no. 1, 61–71.
MR 57 #5754.
[1980] Precipitous ideals and Σ14
sets. Israel J. Math. 35 (1980), no. 1-2,
109–134. MR 81k:03048.
[1982] Reflecting stationary sets. J. Symbolic Logic 47 (1982), no. 4, 755–771.
MR 84f:03046.
[1990] Representing sets of ordinals as countable unions of sets in the core
model. Trans. Amer. Math. Soc. 317 (1990), no. 1, 91–126. MR
90d:03108.
[1942] D. Maharam
On homogeneous measure algebras. Proc. Natl. Acad. Sci. U.S.A. 28
(1942), 108–111. MR 4,12a.
[1911] P. Mahlo
¨U
ber lineare transfinite Mengen. Berichte K¨onig. S¨achs. Ges. Wiss.
Leipzig 63 (1911), 187–225.
[1969] D. C. Makinson
On the number of ultrafilters of an infinite Boolean algebra. Z. Math.
Logik Grundlagen Math. 15 (1969), 121–122. MR 39 #6798.
[1970] R. B. Mansfield
Perfect subsets of definable sets of real numbers. Pacific J. Math. 35
(1970), 451–457. MR 43 #6100.
[1971] A Souslin operation for Π12
. Israel J. Math. 9 (1971), 367–379. MR 45
#6629.
[1975] The non-existence of Σ12
well-orderings of the Cantor set. Fund. Math.
86 (1975), no. 3, 279–282. MR 52 #7903.
[1930a] E. Marczewski
O mierzalno´sci i warunku Baire a. In “Kongres Matematyk´ow Kraj´ow
Slowia´nskich.” Warszawa, 1930, pp. 297–303.
[1930b] Sur une hypoth`ese de M. Borel. Fund. Math. 15 (1930), 126–127.
[1968] D. A. Martin
The axiom of determinateness and reduction principles in the analytic
hierarchy. Bull. Amer. Math. Soc. 74 (1968), 687–689. MR 37 #2607.
[1969/70] Measurable cardinals and analytic games. Fund. Math. 66 (1969/70),
287–291. MR 41 #3283.
[1975] Borel determinacy. Ann. of Math. (2) 102 (1975), no. 2, 363–371. MR
53 #7785.
Bibliography 723
[1985] A purely inductive proof of Borel determinacy. In “Recursion Theory”
(A. Nerode and R. A. Shore, eds.), Ithaca, N.Y., 1982. Proc. Sympos.
Pure Math. 42, Amer. Math. Soc., Providence, R.I., 1985, pp. 303–308.
MR 87d:03125; the entire collection MR 86f:03004.
[1969] D. A. Martin and R. M. Solovay
A basis theorem for Σ13
sets of reals. Ann. of Math. (2) 89 (1969),
138–159. MR 41 #53.
[1970] Internal Cohen extensions. Ann. Math. Logic 2 (1970), no. 2, 143–178.
MR 42 #5787.
[1988] D. A. Martin and J. R. Steel
Projective determinacy. Proc. Natl. Acad. Sci. U.S.A. 85 (1988),
no. 18, 6582–6586. MR 89m:03041.
[1989] A proof of projective determinacy. J. Amer. Math. Soc. 2 (1989), no. 1,
71–125. MR 89m:03042.
[1994] Iteration trees. J. Amer. Math. Soc. 7 (1994), no. 1, 1–73. MR
94f:03062.
[1973] A. R. D. Mathias
On sequences generic in the sense of Prikry. J. Austral. Math. Soc. 15
(1973), 409–414. MR 48 #10809.
[1977] Happy families. Ann. Math. Logic 12 (1977), no. 1, 59–111. MR 58
#10462.
[1987] Y. Matsubara
Menas’ conjecture and generic ultrapowers. Ann. Pure Appl. Logic 36
(1987), no. 3, 225–234. MR 88m:04002.
[1988] Splitting Pκλ into stationary subsets. J. Symbolic Logic 53 (1988),
no. 2, 385–389. MR 90d:03094.
[1990] Consistency of Menas’ conjecture. J. Math. Soc. Japan 42 (1990),
no. 2, 259–263. MR 91c:03039.
[1971] K. McAloon
Les alg`ebres de Boole rigides et minimales. C. R. Acad. Sci. Paris S´er.
A-B 272 (1971), A89–A91. MR 42 #7491.
[1989] A. H. Mekler and S. Shelah
The consistency strength of “every stationary set reflects.” Israel J.
Math. 67 (1989), no. 3, 353–366. MR 91b:03090.
[1974/75] T. K. Menas
On strong compactness and supercompactness. Ann. Math. Logic 7
(1974/75), 327–359. MR 50 #9589.
[1976] Consistency results concerning supercompactness. Trans. Amer. Math.
Soc. 223 (1976), 61–91. MR 58 #27488.
[1981] A. W. Miller
Some properties of measure and category. Trans. Amer. Math. Soc.
266 (1981), no. 1, 93–114. MR 84e:03058a.
[1965] E. C. Milner and R. Rado
The pigeon-hole principle for ordinal numbers. Proc. London Math.
Soc. (3) 15 (1965), 750–768. MR 32 #7419.
[1917] D. Mirimanov
Les antinomies de Russell et de Burali-Forti et le probl`eme fondamental
de la th´eorie des ensembles. L’Enseignment Math. 19 (1917), 37–52.
724 Bibliography
[1972/73] W. J. Mitchell
Aronszajn trees and the independence of the transfer property. Ann.
Math. Logic 5 (1972/73), 21–46. MR 47 #1612.
[1974] Sets constructible from sequences of ultrafilters. J. Symbolic Logic 39
(1974), 57–66. MR 49 #8863.
[1979a] Hypermeasurable cardinals. In “Logic Colloquium ’78” (M. Boffa
et al., eds.), Mons, 1978. Stud. Logic Foundations Math. 97, North-
Holland Publishing Co., Amsterdam-New York, 1979, pp. 303–316. MR
82j:03067; the entire collection MR 81a:03001.
[1979b] Ramsey cardinals and constructibility. J. Symbolic Logic 44 (1979),
no. 2, 260–266. MR 80f:03063.
[1982] How weak is a closed unbounded ultrafilter? In “Logic Colloquium
’80” (D. van Dalen et al., eds.), Prague, 1980. Stud. Logic Foundations
Math. 108, North-Holland Publishing Co., Amsterdam-New
York, 1982, pp. 209–230. MR 84f:03047; the entire collection 83i:03003.
[1983] Sets constructed from sequences of measures: Revisited. J. Symbolic
Logic 48 (1983), no. 3, 600–609. MR 85j:03052.
[1984] The core model for sequences of measures. I. Math. Proc. Cambridge
Philos. Soc. 95 (1984), no. 2, 229–260. MR 85i:03163.
[1994] The core model up to a Woodin cardinal. In “Logic, Methodology and
Philosophy of Science, IX” (D. Prawitz et al., eds.), Uppsala, 1991.
Stud. Logic Foundations Math. 134, North-Holland, Amsterdam, 1994,
pp. 157–175. MR 96g:03091; the entire collection MR 96a:03004.
[∞a] An introduction to inner models. In “Handbook of Set Theory”
(A. Kanamori, M. Foreman, et al., eds.).
[∞b] The covering lemma. In “Handbook of Set Theory” (A. Kanamori,
M. Foreman, et al., eds.).
[1997] W. J. Mitchell, E. Schimmerling, and J. R. Steel
The covering lemma up to a Woodin cardinal. Ann. Pure Appl. Logic
84 (1997), no. 2, 219–255. MR 98b:03067.
[1994] W. J. Mitchell and J. R. Steel
“Fine Structure and Iteration Trees.” Lecture Notes in Logic 3,
Springer-Verlag, Berlin, 1994. MR 95m:03099.
[1963/64] J. D. Monk and D. S. Scott
Additions to some results of Erd˝os and Tarski. Fund. Math. 53
(1963/64), 335–343. MR 29 #3386.
[1955] R. M. Montague
Well-founded relations; generalizations of principle of induction and
recursion. Bull. Amer. Math. Soc. 61 (1955), 442. Abstract.
[1961] Fraenkel’s addition to the axioms of Zermelo. In “Essays on the Foundations
of Mathematics” (Y. Bar-Hillel et al., eds.). Magnes Press,
Hebrew Univ., Jerusalem, 1961, 91–114. MR 29 #1139; the entire
collection MR 28 #3918.
[1959] R. M. Montague and R. L. Vaught
Natural models of set theories. Fund. Math. 47 (1959), 219–242. MR
23 #A1520.
[1977] C. F. Morgenstern
Compact Extensions of L<ω and Topics in Set Theory. PhD thesis,
University of Colorado, 1977.
Bibliography 725
[1970] Y. N. Moschovakis
Determinacy and prewellorderings of the continuum. In “Mathematical
Logic and Foundations of Set Theory” (Y. Bar-Hillel, ed.), Proc.
Internat. Colloq., Jerusalem, 1968. North-Holland Publishing Co., Amsterdam,
1970, pp. 24–62. MR 43 #6082; the entire collection MR 42
#1643.
[1971] Uniformization in a playful universe. Bull. Amer. Math. Soc. 77 (1971),
731–736. MR 44 #2609.
[1980] “Descriptive Set Theory.” Stud. Logic Foundations Math. 100, North-
Holland Publishing Co., Amsterdam-New York, 1980. MR 82e:03002.
[1939] A. Mostowski
¨Uber die Unabh¨angigkeit des Wohlordnungssatzes vom Ordnungsprinzip.
Fund. Math. 32 (1939), 201–252. Zbl. 022.12004.
[1949] An undecidable arithmetical statement. Fund. Math. 36 (1949), 143–
164. MR 12,2d.
[1963/64] J. Mycielski
On the axiom of determinateness. Fund. Math. 53 (1963/64), 205–224.
MR 28 #4991.
[1966] On the axiom of determinateness. II. Fund. Math. 59 (1966), 203–212.
MR 35 #1489.
[1962] J. Mycielski and H. Steinhaus
A mathematical axiom contradicting the axiom of choice. Bull. Acad.
Polon. Sci. S´er. Sci. Math. Astronom. Phys. 10 (1962), 1–3. MR 25
#3850.
[1964] J. Mycielski and S. ´Swierczkowski
On the Lebesgue measurability and the axiom of determinateness.
Fund. Math. 54 (1964), 67–71. MR 28 #4992.
[1971] J. R. Myhill and D. S. Scott
Ordinal definability. In “Axiomatic Set Theory” (D. S. Scott, ed.),
Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los
Angeles, Calif., 1967. Amer. Math. Soc., Providence, R.I., 1971, pp.
271–278. MR 43 #7318; the entire collection MR 43 #38.
[1971] K. Namba
Independence proof of (ω,ωα)-distributive law in complete Boolean
algebras. Comment. Math. Univ. St. Paul. 19 (1971), 1–12. MR 45
#6602.
[1925] J. von Neumann
Eine Axiomatisierung der Mengenlehre. J. f. Math. 154 (1925), 219–
240.
[1951] P. S. Novikov
On the consistency of some propositions of the descriptive theory of
sets. Tr. Mat. Inst. Steklov. 38 (1951), 279–316. (Russian). MR
14,234a. English translation: Amer. Math. Soc. Transl. (2), 29, 51–
89, 1963. MR 27 #3537.
[1969] J. B. Paris
Boolean Extensions and Large Cardinals. PhD thesis, Manchester University,
1969.
[1985] J. Pawlikowski
Lebesgue measurability implies Baire property. Bull. Sci. Math. (2)
109 (1985), no. 3, 321–324. MR 87h:03076.
726 Bibliography
[1958] R. S. Pierce
A note on complete Boolean algebras. Proc. Amer. Math. Soc. 9 (1958),
892–896. MR 21 #1280.
[1971] D. Pincus
Support structures for the axiom of choice. J. Symbolic Logic 36 (1971),
28–38. MR 44 #61.
[1972] Zermelo-Fraenkel consistency results by Fraenkel-Mostowski methods.
J. Symbolic Logic 37 (1972), 721–743. MR 49 #2374.
[1937] B. Posp´ıˇsil
Remark on bicompact spaces. Ann. of Math. (2) 38 (1937), 845–846.
Zbl. 017.42901.
[1972] W. C. Powell
Almost huge cardinals and Vopenka’s principle. Notices Amer. Math.
Soc. 19 (1972), A-616. Abstract.
[1970] K. L. Prikry
Changing measurable into accessible cardinals. Dissertationes Math.
Rozprawy Mat. 68 (1970), 55 pp. MR 41 #6685.
[1975] Ideal and powers of cardinals. Bull. Amer. Math. Soc. 81 (1975), no. 5,
907–909. MR 51 #10100.
[1982] L. B. Radin
Adding closed cofinal sequences to large cardinals. Ann. Math. Logic
22 (1982), no. 3, 243–261. MR 83m:03062.
[1985] J. Raisonnier and J. Stern
The strength of measurability hypotheses. Israel J. Math. 50 (1985),
no. 4, 337–349. MR 87d:03129.
[1929/30] F. P. Ramsey
On a problem of formal logic. Proc. London Math. Soc. 30 (1929/30),
264–286.
[1974] W. N. Reinhardt
Remarks on reflection principles, large cardinals, and elementary embeddings.
In “Axiomatic Set Theory” (T. J. Jech, ed.), Proc. Sympos.
Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif.,
1967. Amer. Math. Soc., Providence, R.I., 1974, pp. 189–205. MR 53
#5302; the entire collection MR 50 #6840.
[1965] W. N. Reinhardt and J. H. Silver
On some problems of Erd˝os and Hajnal. Notices Amer. Math. Soc. 12
(1965), 723. Abstract.
[1938] F. Rothberger
Eine ¨Aquivalenz zwischen der Kontinuumhypothese und der Existenz
der Lusinschen und Sierpi´nskischen Mengen. Fund. Math. 30 (1938),
215–217. Zbl. 018.39401.
[1941] Sur les familles ind´enombrables de suites de nombres naturels et les
probl`emes concernant la propri´et´e C. Proc. Cambridge Philos. Soc. 37
(1941), 109–126. MR 2,352a.
[1971] F. Rowbottom
Some strong axioms of infinity incompatible with the axiom of constructibility.
Ann. Math. Logic 3 (1971), no. 1, 1–44. MR 48 #1928.
[1966] M. E. Rudin
Types of ultrafilters. In “Topology Seminar” (R. H. Bing and R. J.
Bean, eds.), Wisconsin, 1965. Ann. of Math. Studies, No. 60, Princeton
Bibliography 727
University Press, Princeton, N.J., 1966, pp. 147–151. MR 35 #7284;
the entire collection MR 34 #1974.
[1971] Partial orders on the types in βN. Trans. Amer. Math. Soc. 155 (1971),
353–362. MR 42 #8459.
[1956] W. Rudin
Homogeneity problems in the theory of ˇCech compactifications. Duke
Math. J. 23 (1956), 409–419. MR 18,324d.
[1971] G. E. Sacks
Forcing with perfect closed sets. In “Axiomatic Set Theory” (D. S.
Scott, ed.), Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California,
Los Angeles, Calif., 1967. Amer. Math. Soc., Providence, R.I.,
1971, pp. 331–355. MR 43 #1827; the entire collection MR 43 #38.
[1993] M. Scheepers
Gaps in ωω. In “Set Theory of the Reals” (H. Judah, ed.), Ramat
Gan, 1991. Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan,
distributed by the Amer. Math. Soc., Providence, RI, 1993, pp. 439–
561. MR 95a:03061; the entire collection MR 94b:03010.
[1995] E. Schimmerling
Combinatorial principles in the core model for one Woodin cardinal.
Ann. Pure Appl. Logic 74 (1995), no. 2, 153–201. MR 96f:03041.
[1993] C. Schlindwein
Simplified RCS iterations. Arch. Math. Logic 32 (1993), no. 5, 341–349.
MR 94f:03061.
[1961] D. S. Scott
Measurable cardinals and constructible sets. Bull. Acad. Polon. Sci.
S´er. Sci. Math. Astronom. Phys. 9 (1961), 521–524. MR 26 #1263.
[1967] A proof of the independence of the continuum hypothesis. Math. Systems
Theory 1 (1967), 89–111. MR 36 #1321.
[1946] N. A. Shanin
A theorem from the general theory of sets. C. R. (Doklady) Acad. Sci.
URSS (N.S.) 53 (1946), 399–400. MR 8,333i.
[1978] S. Shelah
Jonsson algebras in successor cardinals. Israel J. Math. 30 (1978),
no. 1-2, 57–64. MR 58 21572.
[1979] On successors of singular cardinals. In “Logic Colloquium ’78”
(M. Boffa et al., eds.), Mons, 1978. Stud. Logic Foundations Math. 97,
North-Holland Publishing Co., Amsterdam-New York, 1979, pp. 357–
380. MR 82d:03079; the entire collection MR 81a:03001.
[1982] “Proper Forcing.” Lecture Notes in Mathematics 940, Springer-Verlag,
Berlin-New York, 1982. MR 84h:03002.
[1983] The singular cardinals problem: Independence results. In “Surveys in
Set Theory” (A. R. D. Mathias, ed.). London Math. Soc. Lecture Note
Ser. 87, Cambridge University Press, Cambridge-New York, 1983, 116–
134. MR 87b:03114; the entire collection 86m:03005.
[1984] Can you take Solovay’s inaccessible away? Israel J. Math. 48 (1984),
no. 1, 1–47. MR 86g:03082a.
[1987] Semiproper forcing axiom implies Martin’s maximum but not PFA+.
J. Symbolic Logic 52 (1987), no. 2, 360–367. MR 89g:03072.
[1994] “Cardinal Arithmetic.” Oxford Logic Guides 29, The Clarendon Press,
Oxford University Press, New York, 1994. MR 96e:03001.
728 Bibliography
[1998] “Proper and Improper Forcing.” Perspectives in Mathematical Logic
29, Springer-Verlag, Berlin, second edition, 1998. MR 98m:03002.
[1990] S. Shelah and W. H. Woodin
Large cardinals imply that every reasonably definable set of reals is
Lebesgue measurable. Israel J. Math. 70 (1990), no. 3, 381–394. MR
92m:03087.
[1951] J. C. Shepherdson
Inner models for set theory. I. J. Symbolic Logic 16 (1951), 161–190.
MR 13,522a.
[1952] Inner models for set theory. II. J. Symbolic Logic 17 (1952), 225–237.
MR 14,834h.
[1953] Inner models for set theory. III. J. Symbolic Logic 18 (1953), 145–167.
MR 15,278f.
[1954] J. R. Shoenfield
A relative consistency proof. J. Symbolic Logic 19 (1954), 21–28. MR
15,668f.
[1959] On the independence of the axiom of constructibility. Amer. J. Math.
81 (1959), 537–540. MR 21 #5563.
[1961] The problem of predicativity. In “Essays on the Foundations of Mathematics”
(Y. Bar-Hillel et al., eds.). Magnes Press, Hebrew Univ.,
Jerusalem, 1961, 132–139. MR 29 #2177; the entire collection MR
28 #3918.
[1925] W. Sierpi´nski
Sur une classe d’ensembles. Fund. Math. 7 (1925), 237–243.
[1927] Sur quelques propri´et´es des ensembles projectifs. C. R. Acad. Sci.
Paris 185 (1927), 833–835.
[1928] Sur une d´ecomposition d’ensembles. Monatsh. Math. 35 (1928), 239–
242.
[1933] Sur un probl`eme de la th´eorie des relations. Ann. Scuola Norm. Sup.
Pisa, II 2 (1933), 285–287. Zbl. 007.09702.
[1930] W. Sierpi´nski and A. Tarski
Sur une propri´et´e caracteristique des nombres inaccessibles. Fund.
Math. 15 (1930), 292–300.
[1964] R. Sikorski
“Boolean Algebras.” Springer-Verlag, Berlin-New York, second edition,
1964. MR 31 #2178.
[1970a] J. H. Silver
A large cardinal in the constructible universe. Fund. Math. 69 (1970),
93–100. MR 43 #43.
[1970b] Every analytic set is Ramsey. J. Symbolic Logic 35 (1970), 60–64. MR
48 #10807.
[1971a] Measurable cardinals and Δ13
well-orderings. Ann. of Math. (2) 94
(1971), 414–446. MR 45 #8517.
[1971b] Some applications of model theory in set theory. Ann. Math. Logic 3
(1971), no. 1, 45–110. MR 53 #12950.
[1971c] The independence of Kurepa’s conjecture and two-cardinal conjectures
in model theory. In “Axiomatic Set Theory” (D. S. Scott, ed.), Proc.
Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles,
Calif., 1967. Amer. Math. Soc., Providence, R.I., 1971, pp. 383–390.
MR 43 #3112; the entire collection MR 43 #38.
Bibliography 729
[1971d] The consistency of the GCH with the existence of a measurable cardinal.
In “Axiomatic Set Theory” (D. S. Scott, ed.), Proc. Sympos. Pure
Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967.
Amer. Math. Soc., Providence, R.I., 1971, pp. 391–395. MR 43 #4663;
the entire collection MR 43 #38.
[1975] On the singular cardinals problem. In “Proceedings of the International
Congress of Mathematicians,” Vancouer, B. C., 1974, Vol. 1. Canad.
Math. Congress, Montreal, Que., 1975, pp. 265–268. MR 55 #2576;
the entire collection MR 54 #7.
[1980] Counting the number of equivalence classes of Borel and coanalytic
equivalence relations. Ann. Math. Logic 18 (1980), no. 1, 1–28. MR
81d:03051.
[1970] T. Skolem
“Selected Works in Logic.” Edited by J. E. Fenstad. Universitetsforlaget,
Oslo, 1970. MR 44 #2562.
[1963] R. M. Solovay
Independence results in the theory of cardinals. Notices Amer. Math.
Soc. 10 (1963), 595. Abstract.
[1967] A nonconstructible Δ13
set of integers. Trans. Amer. Math. Soc. 127
(1967), 50–75. MR 35 #2748.
[1969] On the cardinality of Σ12
sets of reals. In “Foundations of Mathematics”
(J. J. Buloff et al., eds.), Symposium Commemorating Kurt G¨odel,
Columbus, Ohio, 1966. Springer, New York, 1969, pp. 58–73. MR 43
#3115; the entire collection MR 39 #2594.
[1970] A model of set theory in which every set of reals is Lebesgue measurable.
Ann. of Math. (2) 92 (1970), 1–56. MR 42 #64.
[1971] Real-valued measurable cardinals. In “Axiomatic Set Theory” (D. S.
Scott, ed.), Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California,
Los Angeles, Calif., 1967. Amer. Math. Soc., Providence, R.I.,
1971, pp. 397–428. MR 45 #55; the entire collection MR 43 #38.
[1974] Strongly compact cardinals and the GCH. In “Proceedings of the
Tarski Symposium” (L. Henkin et al., eds.), Proc. Sympos. Pure Math.,
Vol. XXV, Univ. of California, Berkeley, Calif., 1971. Amer.Math. Soc.,
Providence, R.I., 1974, pp. 365–372. MR 52 #106; the entire collection
MR 50 #1829.
[1978] R. M. Solovay, W. N. Reinhardt, and A. Kanamori
Strong axioms of infinity and elementary embeddings. Ann. Math.
Logic 13 (1978), no. 1, 73–116. MR 80h:03072.
[1971] R. M. Solovay and S. Tennenbaum
Iterated Cohen extensions and Souslin’s problem. Ann. of Math. (2)
94 (1971), 201–245. MR 45 #3212.
[1949] E. Specker
Sur un probl`eme de Sikorski. Colloq. Math. 2 (1949), 9–12. MR
12,597b.
[1957] Zur Axiomatik der Mengenlehre (Fundierungs- und Auswahlaxiom).
Z. Math. Logik Grundlagen Math. 3 (1957), 173–210. MR 20 #5738.
[1996] J. R. Steel
“The Core Model Iterability Problem.” Lecture Notes in Logic 8,
Springer-Verlag, Berlin, 1996. MR 99k:03043.
730 Bibliography
[1982] J. R. Steel and R. van Wesep
Two consequences of determinacy consistent with choice. Trans. Amer.
Math. Soc. 272 (1982), no. 1, 67–85. MR 83i:03081.
[1936] M. H. Stone
The theory of representations for Boolean algebras. Trans. Amer.
Math. Soc. 40 (1936), 37–111. Zbl. 014.34002.
[1917] M. Suslin
Sur une d´efinition des ensembles mesurables B sans nombres transfinis.
C. R. Acad. Sci. Paris 164 (1917), 88–91.
[1920] Probl`eme 3. Fund. Math. 1 (1920), 223.
[1970] G. Takeuti
A relativization of axioms of strong infinity to ω1. Ann. Japan Assoc.
Philos. Sci. 3 (1970), 191–204. MR 43 #6083.
[1925a] A. Tarski
Sur les ensembles finis. Fund. Math. 6 (1925), 45–95.
[1925b] Quelques th´eor`emes sur les alephs. Fund. Math. 7 (1925), 1–14.
[1930] Une contribution `a la th´eorie de la mesure. Fund. Math. 15 (1930),
42–50.
[1938] ¨Uber unerreichbare Kardinalzahlen. Fund. Math. 30 (1938), 68–89.
Zbl. 018.34702.
[1939] On undecidable statements in enlarged systems of logic and the concept
of truth. J. Symbolic Logic 4 (1939), 105–112. MR 1,34c.
[1945] Ideale in vollst¨andingen Mengenk¨orpern. II. Fund. Math. 33 (1945),
51–65. MR 8,193b.
[1962] Some problems and results relevant to the foundations of set theory. In
“Logic, Methodology and Philosophy of Science” (E. Nagel et al., eds.),
Proc. 1960 Internat. Congr. Stanford Univ. Press, Stanford, Calif.,
1962, pp. 125–135. MR 27 #1382; the entire collection MR 29 #3347.
[1968] S. Tennenbaum
Souslin’s problem. Proc. Natl. Acad. Sci. U.S.A. 59 (1968), 60–63. MR
37 #55.
[1984] S. Todorˇcevi´c
Trees and linearly ordered sets. In “Handbook of Set-Theoretic Topology”
(K. Kunen and J. E. Vaughan, eds.). North-Holland Publishing
Co., Amsterdam-New York, 1984, 235–293. MR 86h:54040; the entire
collection MR 85k:54001.
[1987] Partitioning pairs of countable ordinals. Acta Math. 159 (1987), no. 3-
4, 261–294. MR 88i:04002.
[1989] “Partition Problems in Topology.” Contemp. Math. 84, Amer. Math.
Soc., Providence, R.I., 1989. MR 90d:04001.
[1997] “Topics in Topology.” Lecture Notes in Mathematics 1652, Springer-
Verlag, Berlin, 1997. MR 98g:54002.
[1977] J. Truss
Sets having calibre ℵ1. In “Logic Colloquium ’76” (R. O. Gandy
and J. M. E. Hyland, eds.), Oxford, 1976. Stud. Logic Foundations
Math. 87, North-Holland Publishing Co., Amsterdam, 1977, pp. 595–
612. MR 57 #16073; the entire collection MR 57 #53.
[1930] S. Ulam
Zur Masstheorie in der allgemeinen Mengenlehre. Fund. Math. 16
(1930), 140–150.
Bibliography 731
[1992] B. Veliˇckovi´c
Forcing axioms and stationary sets. Adv. Math. 94 (1992), no. 2, 256–
284. MR 93k:03045.
[1998] B. Veliˇckovi´c and W. H. Woodin
Complexity of reals in inner models of set theory. Ann. Pure Appl.
Logic 92 (1998), no. 3, 283–295. MR 99f:03067.
[1905] G. Vitali
“Sul Problema della Mesura dei Gruppi di Punti di una Retta.”
Bologna, 1905.
[1969] D. A. Vladimirov
“Boolean Algebras.” Izdat. Nauka, Moscow, 1969. (Russian). MR 41
#8314.
[1964] P. Vopˇenka
The independence of the continuum hypothesis. Comment. Math.
Univ. Carolinae 5 (1964), suppl. I, 48 pp. (Russian). MR 29 #5742.
[1965a] The limits of sheaves and applications on constructions of models. Bull.
Acad. Polon. Sci. S´er. Sci. Math. Astronom. Phys. 13 (1965), 189–192.
MR 32 #53.
[1965b] On ∇-model of set theory. Bull. Acad. Polon. Sci. S´er. Sci. Math.
Astronom. Phys. 13 (1965), 267–272. MR 32 #54.
[1965c] Properties of ∇-model. Bull. Acad. Polon. Sci. S´er. Sci. Math. Astronom.
Phys. 13 (1965), 441–444. MR 32 #7400.
[1966] ∇-models in which the generalized continuum hypothesis does not hold.
Bull. Acad. Polon. Sci. S´er. Sci. Math. Astronom. Phys. 14 (1966), 95–
99. MR 34 #41.
[1967a] General theory of ∇-models. Comment. Math. Univ. Carolinae 8
(1967), 145–170. MR 35 #5310.
[1967b] The limits of sheaves over extremally disconnected compact Hausdorff
spaces. Bull. Acad. Polon. Sci. S´er. Sci. Math. Astronom. Phys. 15
(1967), 1–4. MR 37 #912.
[1967] P. Vopˇenka and B. Balcar
On complete models of the set theory. Bull. Acad. Polon. Sci. S´er. Sci.
Math. Astronom. Phys. 15 (1967), 839–841. MR 39 #3989.
[1968] P. Vopˇenka, B. Balcar, and P. H´ajek
The notion of effective sets and a new proof of the consistency of the
axiom of choice. J. Symbolic Logic 33 (1968), 495–496. Abstract.
[1965] P. Vopˇenka and P. H´ajek
Permutation submodels of the model ∇. Bull. Acad. Polon. Sci. S´er.
Sci. Math. Astronom. Phys. 13 (1965), 611–614. MR 33 #2530.
[1967] Concerning the ∇-models of set theory. Bull. Acad. Polon. Sci. S´er.
Sci. Math. Astronom. Phys. 15 (1967), 113–117. MR 37 #5094.
[1972] “The Theory of Semisets.” Academia (Publishing House of the Czechoslovak
Academy of Sciences), Prague, 1972. MR 56 #2824.
[1966] P. Vopˇenka and K. Hrb´aˇcek
On strongly measurable cardinals. Bull. Acad. Polon. Sci. S´er. Sci.
Math. Astronom. Phys. 14 (1966), 587–591. MR 35 #2747.
[1967] The consistency of some theorems on real numbers. Bull. Acad. Polon.
Sci. S´er. Sci. Math. Astronom. Phys. 15 (1967), 107–111. MR 37
#1255.
732 Bibliography
[1988] W. H. Woodin
Supecompact cardinals, sets of reals, and weakly homogeneous trees.
Proc. Natl. Acad. Sci. U.S.A. 85 (1988), no. 18, 6587–6591. MR
89m:03040.
[1999] “The Axiom of Determinacy, Forcing Axioms, and the Nonstationary
Ideal.” de Gruyter Series in Logic and its Applications 1, Walter de
Gruyter & Co., Berlin, 1999. MR 2001e:03001.
[∞] W. H. Woodin, A. R. D. Mathias, and K. Hauser
“The Axiom of Determinacy.” de Gruyter Series in Logic and its Applications,
Walter de Gruyter & Co.
[1906] W. H. Young
“The Theory of Sets of Points.” Cambridge Univ. Press, London and
New York, 1906.
[1996] J. Zapletal
A new proof of Kunen’s inconsistency. Proc. Amer. Math. Soc. 124
(1996), no. 7, 2203–2204. MR 96i:03051.
[1904] E. Zermelo
Beweis, dass jede Menge wohlgeordnet werden kann. Math. Ann. 59
(1904), 514–516.
[1908] Untersuchungen ¨uber die Grundlagen der Mengenlehre. Math. Ann.
65 (1908), 261–281.
[1935] M. Zorn
A remark on method in transfinite algebra. Bull. Amer. Math. Soc. 41
(1935), 667–670. Zbl. 012.33702.
0

set theory Thomas jech(1/2)

Set Theory: The Third Millennium Edition, revised and expanded (Springer Monographs in Mathematics)
Thomas Jech
Springer(2011/09/08)
値段:¥ 18,515


Set Theory by Thomas Jech(2006-04-28)
Thomas Jech
Springer(2006)

https://fa.its.tudelft.nl/~hart/onderwijs/set_theory/Jech/00-front-matter.pdf



Content

Part I. Basic Set Theory
1. Axioms of Set Theory...................................... 3 
Axioms of Zermelo-Fraenkel. Why Axiomatic Set Theory? Language of Set Theory, Formulas. Classes. Extensionality. Pairing. Separation Schema. Union. Power Set. Infinity. Replacement Schema. Exercises. Historical Notes.
2. Ordinal Numbers .......................................... 17 
Linear and Partial Ordering. Well-Ordering. Ordinal Numbers. Induction and Recursion. Ordinal Arithmetic. Well-Founded Relations. Exercises. Historical Notes.
3. Cardinal Numbers ......................................... 27 
Cardinality. Alephs. The Canonical Well-Ordering of α × α. Cofinality. Ex- ercises. Historical Notes.
4. Real Numbers ............................................. 37 
The Cardinality of the Continuum. The Ordering of R. Suslin’s Problem. The Topology of the Real Line. Borel Sets. Lebesgue Measure. The Baire Space. Polish Spaces. Exercises. Historical Notes.
5. The Axiom of Choice and Cardinal Arithmetic............. 47 The Axiom of Choice. Using the Axiom of Choice in Mathematics. The Count- able Axiom of Choice. Cardinal Arithmetic. Infinite Sums and Products. The Continuum Function. Cardinal Exponentiation. The Singular Cardinal Hy- pothesis. Exercises. Historical Notes.
6. The Axiom of Regularity................................... 63 
The Cumulative Hierarchy of Sets. ∈-Induction. Well-Founded Relations. The Bernays-G ̈odel Axiomatic Set Theory. Exercises. Historical Notes.
7. Filters, Ultrafilters and Boolean Algebras .................. 73 
Filters and Ultrafilters. Ultrafilters on ω. κ-Complete Filters and Ideals. Boolean Algebras. Ideals and Filters on Boolean Algebras. Complete Boolean Algebras. Complete and Regular Subalgebras. Saturation. Distributivity of Complete Boolean Algebras. Exercises. Historical Notes.
 
X Table of Contents
8. Stationary Sets............................................. 91 
Closed Unbounded Sets. Mahlo Cardinals. Normal Filters. Silver’s Theo- rem. A Hierarchy of Stationary Sets. The Closed Unbounded Filter on Pκ(λ). Exercises. Historical Notes.
9. Combinatorial Set Theory.................................. 107 
Partition Properties. Weakly Compact Cardinals. Trees. Almost Disjoint Sets and Functions. The Tree Property and Weakly Compact Cardinals. Ramsey Cardinals. Exercises. Historical Notes.
10. Measurable Cardinals ..................................... 125 
The Measure Problem. Measurable and Real-Valued Measurable Cardinals. Measurable Cardinals. Normal Measures. Strongly Compact and Supercom- pact Cardinals. Exercises. Historical Notes.
11. Borel and Analytic Sets................................... 139 Borel Sets. Analytic Sets. The Suslin Operation A. The Hierarchy of Projective Sets. Lebesgue Measure. The Property of Baire. Analytic Sets: Measure, Category, and the Perfect Set Property. Exercises. Historical Notes.
12. Models of Set Theory ..................................... 155 
Review of Model Theory. G ̈odel’s Theorems. Direct Limits of Models. Re- duced Products and Ultraproducts. Models of Set Theory and Relativization. Relative Consistency. Transitive Models and ∆0 Formulas. Consistency of
the Axiom of Regularity. Inaccessibility of Inaccessible Cardinals. Reflection Principle. Exercises. Historical Notes.
Part II. Advanced Set Theory
13. Constructible Sets ........................................ 175 
The Hierarchy of Constructible Sets. G ̈odel Operations. Inner Models of ZF. The L ́evy Hierarchy. Absoluteness of Constructibility. Consistency of the Ax- iom of Choice. Consistency of the Generalized Continuum Hypothesis. Relative Constructibility. Ordinal-Definable Sets. More on Inner Models. Exercises. Historical Notes.
14. Forcing ................................................... 201 
Forcing Conditions and Generic Sets. Separative Quotients and Complete Boolean Algebras. Boolean-Valued Models. The Boolean-Valued Model V B . The Forcing Relation. The Forcing Theorem and the Generic Model Theorem. Consistency Proofs. Independence of the Continuum Hypothesis. Indepen- dence of the Axiom of Choice. Exercises. Historical Notes.
15. Applications of Forcing ................................... 225 
Cohen Reals. Adding Subsets of Regular Cardinals. The κ-Chain Condition. Distributivity. Product Forcing. Easton’s Theorem. Forcing with a Class of Conditions. The L ́evy Collapse. Suslin Trees. Random Reals. Forcing with Perfect Trees. More on Generic Extensions. Symmetric Submodels of Generic Models. Exercises. Historical Notes.
  
16. Iterated Forcing and Martin’s Axiom ..................... 267 
Two-Step Iteration. Iteration with Finite Support. Martin’s Axiom. Indepen- dence of Suslin’s Hypothesis. More Applications of Martin’s Axiom. Iterated Forcing. Exercises. Historical Notes.
17. Large Cardinals........................................... 285 
Ultrapowers and Elementary Embeddings. Weak Compactness. Indescribabil-
ity. Partitions and Models. Exercises. Historical Notes.
18. Large Cardinals and L .................................... 311 
Silver Indiscernibles. Models with Indiscernibles. Proof of Silver’s Theorem and 0 . Elementary Embeddings of L. Jensen’s Covering Theorem. Exercises. Historical Notes.
19. Iterated Ultrapowers and L[U]............................ 339 
The Model L[U]. Iterated Ultrapowers. Representation of Iterated Ultrapow- ers. Uniqueness of the Model L[D]. Indiscernibles for L[D]. General Iterations. The Mitchell Order. The Models L[U]. Exercises. Historical Notes.
20. Very Large Cardinals ..................................... 365 
Strongly Compact Cardinals. Supercompact Cardinals. Beyond Supercom- pactness. Extenders and Strong Cardinals. Exercises. Historical Notes.
21. Large Cardinals and Forcing .............................. 389 
Mild Extensions. Kunen-Paris Forcing. Silver’s Forcing. Prikry Forcing. Mea- surability of א1 in ZF. Exercises. Historical Notes.
22. Saturated Ideals .......................................... 409 
Real-Valued Measurable Cardinals. Generic Ultrapowers. Precipitous Ideals. Saturated Ideals. Consistency Strength of Precipitousness. Exercises. Histor- ical Notes.
23. The Nonstationary Ideal .................................. 441 
Some Combinatorial Principles. Stationary Sets in Generic Extensions. Pre- cipitousness of the Nonstationary Ideal. Saturation of the Nonstationary Ideal. Reflection. Exercises. Historical Notes.
24. The Singular Cardinal Problem ........................... 457 
The Galvin-Hajnal Theorem. Ordinal Functions and Scales. The pcf Theory. The Structure of pcf. Transitive Generators and Localization. Shelah’s Bound
on 2אω . Exercises. Historical Notes.
25. Descriptive Set Theory ................................... 479 
The Hierarchy of Projective Sets. Π1 Sets. Trees, Well-Founded Relations and κ-Suslin Sets. Σ12 Sets. Projective Sets and Constructibility. Scales and Uniformization. Σ12 Well-Orderings and Σ12 Well-Founded Relations. Borel Codes. Exercises. Historical Notes.
Table of Contents XI


XII Table of Contents
26. The Real Line ............................................ 511 
Random and Cohen reals. Solovay Sets of Reals. The L ́evy Collapse. Solo- vay’s Theorem. Lebesgue Measurability of Σ12 Sets. Ramsey Sets of Reals and Mathias Forcing. Measure and Category. Exercises. Historical Notes.
Part III. Selected Topics
27. Combinatorial Principles in L............................. 545 The Fine Structure Theory. The Principle κ. The Jensen Hierarchy. Projecta, Standard Codes and Standard Parameters. Diamond Principles. Trees in L. Canonical Functions on ω1. Exercises. Historical Notes.
28. More Applications of Forcing ............................. 557 
A Nonconstructible ∆13 Real. Namba Forcing. A Cohen Real Adds a Suslin Tree. Consistency of Borel’s Conjecture. κ+-Aronszajn Trees. Exercises. His- torical Notes.
29. More Combinatorial Set Theory .......................... 573 
Ramsey Theory. Gaps in ωω. The Open Coloring Axiom. Almost Disjoint Subsets of ω1. Functions from ω1 into ω. Exercises. Historical Notes.
30. Complete Boolean Algebras............................... 585 
Measure Algebras. Cohen Algebras. Suslin Algebras. Simple Algebras. Infinite Games on Boolean Algebras. Exercises. Historical Notes.
31. Proper Forcing............................................ 601 Definition and Examples. Iteration of Proper Forcing. The Proper Forcing Axiom. Applications of PFA. Exercises. Historical Notes.
32. More Descriptive Set Theory ............................. 615 
Π1 Equivalence Relations. Σ1 Equivalence Relations. Constructible Reals and Perfect Sets. Projective Sets and Large Cardinals. Universally Baire sets. Exercises. Historical Notes.
33. Determinacy .............................................. 627 
Determinacy and Choice. Some Consequences of AD. AD and Large Cardinals. Projective Determinacy. Consistency of AD. Exercises. Historical Notes.
34. Supercompact Cardinals and the Real Line ............... 647 
Woodin Cardinals. Semiproper Forcing. The Model L(R). Stationary Tower Forcing. Weakly Homogeneous Trees. Exercises. Historical Notes.
35. Inner Models for Large Cardinals ......................... 659 
The Core Model. The Covering Theorem for K. The Covering Theorem
for L[U]. The Core Model for Sequences of Measures. Up to a Strong Cardinal. Inner Models for Woodin Cardinals. Exercises. Historical Notes.
  
36. Forcing and Large Cardinals .............................. 669 
Violating GCH at a Measurable Cardinal. The Singular Cardinal Problem. Violating SCH at אω. Radin Forcing. Stationary Tower Forcing. Exercises. Historical Notes.
37. Martin’s Maximum ....................................... 681 
RCS iteration of semiproper forcing. Consistency of MM. Applications of MM. Reflection Principles. Forcing Axioms. Exercises. Historical Notes.
38. More on Stationary Sets .................................. 695 
The Nonstationary Ideal on א1. Saturation and Precipitousness. Reflection. Stationary Sets in Pκ(λ). Mutually Stationary Sets. Weak Squares. Exercises. Historical Notes.
Bibliography.................................................. 707 Notation...................................................... 733 Name Index .................................................. 743 
Index......................................................... 749

Bibliography.(1/2)

set theory Thomas jech Bibliography (2/2)


Bibliography
[∞] U. Abraham
Proper forcing. In “Handbook of Set Theory” (A. Kanamori, M. Foreman,
et al., eds.).
[1985] U. Abraham, M. Rubin, and S. Shelah
On the consistency of some partition theorems for continuous colorings,
and the structure of ℵ1-dense real order types. Ann. Pure Appl. Logic
29 (1985), no. 2, 123–206. MR 87d:03132.
[1985] U. Abraham and S. Shelah
Isomorphism types of Aronszajn trees. Israel J. Math. 50 (1985),
no. 1-2, 75–113. MR 86i:03063.
[1959] J. W. Addison Jr.
Separation principles in the hierarchies of classical and effective descriptive
set theory. Fund. Math. 46 (1959), 123–135. MR 24 #A1209.
[1968] J.W. Addison Jr. and Y. N. Moschovakis
Some consequences of the axiom of definable determinateness. Proc.
Natl. Acad. Sci. U.S.A. 59 (1968), 708–712. MR 36 #4979.
[1916] P. S. Aleksandrov
Sur la puissance des ensembles mesurables B. C. R. Acad. Sci. Paris
162 (1916), 323–325.
[1929] P. S. Aleksandrov and P. S. Urysohn
M´emoire sur les espaces topologiques compacts. Verh. Akad. Wetensch.
Amsterdam 14 (1929), 1–96.
[1994] J. Bagaria
Fragments of Martin’s axiom and Δ13
sets of reals. Ann. Pure Appl.
Logic 69 (1994), no. 1, 1–25.
[2000] Bounded forcing axioms as principles of generic absoluteness. Arch.
Math. Logic 39 (2000), no. 6, 393–401. MR 2001i:03103.
[1899] R. Baire
Sur les fonctions de variables r´eelles. Annali di Math. (3) 3 (1899),
1–123.
[1997] B. Balcar, T. J. Jech, and J. Zapletal
Semi-Cohen Boolean algebras. Ann. Pure Appl. Logic 87 (1997), no. 3,
187–208. MR 99a:03050.
[1986] S. Baldwin
Between strong and superstrong. J. Symbolic Logic 51 (1986), no. 3,
547–559. MR 87m:03072.
708 Bibliography
[1930] S. Banach
¨Uber additive Massfunktionen in abstrakten Mengen. Fund. Math. 15
(1930), 97–101.
[1929] S. Banach and K. Kuratowski
Sur une g´eneralisation du probl`eme de la mesure. Fund. Math. 14
(1929), 127–131.
[1984] T. Bartoszy´nski
Additivity of measure implies additivity of category. Trans. Amer.
Math. Soc. 281 (1984), no. 1, 209–213. MR 85b:03083.
[1987] Combinatorial aspects of measure and category. Fund. Math. 127
(1987), no. 3, 225–239. MR 88m:04001.
[∞] Invariants of measure and category. In “Handbook of Set Theory”
(A. Kanamori, M. Foreman, et al., eds.).
[1976] J. E. Baumgartner
Almost disjoint sets, the dense set problem and the partition calculus.
Ann. Math. Logic 9 (1976), no. 4, 401–439. MR 53 #5299.
[1980] Chains and antichains in P(ω). J. Symbolic Logic 45 (1980), no. 1,
85–92. MR 81d:03054.
[1983] Iterated forcing. In “Surveys in Set Theory” (A. R. D. Mathias, ed.).
London Math. Soc. Lecture Note Ser. 87, Cambridge University Press,
Cambridge-New York, 1983, 1–59. MR 87c:03099; the entire collection
MR 86m:03005.
[1984] Applications of the Proper Forcing Axiom. In “Handbook of Set-
Theoretic Topology” (K. Kunen and J. E. Vaughan, eds.). North-
Holland Publishing Co., Amsterdam-New York, 1984, 913–959. MR
86g:03084; the entire collection MR 85k:54001.
[1991] On the size of closed unbounded sets. Ann. Pure Appl. Logic 54 (1991),
no. 3, 195–227. MR 92m:03072.
[1973] J. E. Baumgartner and A. Hajnal
A proof (involving Martin’s axiom) of a partition relation. Fund. Math.
78 (1973), no. 3, 193–203. MR 47 #8310.
[1975] J. E. Baumgartner, A. Hajnal, and A. M´at´e
Weak saturation properties of ideals. In “Infinite and Finite Sets”
(A. Hajnal et al., eds.), Colloq., Keszthely, 1973; Dedicated to P. Erd˝os
on his 60th birthday, Vol. I. Coll. Math. Soc. J´anos Bolyai 10, North-
Holland Publishing Co., Amsterdam, 1975, pp. 137–158. MR 51 #5317;
the entire collection MR 50 #12526.
[1976] J. E. Baumgartner, L. A. Harrington, and E. M. Kleinberg
Adding a closed unbounded set. J. Symbolic Logic 41 (1976), no. 2,
481–482. MR 55 #7782.
[1970] J. E. Baumgartner, J. I. Malitz, and W. N. Reinhardt
Embedding trees in the rationals. Proc. Natl. Acad. Sci. U.S.A. 67
(1970), 1748–1753. MR 47 #3172.
[1976] J. E. Baumgartner and K. L. Prikry
On a theorem of Silver. Discrete Math. 14 (1976), no. 1, 17–21. MR
52 #7908.
[1977] Singular cardinals and the generalized continuum hypothesis. Amer.
Math. Monthly 84 (1977), no. 2, 108–113. MR 55 #2575.
[1982] J. E. Baumgartner and A. D. Taylor
Saturation properties of ideals in generic extensions. I. Trans. Amer.
Math. Soc. 270 (1982), no. 2, 557–574. MR 83k:03040a.
Bibliography 709
[1977] J. E. Baumgartner, A. D. Taylor, and S. Wagon
On splitting stationary subsets of large cardinals. J. Symbolic Logic 42
(1977), no. 2, 203–214. MR 58 #21619.
[1991] M. Bekkali
“Topics in Set Theory.” Lecture Notes in Mathematics 1476, Springer-
Verlag, Berlin, 1991. MR 92m:03070.
[1883] I. Bendixson
Quelques th´eor`emes de la th´eorie des ensembles de points. Acta Math.
2 (1883), 415–429.
[1937] P. Bernays
A system of axiomatic set theory. I. J. Symbolic Logic 2 (1937), 65–67.
Zbl. 019.29403.
[1942] A system of axiomatic set theory. III. Infinity and enumerability. Analysis.
J. Symbolic Logic 7 (1942), 65–89. MR 3,290c.
[1967] D. H. Blackwell
Infinite games and analytic sets. Proc. Natl. Acad. Sci. U.S.A. 58
(1967), 1836–1837. MR 36 #4518.
[1977] A. Blass
A model without ultrafilters. Bull. Acad. Polon. Sci. S´er. Sci. Math.
Astronom. Phys. 25 (1977), no. 4, 329–331. MR 57 #16070.
[1953] G. Bloch
Sur les ensembles stationnaires de nombres ordinaux et les suites distingu
´ees de fonctions r´egressives. C. R. Acad. Sci. Paris 236 (1953),
265–268. MR 14,733c.
[1970] G. Boolos
On the semantics of the constructible levels. Z. Math. Logik Grundlagen
Math. 16 (1970), 139–148. MR 42 #4391.
[1970/71] D. Booth
Ultrafilters on a countable set. Ann. Math. Logic 2 (1970/71), no. 1,
1–24. MR 43 #3104.
[1898] ´E. Borel
“Le¸cons sur la Th´eorie des Fonctions.” Gauthier-Villars, Paris, 1898.
[1905] “Le¸cons sur les Fonctions de Variables R´eelles.” Gauthier-Villars,
Paris, 1905.
[1919] Sur la classification des ensembles de mesure nulle. Bull. Soc. Math.
France 47 (1919), 97–125.
[1965] L. Bukovsk´y
The continuum problem and the powers of alephs. Comment. Math.
Univ. Carolinae 6 (1965), 181–197. MR 32 #1129.
[1973] Changing cofinality of a measurable cardinal. (An alternative proof.).
Comment. Math. Univ. Carolinae 14 (1973), 689–698. MR 49 #2383.
[1976] Changing cofinality of ℵ2. In “Set Theory and Hierarchy Theory”
(W. Marek, M. Srebrny, and A. Zarach, eds.), Proc. Second Conf.,
Bierutowice, 1975. Lecture Notes in Mathematics 537, Springer, Berlin,
1976, pp. 37–49. MR 55 #5441; the entire collection MR 54 #2412.
[1977] Iterated ultrapower and Prikry’s forcing. Comment. Math. Univ. Carolinae
18 (1977), no. 1, 77–85. MR 56 #5295.
[1978] J. P. Burgess
Equivalences generated by families of Borel sets. Proc. Amer. Math.
Soc. 69 (1978), no. 2, 323–326. MR 57 #16084.
710 Bibliography
[1999] D. R. Burke and Y. Matsubara
The extent of strength in the club filters. Israel J. Math. 114 (1999),
253–263. MR 2001h:03081.
[1990] M. R. Burke and M. Magidor
Shelah’s pcf theory and its applications. Ann. Pure Appl. Logic 50
(1990), no. 3, 207–254. MR 92f:03053.
[1874] G. Cantor
¨U
ber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen.
J. f. Math. 77 (1874), 258–262.
[1878] Ein Bertrag zur Mannigfaltigkeitslehre. J. f. Math. 84 (1878), 242–258.
[1932] “Gesammelte Abhandlungen Mathematischen und Philosophischen Inhalts.
Mit Erl¨auternden Anmerkungen Sowie mit Erg¨anzungen aus
dem Briefwechsel Cantor-Dedekind. Herausgegeben. von Ernst Zermelo.
Nebst einem Lebenslauf Cantors von Adolf Fraenkel.” Julius
Springer VII, Berlin, 1932. Zbl. 004.05401; Georg Olms Verlagsbuchhandlung,
Hildesheim, 1962, MR 26 #6024.
[1982] D. M. Carr
The minimal normal filter on Pκλ. Proc. Amer. Math. Soc. 86 (1982),
no. 2, 316–320. MR 84h:03109.
[1973] C. C. Chang and H. J. Keisler
“Model Theory.” Stud. Logic Foundations Math. 73, North-Holland
Publishing Co., Amsterdam-London, 1973. MR 53 #12927.
[1963] P. J. Cohen
The independence of the continuum hypothesis. Proc. Natl. Acad. Sci.
U.S.A. 50 (1963), 1143–1148. MR 28 #1118.
[1964] The independence of the continuum hypothesis. II. Proc. Natl. Acad.
Sci. U.S.A. 51 (1964), 105–110. MR 28 #2962.
[1966] “Set Theory and the Continuum Hypothesis.” W. A. Benjamin, Inc.,
New York-Amsterdam, 1966. MR 38 #999.
[1972] W. W. Comfort and A. W. Hager
Cardinality of k-complete Boolean algebras. Pacific J. Math. 40 (1972),
541–545. MR 46 #7112.
[1992] J. Cummings
A model in which GCH holds at successors but fails at limits. Trans.
Amer. Math. Soc. 329 (1992), no. 1, 1–39. MR 92h:03076.
[2001] J. Cummings, M. Foreman, and M. Magidor
Squares, scales and stationary reflection. J. Math. Logic 1 (2001), no. 1,
35–98.
[1964] M. Davis
Infinite games of perfect information. In “Advances in Game Theory”
(M. Dresher, L. S. Shapley, and A. W. Tucker, eds.). Ann. of Math.
Studies, No. 52, Princeton University Press, Princeton, N.J., 1964, 85–
101. MR 30 #965; the entire collection MR 28 #4952.
[1872] R. Dedekind
“Stetigkeit und Irrationale Zahlen.” Braunschweig, 1872.
[1975] P. Dehornoy
Solution d’une conjecture de Bukovsky. C. R. Acad. Sci. Paris S´er.
A-B 281 (1975), no. 20, Ai, A821–A824. MR 53 #12947.
[1978] Iterated ultrapowers and Prikry forcing. Ann. Math. Logic 15 (1978),
no. 2, 109–160. MR 80k:03057.
Bibliography 711
[1984] K. J. Devlin
“Constructibility.” Perspectives in Mathematical Logic, Springer-Verlag,
Berlin-New York, 1984. MR 85k:03001.
[1975] K. J. Devlin and R. B. Jensen
Marginalia to a theorem of Silver. In “ISILC Logic Conference” (G. H.
M¨uller, A. Oberschelp, and K. Potthoff, eds.), Proc. Internat. Summer
Inst. and Logic Colloq., Kiel, 1974. Lecture Notes in Mathematics 499,
Springer, Berlin, 1975, pp. 115–142. MR 58 #235; the entire collection
MR 52 #10365.
[1978] K. J. Devlin and S. Shelah
A weak version of ♦ which follows from 2ℵ0 < 2ℵ1 . Israel J. Math. 29
(1978), no. 2-3, 239–247. MR #57 9537.
[1982] A. J. Dodd
“The Core Model.” London Math. Soc. Lecture Note Ser. 61, Cambridge
University Press, Cambridge-New York, 1982. MR 84a:03062.
[1983] Core models. J. Symbolic Logic 48 (1983), no. 1, 78–90. MR 84g:03081.
[1981] A. J. Dodd and R. B. Jensen
The core model. Ann. Math. Logic 20 (1981), no. 1, 43–75. MR
82i:03063.
[1982a] The covering lemma for K. Ann. Math. Logic 22 (1982), no. 1, 1–30.
MR 83i:03082a.
[1982b] The covering lemma for L[U]. Ann. Math. Logic 22 (1982), no. 2,
127–135. MR 83i:03082b.
[1993] H.-D. Donder and P. Matet
Two cardinal versions of diamond. Israel J. Math. 83 (1993), no. 1-2,
1–43. MR 94k:03065.
[1984] E. K. van Douwen
The integers and topology. In “Handbook of Set-Theoretic Topology”
(K. Kunen and J. E. Vaughan, eds.). North-Holland Publishing Co.,
Amsterdam-New York, 1984, 111–167. MR 87f:54008; the entire collection
MR 85k:54001.
[1941] B. Dushnik and E. W. Miller
Partially ordered sets. Amer. J. Math. 63 (1941), 600–610. MR 3,73a.
[1970] W. B. Easton
Powers of regular cardinals. Ann. Math. Logic 1 (1970), 139–178. MR
42 #4392.
[1956] A. Ehrenfeucht and A. Mostowski
Models of axiomatic theories admitting automorphisms. Fund. Math.
43 (1956), 50–68. MR 18,863a.
[1974] E. Ellentuck
A new proof that analytic sets are Ramsey. J. Symbolic Logic 39
(1974), 163–165. MR 50 #1887.
[1965] R. Engelking and M. Karlowicz
Some theorems of set theory and their topological consequences. Fund.
Math. 57 (1965), 275–285. MR 33 #4880.
[1962] P. Erd˝os and A. Hajnal
Some remarks concerning our paper “On the structure of set mappings”.
Non-existence of a two-valued σ-measure, for the first uncountable
inaccessible cardinal. Acta Math. Acad. Sci. Hungar. 13 (1962),
223–226. MR 25 #5001.
712 Bibliography
[1966] On a problem of B. J´onsson. Bull. Acad. Polon. Sci. S´er. Sci. Math.
Astronom. Phys. 14 (1966), 19–23. MR 35 #64.
[1971] Unsolved problems in set theory. In “Axiomatic Set Theory” (D. S.
Scott, ed.), Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California,
Los Angeles, Calif., 1967. Amer. Math. Soc., Providence, R.I.,
1971, pp. 17–48. MR 43 #6101; the entire collection MR 43 #38.
[1968] P. Erd˝os, A. Hajnal, and E. C. Milner
On sets of almost disjoint subsets of a set. Acta Math. Acad. Sci.
Hungar. 19 (1968), 209–218. MR 37 #84.
[1965] P. Erd˝os, A. Hajnal, and R. Rado
Partitions relations for cardinal numbers. Acta Math. Acad. Sci. Hungar.
16 (1965), 93–196. MR 34 #2475.
[1952] P. Erd˝os and R. Rado
Combinatorial theorems on classifications of subsets of a given set.
Proc. London Math. Soc. (3) 2 (1952), 417–439. MR 16,455d.
[1956] A partition calculus in set theory. Bull. Amer. Math. Soc. 62 (1956),
427–489. MR 18,458a.
[1960] Intersection theorems for systems of sets. J. London Math. Soc. 35
(1960), 85–90. MR 22 #2554.
[1943] P. Erd˝os and A. Tarski
On families of mutually exclusive sets. Ann. of Math. (2) 44 (1943),
315–329. MR 4,269b.
[1961] On some problems involving inaccessible cardinals. In “Essays on the
Foundations of Mathematics” (Y. Bar-Hillel et al., eds.). Magnes Press,
Hebrew Univ., Jerusalem, 1961, 50–82. MR 29 #4695; the entire collection
MR 28 #3918.
[1964/65] S. Feferman
Some applications of the notions of forcing and generic sets. Fund.
Math. 56 (1964/65), 352–345. MR 31 #1193.
[1963] S. Feferman and A. L´evy
Independence results in set theory by Cohen’s method II. Notices
Amer. Math. Soc. 10 (1963), 593. Abstract.
[1989] Q. Feng and T. J. Jech
Local clubs, reflection, and preserving stationary sets. Proc. London
Math. Soc. (3) 58 (1989), no. 2, 237–257. MR 90a:03072.
[1998] Projective stationary sets and a strong reflection principle. J. London
Math. Soc. (2) 58 (1998), no. 2, 271–283. MR 2000b:03166.
[1992] Q. Feng, M. Magidor, andW. H.Woodin
Universally Baire sets of reals. In “Set Theory of the Continuum”
(H. Judah, W. Just, and W. H. Woodin, eds.), Berkeley, CA, 1989.
Mathematical Sciences Research Institute Publications 26, Springer-
Verlag, New York, 1992, pp. 203–242. MR 94g:03095; the entire collection
MR 94b:03009.
[1935] G. M. Fichtenholz and L. V. Kantorovitch
Sur les op´erations lin´eaires dans l’espace des fonctions born´ees. Studia
Math. 5 (1935), 69–98. Zbl. 013.06502.
[1956] G. Fodor
Eine Bemerkung zur Theorie der regressiven Funktionen. Acta Sci.
Math. Szeged 17 (1956), 139–142. MR 18,551d.
Bibliography 713
[1983] M. Foreman
Games played on Boolean algebras. J. Symbolic Logic 48 (1983), no. 3,
714–723. MR 85h:03064.
[2001] M. Foreman and M. Magidor
Mutually stationary sequences of sets and the non-saturation of the
non-stationary ideal on Pκ(λ). Acta Math. 186 (2001), no. 2, 271–300.
MR 02g:03094.
[1988] M. Foreman, M. Magidor, and S. Shelah
Martin’s maximum, saturated ideals and nonregular ultrafilters. I.
Ann. of Math. (2) 127 (1988), no. 1, 1–47. MR 89f:03043.
[1991] M. Foreman and W. H. Woodin
The generalized continuum hypothesis can fail everywhere. Ann. of
Math. (2) 133 (1991), no. 1, 1–35. MR 91k:03130.
[1922a] A. A. Fraenkel
¨Uber den Begriff “definit”und die Unabh¨angigkeit des Auswahlaxioms.
S.-B. Berlin. Math. Ges. (1922), 250–273.
[1922b] Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre. Math.
Ann. 86 (1922), 230–237.
[1973] A. A. Fraenkel, Y. Bar-Hillel, and A. L´evy
“Foundations of Set Theory.” Stud. Logic Foundations Math. 67,
North-Holland Publishing Co., Amsterdam-London, second revised
edition, 1973. MR 49 #10546.
[1989] D. H. Fremlin
Measure algebras. In “Handbook of Boolean algebras, Vol. 3” (J. D.
Monk and R. Bonnet, eds.). North-Holland Publishing Co., Amsterdam,
1989, 877–980. MR 90k:06004.
[1974] H. Friedman
On closed sets of ordinals. Proc. Amer. Math. Soc. 43 (1974), 190–192.
MR 48 #5863.
[1997] S. D. Friedman
The Σ∗ approach to the fine structure of L. In “European Summer
Meeting of the Association for Symbolic Logic” (A. Kanamori et al.,
eds.), Haifa, 1995. Fund. Math. 154 (1997), no. 2, 133–158. MR
98k:03107; the entire collection MR 98e:03002.
[1997] S. D. Friedman and P. G. Koepke
An elementary approach to the fine structure of L. Bull. Symbolic
Logic 3 (1997), no. 4, 453–468. MR 99i:03062.
[1968] Z. Frol´ık
Fixed points of maps of βN. Bull. Amer. Math. Soc. 74 (1968), 187–
191. MR 36 #5897.
[1992] U. Fuchs
Donder’s version of revised countable support. Preprint. Freie Universit
¨at Berlin (1992).
[1971] V. I. Fukson
The homogeneous Suslin continuum. Dokl. Akad. Nauk SSSR 197
(1971), 292–294. (Russian). MR 43 #3109.
[1964] H. Gaifman
Measurable cardinals and constructible sets. Notices Amer. Math. Soc.
11 (1964), 771. Abstract.
714 Bibliography
[1967] Uniform extension operators for models and their applications. In
“Sets, Models and Recursion Theory” (J. N. Crossley, ed.), Proc. Summer
School Math. Logic and Tenth Logic Colloq., Leicester, 1965.
North-Holland Publishing Co., Amsterdam, 1967, pp. 122–155. MR
36 #3640; the entire collection MR 36 #24.
[1974] Elementary embeddings of models of set-theory and certain subtheories.
In “Axiomatic Set Theory” (T. J. Jech, ed.), Proc. Sympos. Pure
Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967.
Amer. Math. Soc., Providence, R.I., 1974, pp. 33–101. MR 51 #12523;
the entire collection MR 50 #6840.
[1953] D. Gale and F. M. Stewart
Infinite games with perfect information. In “Contributions to the Theory
of Games,” Vol. 2. Ann. of Math. Studies, No. 28, Princeton University
Press, Princeton, N.J., 1953, 245–266. MR 14,999b.
[1975] F. Galvin and A. Hajnal
Inequalities for cardinal powers. Ann. of Math. (2) 101 (1975), 491–
498. MR 51 #12535.
[1973] F. Galvin and K. L. Prikry
Borel sets and Ramsey’s theorem. J. Symbolic Logic 38 (1973), 193–
198. MR 49 #2399.
[1984] M. Gitik
The nonstationary ideal on ℵ2. Israel J. Math. 48 (1984), no. 4, 257–
288. MR 86i:03061.
[1985] Nonsplitting subset of Pκ(κ+). J. Symbolic Logic 50 (1985), no. 4,
881–894. MR 87g:03054.
[1989] The negation of the singular cardinal hypothesis from o(κ) = κ++.
Ann. Pure Appl. Logic 43 (1989), no. 3, 209–234. MR 90h:03037.
[1991] The strength of the failure of the singular cardinal hypothesis. Ann.
Pure Appl. Logic 51 (1991), no. 3, 215–240. MR 92f:03060.
[1995] Some results on the nonstationary ideal. Israel J. Math. 92 (1995),
no. 1-3, 61–112. MR 96k:03108.
[1997] Some results on the nonstationary ideal. II. Israel J. Math. 99 (1997),
no. 1-3, 175–188. MR 98k:03063.
[∞] No bound for the first fixed point.
[1992] M. Gitik and M. Magidor
The singular cardinal hypothesis revisited. In “Set Theory of the
Continuum” (H. Judah, W. Just, and W. H. Woodin, eds.), Berkeley,
CA, 1989. Mathematical Sciences Research Institute Publications 26,
Springer-Verlag, New York, 1992, pp. 243–279. MR 95c:03131; the
entire collection MR 94b:03009.
[1989] M. Gitik and S. Shelah
On certain indestructibility of strong cardinals and a question of Hajnal.
Arch. Math. Logic 28 (1989), no. 1, 35–42. MR 90e:03063.
[1997] Less saturated ideals. Proc. Amer. Math. Soc. 125 (1997), no. 5, 1523–
1530. MR 97g:03055.
[1996] M. Gitik and J. Witzany
Consistency strength of the axiom of full reflection at large cardinals.
Israel J. Math. 93 (1996), 113–124. MR 97m:03082.
Bibliography 715
[1931] K. G¨odel
¨Uber formal unentscheidbare S¨atze der Principia Mathematica und
verwandter Systeme. I. Monatsh. Math. Phys. 38 (1931), 173–198.
Zbl. 002.00101.
[1938] The consistency of the axiom of choice and of the generalized continuum
hypothesis. Proc. Natl. Acad. Sci. U.S.A. 24 (1938), 556–557.
Zbl. 020.29701.
[1939] Consistency-proof for the generalized continuum hypothesis. Proc.
Natl. Acad. Sci. U.S.A. 25 (1939), 220–224. Zbl. 021.00102.
[1940] “The Consistency of the Continuum Hypothesis.” Ann. of Math. Studies,
No. 3, Princeton University Press, Princeton, N.J., 1940. MR 2,66c.
[1965] Remarks before the Princeton bicentennial conference on problems in
mathematics. (1946). In “The Undecidable. Basic Papers on Undecidable
Propositions, Unsolvable Problems and Computable Functions”
(M. Davis, ed.). Raven Press, Hewlett, New York, 1965, 84–88. MR 32
#7412.
[1995] M. Goldstern and S. Shelah
The bounded proper forcing axiom. J. Symbolic Logic 60 (1995), no. 1,
58–73. MR 96g:03083.
[1980] R. L. Graham, B. L. Rothschild, and J. H. Spencer
“Ramsey Theory.” Wiley Interscience Series in Discrete Mathematics,
John Wiley & Sons, Inc., New York, 1980. MR 82b:05001.
[1976] J. Gregory
Higher Souslin trees and the generalized continuum hypothesis. J. Symbolic
Logic 41 (1976), no. 3, 663–671. MR 58 #5208.
[1991] M. J. Groszek and T. J. Jech
Generalized iteration of forcing. Trans. Amer. Math. Soc. 324 (1991),
no. 1, 1–26. MR 91f:03107.
[1998] M. J. Groszek and T. A. Slaman
A basis theorem for perfect sets. Bull. Symbolic Logic 4 (1998), no. 2,
204–209. MR 99c:03072.
[1956] A. Hajnal
On a consistency theorem connected with the generalized continuum
problem. Z. Math. Logik Grundlagen Math. 2 (1956), 131–136. MR
19,1031d.
[1964] Remarks on the theorem of W. P. Hanf. Fund. Math. 54 (1964), 109–
113. MR 28 #3945.
[1963] A. W. Hales and R. I. Jewett
Regularity and positional games. Trans. Amer. Math. Soc. 106 (1963),
222–229. MR 26 #1265.
[1950] P. R. Halmos
“Measure Theory.” University Series in Higher Mathematics, D. van
Nostrand Co., Inc., New York, N. Y., 1950. MR 11,504d.
[1971] J. D. Halpern and A. L´evy
The Boolean prime ideal theorem does not imply the axiom of choice.
In “Axiomatic Set Theory” (D. S. Scott, ed.), Proc. Sympos. Pure
Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967.
Amer. Math. Soc., Providence, R.I., 1971, pp. 83–134. MR 44 #1557;
the entire collection MR 43 #38.
716 Bibliography
[1963/64a] W. P. Hanf
Incompactness in languages with infinitely long expressions. Fund.
Math. 53 (1963/64), 309–324. MR 28 #3943.
[1963/64b] On a problem of Erd˝os and Tarski. Fund. Math. 53 (1963/64), 325–334.
MR 28 #3944.
[1961] W. P. Hanf and D. S. Scott
Classifying inaccessible cardinals. Notices Amer. Math. Soc. 8 (1961),
445. Abstract.
[1978] L. A. Harrington
Analytic determinacy and 0. J. Symbolic Logic 43 (1978), no. 4, 685–
693. MR 80b:03065.
[1985] L. A. Harrington and S. Shelah
Some exact equiconsistency results in set theory. Notre Dame J. Formal
Logic 26 (1985), no. 2, 178–188. MR 86g:03079.
[1904] F. Hausdorff
Der Potenzbegriff in der Mengenlehre. Jahresber. Deutsch. Math.-
Verein 13 (1904), 569–571.
[1909] Die Graduierung nach dem Endverlauf. Abh. d. K¨onig. S¨achs.
Gesellschaft d. Wiss. (Math.–Phys. Kl.) 31 (1909), 296–334.
[1914] “Grundz¨uge der Mengenlehre.” Veit & Co., Leipzig, 1914.
[1916] Die M¨achtigkeit der Borelschen Mengen. Math. Ann. 77 (1916), 430–
437.
[1936a] Summen von ℵ1 Mengen. Fund. Math. 26 (1936), 241–255. Zbl.
014.05402.
[1936b] ¨Uber zwei S¨atze von G. Fichtenholz und L. Kantorovitch. Studia Math.
6 (1936), 18–19. Zbl. 015.39501.
[1974] S. H. Hechler
On the existence of certain cofinal subsets of ωω. In “Axiomatic Set
Theory” (T. J. Jech, ed.), Proc. Sympos. Pure Math., Vol. XIII, Part II,
Univ. California, Los Angeles, Calif., 1967. Amer. Math. Soc., Providence,
R.I., 1974, pp. 155–173. MR 50 #12716; the entire collection
MR 50 #6840.
[1906] G. Hessenberg
“Grundbegriffe der Mengenlehre.” Vandenhoeck and Ruprecht, G¨ottingen,
1906.
[1974] N. Hindman
Finite sums from sequences within cells of a partition of N. J. Combinatorial
Theory Ser. A 17 (1974), 1–11. MR 50 #2067.
[1988] S. Jackson
AD and the projective ordinals. In “Cabal Seminar 81–85” (A. S.
Kechris, D. A. Martin, and J. R. Steel, eds.), Proc. Caltech-UCLA
Logic Sem., 1981–85. Lecture Notes in Mathematics 1333, Springer-
Verlag, Berlin-New York, 1988, pp. 117–220. MR 89k:03055; the entire
collection MR 89c:03005.
[1999] A computation of δ1
5. Mem. Amer. Math. Soc. 140 (1999), no. 670.
MR 2000d:03104.
[1967] T. J. Jech
Non-provability of Souslin’s hypothesis. Comment. Math. Univ. Carolinae
8 (1967), 291–305. MR 35 #6564.
[1968] ω1 can be measurable. Israel J. Math. 6 (1968), 363–367. MR 39
#5353.
Bibliography 717
[1971a] “Lectures in Set Theory, with Particular Emphasis on the Method of
Forcing.” Lecture Notes in Mathematics 217, Springer-Verlag, Berlin-
New York, 1971. MR 48 #105.
[1971b] The closed unbounded filter over Pκ(λ). Notices Amer. Math. Soc. 18
(1971), 663. Abstract.
[1972/73] Some combinatorial problems concerning uncountable cardinals. Ann.
Math. Logic 5 (1972/73), 165–198. MR 48 #3744.
[1973a] Properties of the gimel function and a classification of singular cardinals.
Collection of articles dedicated to Andrzej Mostowski on the
occasion of his sixtieth birthday, I. Fund. Math. 81 (1973), no. 1,
57–64. MR 52 #10424.
[1973b] “The Axiom of Choice.” Stud. Logic Foundations Math. 75, North-
Holland Publishing Co., Amsterdam-London, 1973. MR 53 #139.
[1976] An infinite game played with stationary sets. Notices Amer. Math.
Soc. 23 (1976), A-286. Abstract.
[1978] A game theoretic property of Boolean algebras. In “Logic Colloquium
’77” (A. Macintyre et al., eds.), Proc. Conf., Wroclaw, 1977. Stud.
Logic Foundations Math. 96, North-Holland, Amsterdam-New York,
1978, pp. 135–144. MR 80c:90184; the entire collection MR 80a:03003.
[1984] Stationary subsets of inaccessible cardinals. In “Axiomatic Set Theory”
(J. E. Baumgartner, D. A. Martin, and S. Shelah, eds.), Boulder,
Colo., 1983. Contemp. Math. 31, Amer. Math. Soc., Providence, R.I.,
1984, pp. 115–142. MR 86c:03044; the entire collection MR 85g:03004.
[1992] Singular cardinal problem: Shelah’s theorem on 2
ℵω . Bull. London
Math. Soc. 24 (1992), no. 2, 127–139. MR 93a:03050.
[∞] Stationary sets. In “Handbook of Set Theory” (A. Kanamori, M. Foreman,
et al., eds.).
[1980] T. J. Jech, M. Magidor, W. J. Mitchell, and K. L. Prikry
Precipitous ideals. J. Symbolic Logic 45 (1980), no. 1, 1–8. MR
81h:03097.
[1983] T. J. Jech and W. J. Mitchell
Some examples of precipitous ideals. Ann. Pure Appl. Logic 24 (1983),
no. 2, 131–151. MR 85k:03033.
[1976] T. J. Jech and K. L. Prikry
On ideals of sets and the power set operation. Bull. Amer. Math. Soc.
82 (1976), no. 4, 593–595. MR 58 #21618.
[1979] Ideals over uncountable sets: Applications of almost disjoint functions
and generic ultrapowers. Mem. Amer. Math. Soc. 18 (1979), no. 214.
MR 80f:03059.
[1984] Cofinality of the partial ordering of functions from ω1 into ω under
eventual domination. Math. Proc. Cambridge Philos. Soc. 95 (1984),
no. 1, 25–32. MR 85b:03084.
[1993] T. J. Jech and S. Shelah
Full reflection of stationary sets at regular cardinals. Amer. J. Math.
115 (1993), no. 2, 435–453. MR 94m:03080.
[1996] A complete Boolean algebra that has no proper atomless complete
sublagebra. J. Algebra 182 (1996), no. 3, 748–755. MR 97j:03109.
[2001] Simple complete Boolean algebras. Proc. Amer.Math. Soc. 129 (2001),
no. 2, 543–549. MR 2001e:03083.
[1966a] T. J. Jech and A. Sochor
On Θ-model of the set theory. Bull. Acad. Polon. Sci. S´er. Sci. Math.
Astronom. Phys. 14 (1966), 297–303. MR 34 #2441.
718 Bibliography
[1966b] Applications of the Θ-model. Bull. Acad. Polon. Sci. S´er. Sci. Math.
Astronom. Phys. 14 (1966), 351–355. MR 37 #3918.
[1985] T. J. Jech and W. H. Woodin
Saturation of the closed unbounded filter on the set of regular cardinals.
Trans. Amer. Math. Soc. 292 (1985), no. 1, 345–356. MR 87d:03139.
[1965] R. B. Jensen
An embedding theorem for countable ZF models. Notices Amer. Math.
Soc. 12 (1965), 720. Abstract.
[1968] Souslin’s hypothesis is incompatible with V = L. Notices Amer. Math.
Soc. 15 (1968), 935. Abstract.
[1969] Automorphism properties of Souslin continua. Notices Amer. Math.
Soc. 16 (1969), 576. Abstract.
[1970] Definable sets of minimal degree. In “Mathematical Logic and Foundations
of Set Theory” (Y. Bar-Hillel, ed.), Proc. Internat. Colloq.,
Jerusalem, 1968. North-Holland Publishing Co., Amsterdam, 1970, pp.
122–128. MR 46 #5130; the entire collection MR 42 #1643.
[1972] The fine structure of the constructible hierarchy. Ann. Math. Logic 4
(1972), 229–308. MR 46 #8834.
[1989] H. Judah and S. Shelah
Δ12
-sets of reals. Ann. Pure Appl. Logic 42 (1989), no. 3, 207–223. MR
90f:03081.
[1976] A. Kanamori
Weakly normal filters and irregular ultrafilters. Trans. Amer. Math.
Soc. 220 (1976), 393–399. MR 58 #240.
[1994] “The Higher Infinite. Large Cardinals in Set Theory from Their Beginnings.”
Perspectives in Mathematical Logic, Springer-Verlag, Berlin,
1994. MR 96k:03125.
[∞] “The Higher Infinite,” Vol. 2, in preparation.
[1978] A. Kanamori and M. Magidor
The evolution of large cardinal axioms in set theory. In “Higher
Set Theory” (G. H. M¨uller and D. S. Scott, eds.), Proc. Conf.,
Math. Forschungsinst., Oberwolfach, 1977. Lecture Notes in Mathematics
669, Springer, Berlin, 1978, pp. 99–275. MR 80b:03083; the
entire collection MR 80a:03005.
[1967] C. Karp
A proof of the relative consistency of the continuum hypothesis. In
“Sets, Models and Recursion Theory” (J. N. Crossley, ed.), Proc. Summer
School Math. Logic and Tenth Logic Colloq., Leicester, 1965.
North-Holland Publishing Co., Amsterdam, 1967, pp. 1–32. MR 36
#1320; the entire collection MR 36 #24.
[1974] A. S. Kechris
On projective ordinals. J. Symbolic Logic 39 (1974), 269–282. MR 53
#2684.
[1978] AD and projective ordinals. In “Cabal Seminar 76–77” (A. S. Kechris
and Y. N. Moschovakis, eds.), Proc. Caltech-UCLA Logic Sem., 1976–
77. Lecture Notes in Mathematics 689, Springer, Berlin-New York,
1978, pp. 91–132. MR 80j:03069; the entire collection MR 80b:03004.
[1981] Homogeneous trees and projective scales. In “Cabal Seminar 77–
79” (A. S. Kechris, D. A. Martin, and Y. N. Moschovakis, eds.),
Proc. Caltech-UCLA Logic Sem., 1977–79. Lecture Notes in Mathematics
839, Springer, Berlin, 1981, pp. 33–73. MR 82j:03060; the entire
collection MR 80b:03002.
Bibliography 719
0

技術士(情報工学)が読んでいるかもしれない新聞

技術士(情報工学)が読んでいるかもしれない新聞を3つ想定する


1. 日本経済新聞または日経産業新聞

以前は、日経産業新聞を取っていた。
現在は、日本経済新聞を取っている。

一般の新聞は、中日新聞、中部読売新聞か、
英字新聞のMainichi Daily, The Japan Timesを取っていた。
今は、一般の新聞は取っていない。

2. 電波新聞

記事を掲載していただいたことがあり、仕事場で取っている。


3. 日刊工業新聞

行事などの記事を掲載していただくことがあります。仕事場で取っていました。

その他読むことがあるのは、

中部経済新聞

産経新聞

フジサンケイ ビジネスアイ

日刊自動車新聞

日本食糧新聞

日本農業新聞

Computer Weekly

Computer World(digital only)
0

電気関係学会東海支部連合大会講演集

電気関係学会東海支部連合大会講演集

電気関係学会東海支部連合大会講演集 

所有中部大学
1986
1987
1988
1989冊子
1990冊子
1991冊子
1992冊子
1993冊子
1994冊子冊子
1995冊子冊子
1996冊子
1997冊子
1998冊子
1999冊子
2000
2001冊子
2002冊子
2003冊子
2004
2005
2006
2007
2008CD-ROM
2009
2010
2011
2012
2013CD-ROM
2014
2015
2016
2017
2018
2019
2020


0

参考文献の書き方 Personal Communication.

ある文献の参考文献に、

95 Jeffrey Joyce. Personal Communication.

という記述があった。本文中に、年月日を書いているのならよいが、書いていないのなら、参考文献一覧に年月日を書くと良い。

媒体も同様。電話、e-mail, FAX, chat(システム名)、テレビ会議など。

保存してるかどうかの識別もあるとなおよい。
0

新しい日中関係

「日本人研究者の拘束」を憂慮し、関連情報の開示を求めます 2019年10月29日

新しい日中関係を考える研究者の会 
      
              
天児慧   早稲田大学名誉教授
久保亨   信州大学特任教授
小嶋華津子 慶應義塾大学教授
諏訪一幸  静岡県立大学教授              
高原明生  東京大学教授              
菱田雅晴  法政大学教授              
平野健一郎 東京大学名誉教授・早稲田大学名誉教授 
村田雄二郎 同志社大学教授 
毛里和子  早稲田大学名誉教授

石川禎浩  京都大学教授
村上衛   京都大学准教授
小野寺史郎 埼玉大学准教授
石川照子  大妻女子大学比較文化学部教授
趙宏偉   法政大学教授
及川淳子  中央大学准教授
杜崎群傑  中央大学准教授
本庄比佐子 公益財団法人東洋文庫
林幸司   成城大学教授
久保田文次 日本女子大学名誉教授
久保田博子
味岡徹   聖心女子大学名誉教授
平野聡   東京大学教授
砂山幸雄  愛知大学教授
辻康吾
加藤陽子  東京大学教授
丸川知雄  東京大学教授
益尾知佐子 九州大学准教授
岩間一弘  慶應義塾大学
阿古智子  東京大学准教授
石島紀之  フェリス女学院大学名誉教授
鈴木賢   明治大学法学部教授、北海道大学名誉教授
遠藤乾   北海道大学教授
内藤二郎  大東文化大学教授
丸田孝志  広島大学教授
奥村哲   首都大学東京名誉教授
中村元哉  東京大学准教授
佐藤公彦  東京外国語大学名誉教授
杉山清彦  東京大学准教授
松重充浩  日本大学文理学部教授
古畑康雄
廣野美和  立命館大学准教授
小浜正子  日本大学教授
武内宏樹  サザンメソジスト大学(SMU)准教授
飯島渉   青山学院大学教授
加藤公一  岐阜大学教員
茂木敏夫  東京女子大学教授
田島俊雄  東京大学名誉教授
堀地明   北九州市立大学教授
菊池秀明  国際基督教大学教授
狭間直樹  京都大学名誉教授
谷川真一  神戸大学教授
石塚迅   山梨大学准教授
杉山文彦 
江上幸子  フェリス女学院大学名誉教授
岩下明裕  北海道大学教授
下斗米伸夫 神奈川大学特別招聘教授
佐藤嘉恭  一般財団法人・国際推進協会理事長、元駐中国日本大使
西村成雄  大阪大学名誉教授
中兼和津次 東京大学名誉教授
笹川裕史  上智大学教授
馬場毅   愛知大学名誉教授
王雪萍   東洋大学教授
大久保勲  福山大学名誉教授
望月敏弘  東洋英和女学院大学教授
松村史紀  宇都宮大学准教授
小林元裕  東海大学教授
水羽信男  広島大学教授
戸部健   静岡大学教授
滝口太郎  東京女子大学名誉教授
池直美   北海道大学講師
武田知己  大東文化大学教授
森正夫   名古屋大学名誉教授
黄偉修   東京大学助教
金子肇   広島大学教授
家近亮子  敬愛大学教授
中居良文  学習院大学教授
井上久士  駿河台大学教授
清水唯一朗 慶應義塾大学教授
加藤公一  岐阜大学教員
小林一美  神奈川大学名誉教授
木越義則  名古屋大学准教授
菊池一隆  愛知学院大学教授
渡邉真理子 学習院大学教授
竹元規人  福岡教育大学准教授
吉川純恵  専修大学講師
田嶋信雄  成城大学教授
平野達志
江藤名保子 ジェトロ・アジア経済研究所副主任研究員 
関智英   東洋文庫奨励研究員
佐藤仁史  一橋大学教授
浅田進史  駒澤大学教授
堀井弘一郎 日本大学非常勤講師
田中比呂志 東京学芸大学教授
富澤芳亜  島根大学教授
青山治世  亜細亜大学准教授
関耕平   島根大学法文学部准教授
神田豊隆  新潟大学准教授
麻田雅文  岩手大学准教授
坂元ひろ子 一橋大学名誉教授
樋口真魚  成蹊大学専任講師
西川賢   津田塾大学教授
鈴木宏尚  静岡大学教授
須藤瑞代  京都産業大学准教授
井上一郎  関西学院大学教授
泉谷陽子  フェリス女学院大学准教授
市川智生  沖縄国際大学准教授
高田幸男  明治大学教授
多田狷介  日本女子大学名誉教授
山本真   筑波大学准教授
衛藤安奈  慶應義塾大学教員
                       
0