28th International Conference on Nuclear Engineering (ICONE28), 4-6 August, 2021, Virtual Conference Paper No. ICONE28-65725 # Estimation of the Amount of I-129 in the Environment Generated due to the Decay of Te-129m Discharged by the Fukushima NPS Accident ### Haruo SATO 1 1 Graduate School of Natural Science & Technology, Okayama University Okayama City, Okayama 700-8530, JAPAN Email: sato.haruo@cc.okayama-u.ac.jp ## Outline - Introduction - Analysis of the Amount of I-129 Generated by the Decay of Te-129m - Generation of I-129 from Te-129m by 2 decay processes - Equations of radioactive decay - Analytical solution for radioactivity of each radionuclide - Analytical condition - Results and Discussion - Time variation of the amount of each radionuclide (Te-129m, Te-129, I-129) - Comparison with the amount of I-129 in the environment - Conclusion ## Introduction - The accident at the TEPCO Fukushima Daiichi NPS (1F-NPS) occurred following the Great East Japan Earthquake in March 2011, and led to the release of volatile radionuclides such as I-131, Cs-134, Cs-137, Te-129m and Ag-110m, which were deposited on the environment in the Fukushima and the neighbouring prefectures. - Te-129m (half-life 33.6d) is one of the radionuclides discharged from 1F-NPS, and it is worried that long-lived I-129 (half-life 1.57x10⁷y) is generated and accumulated in the environment by the decay of Te-129m, because iodine tends to collect in the thyroid grand. - In this study, we estimated the amount of I-129 in the environment generated due to the decay of Te-129m discharged by the 1F-NPS accident, based on the analysed data of Te-129m in soil and compared to the radioactivity concentrations of I-129 in the environment. ## Generation of I-129 from Te-129m by 2 Decay Processes 3 Te-129m decays to I-129 by 2 decay processes ^{129m}Te (64%) $$\xrightarrow{\text{IT, 33.6d}}$$ $\xrightarrow{129}$ Te $$\xrightarrow{\beta^-, 69.6m}$$ $\xrightarrow{129}$ I $\xrightarrow{\beta^-, 1.57 \times 10^7 y}$ $\xrightarrow{129}$ Xe (1) ^{129m}Te (36%) $$\xrightarrow{\text{IT, 33.6d}}$$ $\xrightarrow{\text{129}}$ $\xrightarrow{\beta^-, 1.57 \times 10^7 y}$ $\xrightarrow{\text{129}}$ Xe (2) Number of nuclei $$X_1 \xrightarrow{\lambda_1} X_2 \xrightarrow{\lambda_2} X_3 \xrightarrow{\lambda_3} \tag{3}$$ $$X_1 \xrightarrow{\lambda_1} X'_3 \xrightarrow{\lambda_3}$$ (4) X_1 , X_2 , X_3 in Eq. (3): numbers of nuclei of 129m Te, 129 Te and 129 I in decay process (1), respectively X₁, X'₃ in Eq. (4): numbers of nuclei of ^{129m}Te and ¹²⁹I in decay process (2), respectively # Equations of Radioactive Decay $$\frac{\mathrm{dX}_1}{\mathrm{dt}} = -\lambda_1 X_1 \tag{5}$$ $$\frac{\mathrm{dX}_2}{\mathrm{dt}} = -\lambda_2 X_2 + \lambda_1 X_1 \tag{6}$$ $$\frac{\mathrm{dX}_3}{\mathrm{dt}} = -\lambda_3 X_3 + \lambda_2 X_2 \tag{7}$$ $$\frac{\mathrm{dX'}_3}{\mathrm{dt}} = -\lambda_3 \mathrm{X'}_3 + \lambda_1 \mathrm{X}_1 \tag{8}$$ $\lambda_1, \lambda_2, \lambda_3$: decay constants of ^{129m}Te, ¹²⁹Te and ¹²⁹I, respectively # **Analytical Solution** Radioactivity (concentration) of each radionuclide $$A_1 = \lambda_1 X_0 e^{-\lambda_1 t} \tag{9}$$ $$\mathbf{A}_2 = \frac{\mathbf{a} \mathbf{X}_0 \lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right) \tag{10}$$ $\mathbf{A_3}$ $$=aX_0\lambda_1\lambda_2\lambda_3\left\{\frac{e^{-\lambda_1t}}{(\lambda_2-\lambda_1)(\lambda_3-\lambda_1)}+\frac{e^{-\lambda_2t}}{(\lambda_1-\lambda_2)(\lambda_3-\lambda_2)}\right.$$ $$A_3' = \frac{bX_0\lambda_1\lambda_3}{\lambda_2 - \lambda_1} \left(e^{-\lambda_1 t} - e^{-\lambda_3 t} \right) \tag{12}$$ A_1 , A_2 , A_3 : radioactivities of 129m Te, 129 Te & 129 I in decay process (1), respectively A'₃: radioactivity of ¹²⁹I in decay process (2) X₀: initial number of nuclei of ^{129m}Te a & b: proportion of decay to decay series (1) & (2), respectively (a=64% & b=36%) # **Analytical Condition** #### Input data of Te-129m at 3 investigation locations selected for analysis | Location | WGS84
coordinate
system | Deposition amount
(as of 14 June
2011) (Bq/m²) | Deposition amount
(converted to as
of 15 Mar. 2011)
(Bq/m²) | Remarks | |-------------------|---------------------------------|--|--|--------------------------| | Okuma
Town | N37, 25, 30.9
E140, 00, 18.7 | 2.70×10^6 | 1.76×10^7 | ca. 2.7km
from 1F-NPS | | Naraha
Town | N37, 15, 29.4
E140, 58, 09.0 | 4.70×10^4 | 3.07×10^5 | ca. 19km from
1F-NPS | | Fukushima
City | N37, 46, 21.0
E140, 30, 54.0 | 6.40×10^4 | 4.18×10^5 | ca. 60km from 1F-NPS | Selected 3 locations (Okuma Town, Naraha Town, Fukushima City) as high, moderate and low contaminated areas among the analysed data of Te-129m in soil samples obtained at about 2,200 investigation locations in the Fukushima prefecture and the neighbouring prefectures. ## Results and Discussion (1/3) #### Time variation of the amounts of Te-129m, Te-129 and I-129 - Te-129m and Te-129 drastically decreased with an increase of time. - On the other hand, the amount of I-129 was very low, which was nearly equal to zero. # Results and Discussion (2/3) #### Graphs enlarged only time variation of the amounts of I-129 1500 1000 Elapsed time (d) 0.0E + 00 - The total amount of I-129 increased up to after about 1,000d from the 1F-NPS accident and gradually began to decrease after that. - Maximum amount of I-129 was estimated 1.03x10⁻¹ (Bq/m²) after 1,000d. ## Results and Discussion (3/3) #### Amounts of I-129 in the environment (in soil) (all over Japan) | Location | I-129 (Bq/m²) | Location | I-129 (Bq/m²) | |---|--|----------------------|-----------------------| | Shintoku, Hokkaido | 1.46×10^{-1} | Higashi-Osaka, Osaka | 7.05×10^{-3} | | Nishiki, Akita | 4.81×10^{-2} | Ningyotoge, Okayama | 1.56×10^{-2} | | Mito, Ibaraki
Iwama, Ibaraki | 1.24×10^{-1}
2.96×10^{-1} | Uwajima, Ehime | 5.75×10^{-3} | | Isesaki, Gunma | 1.78×10^{-2} | Nishiyama, Nagasaki | 1.61×10^{-2} | | Kanazawa, Ishikawa | 5.90×10^{-2} | Jonan, Kumamoto | 1.85×10^{-2} | | Kanmuriyama, Fukui
Okuetsukogen, Fukui | 1.48×10^{-1}
8.50×10^{-2} | | | ■ The background of I-129 in the environment (in soil) is ranging $5.75 \times 10^{-3} \sim 2.96 \times 10^{-1}$ (Bq/m²), which is approximately the same level as the maximum amount of I-129 (= 1.03×10^{-1} (Bq/m²)) in the environment generated by the decay of Te-129m. ## Conclusion - The maximum amount of I-129 in the environment generated by the decay of Te-129m was estimated 1.03x10⁻¹ (Bq/m²) after about 1,000d, based on the deposition data of Te-129m in soil obtained at about 2,200 locations in the Fukushima prefecture and the neighbouring prefectures, and compared to the radioactivity concentrations of I-129 in the environment all over Japan. - The radioactivity concentrations of I-129 in the environment were in the range 5.75x10⁻³ ~ 2.96x10⁻¹ (Bq/m²), which was approximately the same level as the maximum amount of I-129 in the environment generated by the decay of Te-129m. - The maximum amount of I-129 is estimated approximately one of the 2x10⁸ of the initial deposition amount of Te-129m. Thank you for your attention!