28th International Conference on Nuclear Engineering (ICONE28), 4-6 August, 2021, Virtual Conference

Paper No. ICONE28-65725

Estimation of the Amount of I-129 in the Environment Generated due to the Decay of Te-129m Discharged by the Fukushima NPS Accident

Haruo SATO 1

1 Graduate School of Natural Science & Technology, Okayama University

Okayama City, Okayama 700-8530, JAPAN

Email: sato.haruo@cc.okayama-u.ac.jp

Outline

- Introduction
- Analysis of the Amount of I-129 Generated by the Decay of Te-129m
 - Generation of I-129 from Te-129m by 2 decay processes
 - Equations of radioactive decay
 - Analytical solution for radioactivity of each radionuclide
 - Analytical condition
- Results and Discussion
 - Time variation of the amount of each radionuclide (Te-129m, Te-129, I-129)
 - Comparison with the amount of I-129 in the environment
- Conclusion

Introduction

- The accident at the TEPCO Fukushima Daiichi NPS (1F-NPS) occurred following the Great East Japan Earthquake in March 2011, and led to the release of volatile radionuclides such as I-131, Cs-134, Cs-137, Te-129m and Ag-110m, which were deposited on the environment in the Fukushima and the neighbouring prefectures.
- Te-129m (half-life 33.6d) is one of the radionuclides discharged from 1F-NPS, and it is worried that long-lived I-129 (half-life 1.57x10⁷y) is generated and accumulated in the environment by the decay of Te-129m, because iodine tends to collect in the thyroid grand.
- In this study, we estimated the amount of I-129 in the environment generated due to the decay of Te-129m discharged by the 1F-NPS accident, based on the analysed data of Te-129m in soil and compared to the radioactivity concentrations of I-129 in the environment.

Generation of I-129 from Te-129m by 2 Decay Processes 3

Te-129m decays to I-129 by 2 decay processes

^{129m}Te (64%)
$$\xrightarrow{\text{IT, 33.6d}}$$
 $\xrightarrow{129}$ Te
$$\xrightarrow{\beta^-, 69.6m}$$
 $\xrightarrow{129}$ I $\xrightarrow{\beta^-, 1.57 \times 10^7 y}$ $\xrightarrow{129}$ Xe (1)

^{129m}Te (36%)
$$\xrightarrow{\text{IT, 33.6d}}$$
 $\xrightarrow{\text{129}}$ $\xrightarrow{\beta^-, 1.57 \times 10^7 y}$ $\xrightarrow{\text{129}}$ Xe (2)

Number of nuclei

$$X_1 \xrightarrow{\lambda_1} X_2 \xrightarrow{\lambda_2} X_3 \xrightarrow{\lambda_3} \tag{3}$$

$$X_1 \xrightarrow{\lambda_1} X'_3 \xrightarrow{\lambda_3}$$
 (4)

 X_1 , X_2 , X_3 in Eq. (3): numbers of nuclei of 129m Te, 129 Te and 129 I in decay process (1), respectively

X₁, X'₃ in Eq. (4): numbers of nuclei of ^{129m}Te and ¹²⁹I in decay process (2), respectively

Equations of Radioactive Decay

$$\frac{\mathrm{dX}_1}{\mathrm{dt}} = -\lambda_1 X_1 \tag{5}$$

$$\frac{\mathrm{dX}_2}{\mathrm{dt}} = -\lambda_2 X_2 + \lambda_1 X_1 \tag{6}$$

$$\frac{\mathrm{dX}_3}{\mathrm{dt}} = -\lambda_3 X_3 + \lambda_2 X_2 \tag{7}$$

$$\frac{\mathrm{dX'}_3}{\mathrm{dt}} = -\lambda_3 \mathrm{X'}_3 + \lambda_1 \mathrm{X}_1 \tag{8}$$

 $\lambda_1, \lambda_2, \lambda_3$: decay constants of ^{129m}Te, ¹²⁹Te and ¹²⁹I, respectively

Analytical Solution

Radioactivity (concentration) of each radionuclide

$$A_1 = \lambda_1 X_0 e^{-\lambda_1 t} \tag{9}$$

$$\mathbf{A}_2 = \frac{\mathbf{a} \mathbf{X}_0 \lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right) \tag{10}$$

 $\mathbf{A_3}$

$$=aX_0\lambda_1\lambda_2\lambda_3\left\{\frac{e^{-\lambda_1t}}{(\lambda_2-\lambda_1)(\lambda_3-\lambda_1)}+\frac{e^{-\lambda_2t}}{(\lambda_1-\lambda_2)(\lambda_3-\lambda_2)}\right.$$

$$A_3' = \frac{bX_0\lambda_1\lambda_3}{\lambda_2 - \lambda_1} \left(e^{-\lambda_1 t} - e^{-\lambda_3 t} \right) \tag{12}$$

 A_1 , A_2 , A_3 : radioactivities of 129m Te, 129 Te & 129 I in decay process (1), respectively

A'₃: radioactivity of ¹²⁹I in decay process (2)

X₀: initial number of nuclei of ^{129m}Te

a & b: proportion of decay to decay series (1) & (2), respectively (a=64% & b=36%)

Analytical Condition

Input data of Te-129m at 3 investigation locations selected for analysis

Location	WGS84 coordinate system	Deposition amount (as of 14 June 2011) (Bq/m²)	Deposition amount (converted to as of 15 Mar. 2011) (Bq/m²)	Remarks
Okuma Town	N37, 25, 30.9 E140, 00, 18.7	2.70×10^6	1.76×10^7	ca. 2.7km from 1F-NPS
Naraha Town	N37, 15, 29.4 E140, 58, 09.0	4.70×10^4	3.07×10^5	ca. 19km from 1F-NPS
Fukushima City	N37, 46, 21.0 E140, 30, 54.0	6.40×10^4	4.18×10^5	ca. 60km from 1F-NPS

 Selected 3 locations (Okuma Town, Naraha Town, Fukushima City) as high, moderate and low contaminated areas among the analysed data of Te-129m in soil samples obtained at about 2,200 investigation locations in the Fukushima prefecture and the neighbouring prefectures.

Results and Discussion (1/3)

Time variation of the amounts of Te-129m, Te-129 and I-129

- Te-129m and Te-129 drastically decreased with an increase of time.
- On the other hand, the amount of I-129 was very low, which was nearly equal to zero.

Results and Discussion (2/3)

Graphs enlarged only time variation of the amounts of I-129

1500

1000

Elapsed time (d)

0.0E + 00

- The total amount of I-129 increased up to after about 1,000d from the 1F-NPS accident and gradually began to decrease after that.
- Maximum amount of I-129 was estimated 1.03x10⁻¹ (Bq/m²) after 1,000d.

Results and Discussion (3/3)

Amounts of I-129 in the environment (in soil) (all over Japan)

Location	I-129 (Bq/m²)	Location	I-129 (Bq/m²)
Shintoku, Hokkaido	1.46×10^{-1}	Higashi-Osaka, Osaka	7.05×10^{-3}
Nishiki, Akita	4.81×10^{-2}	Ningyotoge, Okayama	1.56×10^{-2}
Mito, Ibaraki Iwama, Ibaraki	1.24×10^{-1} 2.96×10^{-1}	Uwajima, Ehime	5.75×10^{-3}
Isesaki, Gunma	1.78×10^{-2}	Nishiyama, Nagasaki	1.61×10^{-2}
Kanazawa, Ishikawa	5.90×10^{-2}	Jonan, Kumamoto	1.85×10^{-2}
Kanmuriyama, Fukui Okuetsukogen, Fukui	1.48×10^{-1} 8.50×10^{-2}		

■ The background of I-129 in the environment (in soil) is ranging $5.75 \times 10^{-3} \sim 2.96 \times 10^{-1}$ (Bq/m²), which is approximately the same level as the maximum amount of I-129 (= 1.03×10^{-1} (Bq/m²)) in the environment generated by the decay of Te-129m.

Conclusion

- The maximum amount of I-129 in the environment generated by the decay of Te-129m was estimated 1.03x10⁻¹ (Bq/m²) after about 1,000d, based on the deposition data of Te-129m in soil obtained at about 2,200 locations in the Fukushima prefecture and the neighbouring prefectures, and compared to the radioactivity concentrations of I-129 in the environment all over Japan.
- The radioactivity concentrations of I-129 in the environment were in the range 5.75x10⁻³ ~ 2.96x10⁻¹ (Bq/m²), which was approximately the same level as the maximum amount of I-129 in the environment generated by the decay of Te-129m.
- The maximum amount of I-129 is estimated approximately one of the 2x10⁸ of the initial deposition amount of Te-129m.

Thank you for your attention!