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1  | INTRODUC TION

Timely and accurate detection of weed invasions in a pasture is 
critical in grazing management. Weed invasion and dominance in a 
pasture reduces the grazing capacity. Therefore, to estimate grazing 
capacity accurately, it is necessary to establish the weed cover in a 
pasture. Recently, unmanned aerial vehicle (UAV)-based low-altitude 
remote sensing technologies have become promising tools for weed 

management. In general, weeds occur in patches rather than uni-
formly across fields; however, conventional management practices 
rely on whole-field management (Ghanizadeh & Harrington, 2019; 
Llewellyn, Lindner, Pannell, & Powles,  2004). Site-specific weed 
management has considerable potential economic and environmen-
tal benefits (Shaw, 2005).

With the increasing accessibility of very-fine-resolution UAV 
imagery, optimum spatial resolution has been explored in weed 
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Abstract
Timely and accurate weed detection in pasture is critical for efficient grazing manage-
ment. Although high-resolution images from unmanned aerial vehicles (UAVs) offer 
new opportunities for the detection of weeds at the farm scale, pixel-based image 
analyses do not always produce the best results and object-based image analysis 
(OBIA) has improved weed discrimination accuracy. In the present study, we evalu-
ated the performance of OBIA on UAV images by integrating random forest (RF) 
classifier with auxiliary information layers to discriminate and map Pennisetum alo-
pecuroide plants, a prolific and harmful weed, in a grazed pasture. The UAV images 
were captured at different flight altitudes (28, 56, 82 and 114 m). The OBIA-RF algo-
rithm included 20 input features: five layers (red-green-blue [RGB] or hue-saturation-
brightness [HSV] image bands, texture and digital surface model) and the descriptive 
statistics (median, standard deviation, minimum and maximum) for each object. The 
predicted P. alopecuroides maps were evaluated for out-of-bag accuracy and gener-
alized error accuracy in the test dataset. HSV-based classification had higher clas-
sification accuracy, and the lowest altitude of 28 m (spatial resolution, 0.9 cm) was 
considered the most suitable for the weed detection. Overall, the optimal classifi-
cation accuracy was achieved in the HSV-based OBIA-RF model using the images 
from the lowest altitude (highest spatial resolution). Among the 20 input features, the 
brightness information (V layer) in the HSV images was considered the most impor-
tant because P. alopecuroides ears are black.
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mapping (Gebhardt & Kühbauch,  2007; Tamouridou et  al.,  2017). 
While mapping the early stages of broadleaved weeds, spatial reso-
lution at 2-cm spatial resolution exhibited higher performance than 
4-cm spatial resolution (Peña, Torres-Sánchez, Serrano-Pérez, de 
Castro, & López-Granados, 2015). However, the highest resolutions 
did not always yield the best results, and a “salt and pepper” effect 
would be discernible in the classification results. In our previous 
study (Yuba et  al.,  2020), we considered that Pennisetum alopecu-
roides (L.) Spreng ears are black and developed a simple algorithm 
based on a pixel-based computer vision technique to count the num-
ber of P. alopecuroides plants from UAV images at different flight alti-
tudes. According to the results, the second highest spatial resolution 
image data (1.82 cm) yielded results superior to the ones obtained 
from the highest spatial resolution image data (0.90 cm).

Unlike pixel-based classification, object-based image analysis 
(OBIA) data represents the spatial neighborhood properties rather 
than single pixels. OBIA is an image-processing approach that treats 
adjacent pixels as objects, taking into consideration parameters 
such as object shape and homogeneity, in addition to the spec-
tral information. Because weeds tend to grow into patches, OBIA 
has been applied in weed mapping using UAV images (Blaschke 
et  al.,  2014). OBIA techniques can be used to classify challenging 
scenarios by combining spectral, topological and contextual infor-
mation from such objects (Peña, Torres-Sánchez, de Castro, Kelly, & 
López-Granados, 2013).

More recently, the superpixel technique, which was intro-
duced by Ren and Malik  (2003), began to be applied extensively 
to high-spatial resolution image segmentation due to its ability to 
generate uniform and homogenous regions that preserve most 
of the useful information (Beaulieu & Goldberg, 1989; Tremeau & 
Colantoni,  2000). A superpixel refers an irregular pixel block that 
is visually important and consists of adjacent pixels of similar color, 
texture, brightness, etc. The superpixel algorithms can be classified 
into two major types: i) algorithms based on gradient ascent meth-
ods, such as the mean shift algorithm (Comaniciu & Meer, 2002), the 
watershed transform algorithm (Haris, Efstratiadis, & Maglaveras, 
1998), and the simple linear iterative clustering (SLIC) algorithm 
(Achanta et  al.,  2012), and ii) algorithms based on the graph the-
ory such as the normalized cuts algorithm (Shi & Malik,  2000) 
and efficient graph-based image segmentation (Felzenszwalb & 
Huttenlocher,  2004). Among the algorithms above, SLIC exhibits 
a good balance between accuracy and computational efficiency 
(Stutz, Hermans, & Leibe, 2018). Therefore, it has been applied ex-
tensively to high-spatial remote sensing data (Cheng, Mitra, Huang, 
Torr, & Hu, 2015; Csillik, 2017; Wang, Dong, Cheng, & Li, 2018).

To date, numerous classification methods have been devel-
oped and utilized to map weeds from UAV images. Particularly for 
high dimensional and complex data, machine learning approaches 
have emerged as more accurate and efficient compared to con-
ventional parametric method (Rodriguez-Galiano, Ghimire, Rogan, 
Chica-Olmo, & Rigol-Sanchez,  2012). Among the numerous ma-
chine learning approaches available, the random forest (RF) classi-
fier has increasingly attracted the attention of researchers due to 

its generalized performance and operation speed (Belgiu & Drăguţ, 
2016; Rodriguez-Galiano et al., 2012). Classification accuracy could 
be enhanced by combining RF classifier with OBIA (de Castro 
et al., 2018). In addition, previous studies have reported that weed 
detection from UAV images could be improved using auxiliary in-
formation layers, such as spatial texture and vegetation height es-
timated from UAV digital surface models (DSM) (Zisi et  al.,  2018). 
From these earlier findings, we can expect improvement of weed 
detection accuracy by combining OBIA and RF classification using 
UAV’s color images and its auxiliary information.

In the present study, we evaluated the performance of OBIA-RF 
algorithms in the discrimination of P. alopecuroides plants in a grazed 
pasture using UAV images at different flight altitudes. We focused 
on the fact that P. alopecuroides plants ears are black that represents 
black dots in image from sky and performed UAV observation at 
heading stage. In OBIA, we used the SLIC superpixel technique to 
extract the input feature information in each object, which included 
red-green-blue (RGB) or hue-saturation-brightness (HSV) color in-
formation, DSM and spatial texture. P.  alopecuroides, which is a 
bunch-type grass and is considered a prolific harmful weed, is widely 
distributed in grazed pasture from the Kyushu to Hokkaido regions 
in Japan (Sakai, 1978). The cattle grazing preference for the species 
is low. In addition, the brush-like spikes stick to the hair of cattle 
and they are dispersed across pasture by the animals (Ide, Koyama, 
Takahashi, Kobayashi, & Fukuda, 2006; Sakai, 1978). Over the last 
three decades, efforts have been made to control P. alopecuroides or 
to exploit it as feed for grazing animals (Hayashi, 2002; Takahashi, 
Takahashi, Shibayama, & Imura, 1999; Takahashi & Takahashi, 1999).

2  | MATERIAL S AND METHODS

2.1 | Experimental paddock and field observation

The present study used UAV images used in our previous study 
(Yuba et al., 2020); the UAV image data were acquired at heading 
stage of P. alopecuroide plants in 24 September 2016, from a grazed 
paddock (1.4 ha) at the Setouchi Field Science Center, Saijo Station, 
Graduate School of Biosphere Science, Hiroshima University, Japan 
(N34º24′, E132º43′). The area is located in a temperate zone with a 
warm, humid summer, and a cool, dry winter (Lim et al., 2015). The 
mean annual precipitation is 14.6ºC, and the annual precipitation 
was 1960 mm in 2016. Over the last decade, the pasture has been 
stocked with 4–9 Japanese Black cows (Bos taurus L.) during the 
growing season from early May to late October.

In an experimental paddock, we selected areas that P. alopecuroi-
des plants had severely invaded and set up two 20 m × 20 m quadrat 
A and B plots as illustrated in Figure 1. After the UAV flight, P. alo-
pecuroides locations within the plots were recorded for the deter-
mination of ground-truth data. In addition, plant widths (diameter, 
cm) and plant heights (cm) of P. alopecuroides plants were measured 
within the plots (n  =  811). The locations of P.  alopecuroides and 
other plants (other vegetation, dead materials and soil surface) were 
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checked visually and plotted on the printed UAV images by hand in 
the field. Subsequently, the spatial data points in plot A (Figure 1b; 
n = 259 [P. alopecuroides = 134, others = 125]) and plot B (Figure 1c; 
n = 314 [178, 136]) were generated in shape file format using ArcGIS 
version 10.6 (ESRI).

2.2 | Overview of the methodology

In the present section, we present an overview of the research 
process using a flowchart (Figure 2) that summarizes five steps: 
(a) acquisition of UAV images, ground control points (GCP) and 
ground-truth data; (b) generation of dense point clouds, DSM and 
ortho-mosaiced RGB images; (c) generation of HSV and texture 
images (spatial variety of the G band) from mosaic RGB images; (d) 
image segmentation and calculation of four features within each 
segment for 5 layers (RGB or HSV  +  DSM  +  Texture); (e) calcu-
lation of RF classifier and generation of P.  alopecuroides spatial 
distribution maps.

UAV image acquisition in step 1 was performed using a DJI 
Phantom 2 (DJI) with a commercial digital camera (PowerShot S110, 
Canon). Dense point cloud, DSM and RGB image generation in 
step 2 were performed using Agisoft Metashape Pro version 1.5.1 
(Agisoft LLC). In step 3, HSV and texture images were calculated 
using MATLAB version 9.3 (MathWorks). Image segmentation in step 
4 and image classification in step 5 were performed using Python 
programming language.

The OBIA-RF algorithm used in the present study was devel-
oped originally by (Yasuda, 2018) for classifying shrubs that invaded 
semi-natural grasslands. In the original methods, the input features 
include topographic openness, which expresses the dominance (pos-
itive) or enclosure (negative) of a landscape (Yokoyama, Shirasawa, 
& Pike, 2002). Although topographic openness would be a meaning-
ful input feature at landscape scale for detecting trees or shrub in 
the grasslands, it is not suitable for weed detection within paddock 

scale. In the present study, we used spatial texture (Zisi et al., 2018) 
instead of openness.

2.3 | UAV image and GCP acquisition in field

Aerial images of the target area were acquired at different flight alti-
tudes (28, 56, 82, and 114 m) using Canon PowerShot S100 camera 
mounted on a commercial UAV, DJI Phantom 2. The PowerShot S100 
camera acquired 12-megapixel images in RGB color with 8-bit radio-
metric resolution (4,000 × 3,000 pixels, focal length 5.2 mm). UAV 
flight was performed by manual operation at 11:00–12:00 on 24 
September 2016. Canon Hack Development Kit (http://chdk.wikia.
com) was installed in the camera to trigger the camera shutter every 
2 s during flight.

Five wooden boards (30 × 30 cm) were placed at the four cor-
ners and at the center position of each plot as ground control points 
(GCPs). A differential global positioning system (Geo7X, Trimble) was 
used to record the GCPs position. The GCP data gave horizontal and 
vertical resolutions of <15  cm after postprocessing using Trimble 
Pathfinder Office (Trimble).

2.4 | Dense point cloud, DSM and RGB generation

Using the commercial structure from motion (SfM) software, 
Metashape Pro version 1.5.1, 3D dense point clouds, DSM and ortho-
mosaic RGB images were constructed from images taken by the UAV 
at different altitudes based on the geographic coordinates of six GCPs 
(UTM 53N). SfM is a computer technique that can generate 3D geom-
etries by automatically extracting the corresponding feature points 
from unordered overlapped multi-view stereo UAV-based RGB im-
ages, and optimizing the 3D locations of corresponding features based 
on the principles of photogrammetry (Snavely, Seitz, & Szeliski, 2008; 
Westoby, Brasington, Glasser, Hambrey, & Reynolds, 2012).

F I G U R E  1   Experimental paddock and locations of two plots (a) and field observed locations of Pennisetum alopecuroides (red circles) and 
other plants (blue circles) in plot A (b) and plot B (c)

(a) (b) (c)

http://chdk.wikia.com
http://chdk.wikia.com
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2.5 | HSV and Texture images

In HSV images, brightness (V) is unrelated to the color information of 
the images. The hue (H) represents the property of the color; satu-
ration (S) represents the purity of the color, while V represents the 
shading of the color.

The layers of spatial texture information were created by ap-
plying a local variance filter (7 × 7 pixels) to UAV RGB band images 
(Zisi et al., 2018). Spatial texture refers to the visual effect caused by 
spatial variation in tonal quantity over relatively small areas (Anys & 
He, 1995). In the present study, higher discrimination ability of P. al-
opecuroides was observed in the G band (Figure 3); therefore, it was 
selected for use in image classification.

2.6 | SLIC superpixel image segmentation

Simple linear iterative clustering (SLIC) was initially introduced by 
(Achanta et al., 2010) and later extended to a zero parameter version, 
SLICO (Achanta et al., 2012). SLIC uses an adapted k-means clustering 

integrating color similarity and proximity in image pixels, which in-
cludes CIELAB (L*, a*, and b) color and their x and y coordinates.

In the present study, SLIC superpixel image segmentation was 
performed using the scikit-learn package (Pedregosa et al., 2011) in 
Python. We used the second version of SLIC (SLICO) with number of 
superpixels (k) = 10. It generates regular-shaped superpixels across 
the scene (Achanta et al., 2012), as shown in Figure 4.

Four statistical features, including median (med), standard deviation 
(std), minimum (min) and maximum (max) values, were extracted for each 
object from 5 layers (RGB or HSV + DSM + Texture). In total, 20 features 
(5 layers × 4 stats) were applied as input features in RF classification.

2.7 | RF classification

Random forest is an ensemble of numerous independent individual 
classification and regression tree (CART) (Breiman,  2001). The final 
output of RF is calculated based on the maximum votes from the num-
ber of trees (ntree). A more detailed overview and recent developments 
of RF in remote sensing can be found in Belgiu and Drăguţ (2016).

F I G U R E  2   Schematic of image counting procedure
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In the present study, RF classification was performed using the 
scikit-learn package (Pedregosa et al., 2011) in Python using 20 input 
features from OBIA (see Figure 4). Here, RF classification was per-
formed with ntree = 5,000. Initially, the dataset was split into a train-
ing dataset (80%) for building a model and a test (20%) dataset for 
validating the accuracy of the model. Using the training dataset, the 
RF model built a set of trees that were created by selecting a subset 
through a bagging approach, while the remaining subset, called out of 
bag (OOB), was used for internal cross-validation. The OOB data are 
used to compute accuracies and error rates averaged over all predic-
tions (Cutler et al., 2007) and estimate variable (feature) importance.

In RF classification, there are two methods for estimating the im-
portance of each input features (predictor variables) in the model. One 
is the mean decrease in accuracy (MDA), which is calculated as the nor-
malized difference between the OOB accuracy of the original observa-
tions and the OOB accuracy of randomly permuted features (variables) 
(Cutler et al., 2007; Mellor, Haywood, Stone, & Jones, 2013). Another 
feature importance measure is calculated by summing all the decreases 
in Gini impurity at each tree node split, normalized by the number of 
trees (Criminisi,  2011; Mellor et  al.,  2013). In the present study, we 
used Gini impurity to assess the importance of 20 input features.

2.8 | Classification accuracy

To compare the performance of OBIA-RF classifications, OOB ac-
curacy and generalized error (GE) accuracy were used in the present 
study. The OOB accuracy was calculated using OOB error in the in-
ternal cross-validation process, which is defined as follows:

where OOB error is the fraction of the number of incorrect classifica-
tions over number of OOB samples. The OOB can be used to assess 
how well the RF model performs (Belgiu & Drăguţ, 2016).

To assess the classification accuracy in the final model, GE accu-
racy was calculated as follows:

where GE error is the fraction of the number of incorrect classifica-
tions between the observed and the predicted classification results 
from the final model.

3  | RESULTS

3.1 | Spatial resolution and covered area of image at 
different flight altitudes

In Figure 5, the spatial resolutions of mosaic RGB images at different 
flight heights (28, 56, 82 and 114 m) were compared visually. Spatial 
resolution and ground sampling distance (GSD) depend on the flight 
altitude, and they are the key factors influencing classification accu-
racy. In the present study, the spatial resolutions at 28, 56, 82 and 
114 m flight altitude were 0.90, 1.82, 2.64 and 3.63 cm, respectively. 
The image with the highest spatial resolution (0.90 cm) revealed the 
GCP (30 × 30 cm) clearly in the center of the plot (Figure 5a), while the 
outline was unclear in the low-resolution image, at 3.63 cm (Figure 5d).

(1)OOBaccuracy=1−OOBerror

(2)GEaccuracy=1−GEerror

F I G U R E  3   Texture images from R (a), G 
(b) and B (c) bands in plot A

F I G U R E  4   Simple linear iterative 
clustering (SLIC) applied to ortho-
mosaic-red-green-blue image of plot A 
with 0.90 cm ground sampling distance 
(GSD) and initial clustering of 10 × 10 
pixels (k = 10), and flow of input features 
extraction process
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3.2 | OBIA-RF classification results

Based on OOB accuracies, eight classifications were compared be-
tween plots A and B (Table 1): Eight models included two different 
color features (RGB, HSV) from UAV images captured at different 
flight altitudes (28, 56, 82 and 114 m). Excluding the RGB-based 
model in plot A, the OOB accuracies were the highest in the mod-
els with the highest spatial resolution image that was obtained 
using the UAV at a flight altitude of 28 m. Compared to the RGB-
based model, the HSV color feature-based model had higher clas-
sification accuracy in both plot A and plot B. The highest OOB 
accuracy in plot A (0.966) and plot B (0.992) was achieved in the 
classification performed using HSV-based input features at a flight 
altitude of 28 m. To assess the classification ability, GE accuracy 
was computed by the HSV-based models applied to individual test 

dataset, indicating very high GE accuracy in plot A (0.962) and plot 
B (1.000), respectively.

3.3 | Important features

To assess the input features’ contribution to classification accuracy, 
the importance of 20 features (5 layers × 4 statistical features within 
object) based on RF procedures are illustrated in Figure 6. In the 
RGB image-based OBIA-RF procedure (Figure 6a,b), the important 
features were different between plots A and B. In plot A, the three 
most important features were Rmed, Gmed and Bstd, and in plot B, 
the three most important features were Gmed, DSMstd and Tmax. 
The green band exhibited the most or second most importance, 
which was mainly because P.  alopecuroides had a green color that 
was distinct from other vegetation.

In the HSV-based OBIA-RF procedure (Figure 6c,d), the four most 
important features were similar between plots A and B (Vmed, Vmax, 
Smed and Vmin). Compared to the RGB-based OBIA-RF results, the 
results of the DSM indicated lower importance. Texture features 
showed moderate importance in most of the OBIA-RF procedures. 
Overall, the G band and HSV were more important compared to all the 
other features. The results indicated that although the texture features 
could be contributed to increase classification precision of RF classi-
fier, color features remain the most important features in P. alopecuroi-
des discrimination. Particularly, V feature could be the most important 
feature in OBIA-RF model for discriminating P. alopecuroides plants.

3.4 | Spatial distribution map of P. 
alopecuroides plants

Figure 7 presents spatial distribution maps of predicted P. alopecu-
roides plants from the OBIA-RF model applied to HSV-UAV images at 

F I G U R E  5   Visual comparison of spatial 
resolution in mosaic red-green-blue (RGB) 
images at different flight altitudes: (a) 
28 m, (b) 56 m, (c) 82 m and (d) 114 m

(a) (b)

(c) (d)

TA B L E  1   Out of bags (OOB) accuracy of object-based image 
analysis (OBIA) combined with random forest (RF) classifications 
using 20 features from unmanned aerial vehicle (UAV) images at 
four different flight altitudes

Features (median, std, 
max, min)

Flight 
altitude (m)

GSD 
(cm)

OOB accuracy

Plot A
Plot 
B

RGB + DSM + Texture 28 0.90 0.918 0.940

56 1.82 0.922 0.927

82 2.64 0.937 0.912

114 3.63 0.885 0.813

HSV + DSM + Texture 28 0.90 0.966 0.992

56 1.82 0.961 0.984

82 2.64 0.950 0.958

114 3.63 0.946 0.922

Abbreviations: DSM, digital surface model; GSD, ground sampling 
distance; HSV, hue-saturation-brightness; RGB, red-greed-blue.
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a flight altitude of 25 m. Even though there were several weeds such as 
Rumex japonicus and Erigeron sumarensis in addition to P. alopecuroides, 
the distribution of P.  alopecuroides plants was accurately extracted 
from UAV image. The cover ratios of the P. alopecuroides plants in plot 
A and B were 30.3% and 23.7%, respectively. The P.  alopecuroides 
plant distribution was not uniform. In plot A, which was located at the 
edge of a paddock with larger coverage area, and was considered to 
have been invaded earlier, P. alopecuroides formed large patches.

4  | DISCUSSION

In the present study, we applied OBIA on UAV images and integrated 
RF classifier to improve the classification accuracy when discriminat-
ing P. alopecuroides in pasture. Today, image segmentation in OBIA is 
a key step in UAV image information extraction and target detection 
(Dong, Wang, & Li, 2017). In addition, the RF algorithm is increasingly 

attracting attention in remote sensing research as a highly suitable 
tool for high-resolution image data classification (Ma, Cheng, Li, Liu, 
& Ma, 2015). By combining OBIA and RF, further improvements in 
classification could be obtained (Csillik, 2017; Yasuda, 2018).

In weed detection, the spatial resolution of the images and plant 
density influence classification accuracies (de Castro et al., 2018). Our 
UAV observations at different flight heights (28, 56, 82 and 114 m) 
obtained mosaic images with different spatial resolutions (0.90, 1.82, 
2.64 and 3.63 cm). The UAV image with the highest spatial resolution 
achieved the best classification accuracies in both plots, excluding 
the RGB-based model in plot A (Table 1). For image discrimination, in 
general, the detection for smallest objects within an image requires 
at least four pixels (Hengl, 2006). Based on our field survey, the plant 
widths (diameter, cm) of individual P.  alopecuroides plants ranged 
from 14 to 105 cm (n = 811) in both plots. Accordingly, if the discrim-
ination of individual P. alopecuroides plants is the objective, the re-
quired pixel size should be less than approximately 3.5 cm (= 14 cm/4 

F I G U R E  6   Importance of input features (red-green-blue [RGB] or hue-saturation-brightness [HSV] +digital surface model [DSM] 
+Texture) in plot A (a, c) and plot B (b, d)

F I G U R E  7   Spatial distribution maps 
of P. alopecuroides plants predicted from 
unmanned aerial vehicle (UAV) images 
using the object-based image analysis 
(OBIA) combined with random forest (RF) 
classifier in plot A (a) and plot B (b)

(a) (b)
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pixel). This corresponds to flight altitudes of 28, 56 and 82 m, and a 
flight altitude of 114 m (3.63 cm) would be not appropriate.

However, during the field observation, plant growth was consid-
ered to have peaked. If it was performed during an earlier growth 
stage, the required pixel size would have to be smaller due to the 
small sizes of the plants. For example, Peña et al. (2015) reported 
that 1 cm is the pixel size required for discriminating individual weed 
plants at the early growth stages in a sunflower field. They also 
argued that the pixel size of UAV images should be 5  cm or even 
greater for weed patch detection. In the present study, large patches 
were observed in plot A in the field survey and in the predicted map 
(Figure 7). This could be why the optimal classification accuracy was 
obtained using the RGB-based model using low spatial resolution 
UAV images (2.64 cm) in plot A.

In many cases where weed color is similar to that of grass or a 
crop, color alone is potentially inadequate for distinguishing weed 
pixels from pixels of other vegetation accurately (Hamuda, Mc 
Ginley, Glavin, & Jones, 2017). In the present study, we compared 
two color space features (RGB or HSV) with DSM and texture for 
developing models using UAV images captured at different flight al-
titudes. In addition, in each image layer, four statistical features were 
extracted from each object, and a total of 20 features (5 layers × 4 
statistical features) were used in the RF classifications. Overall, 
the optimal classification accuracy was obtained in the HSV-based 
model using the highest spatial resolution UAV image (OOB accu-
racy = 0.992, GE accuracy = 1.000). Compared to the classification 
accuracy in our previous study (accuracy = 0.803 with image cap-
tured at a 56-m flight altitude) that adopted a pixel-based approach 
(Yuba et al., 2020), the OBIA-RF method improved the classification 
accuracy in the present study considerably. The result is consistent 
with previous findings indicating that RF is a suitable approach for 
high-resolution UAV data classification (Ma et al.,  2015) and that 
the combination of OBIA with auxiliary information layers improves 
classification accuracy (Csillik, 2017).

Among the input features, the HSV feature was considered the 
most important variable influencing the discrimination of P.  alo-
pecuroides plants (Figure 6). The HSV color space is more aligned 
with human color perception (Sobottka & Pitas,  1996) and robust 
to illumination variation (Chaves-González, Vega-Rodríguez, Gómez-
Pulido, & Sánchez-Pérez,  2010). Earlier studies compared several 
color spaces to determine the most optimal ones for image segmen-
tation (Liu, Mu, Wang, & Yan, 2012; Panneton & Brouillard, 2009; 
Philipp & Rath, 2002); however, the recommended features differed 
depending on targeted plants. To assess the individual H, S and V 

features, Figure 8 illustrates the original RGB image in plot A, and 
the individual H, S and V bands from the HSV image. In the V band 
image, P. alopecuroides plants exhibited lower V intensity (brightness) 
than other vegetation and soil surfaces because on the field obser-
vation date, the P. alopecuroides plants had passed the heading stage, 
and the ears were black in color (Yuba et al., 2020).

Our results confirmed that P.  alopecuroides plant could be 
mapped with good classification accuracy using UAV remote sens-
ing data based on an OBIA-RF approach. However, we note that the 
results were based on a single UAV flight in the heading stage and 
considering P. alopecuroides ears are black. We did not investigate 
other growing seasons, especially in earlier growing season when 
the P.  alopecuroides plant has none of ears and shows green like 
other grasses. As the plants are growing and their widths and colors 
are varied throughout the growing season, it would be necessary 
to evaluate the appropriate UAV observation time and other input 
features. Nevertheless, the OBIA-RF approach improved accuracy 
for discriminating the P.  alopecuroides plant at heading stage and 
the automation of OBIA-RF processing could facilitate timely weed 
detection (de Castro et al., 2018), which could aid farmers in weed 
control to improve productivity in grazed pasture.

5  | CONCLUSIONS

The present study applied an OBIA-RF algorithm on UAV images 
to detect and map P.  alopecuroides plants at heading stage in a 
pasture. We compared the classification accuracies of UAV images 
captured at different flight heights (28, 56, 82 and 114  m), and 
using two color spaces for input features with auxiliary informa-
tion layers (DSM and spatial texture). Our results confirmed that 
the integration of RF and OBIA with auxiliary information layers 
enhanced classification accuracy. UAV images at different flight 
altitude suggest that the lowest altitude of 28  m could provide 
images with a spatial resolution (0.9 cm) suitable for the detection 
of P. alopecuroides plants. For color features information, superior 
results were observed in the HSV-based OBIA-RF models com-
pared to the results of the RGB-based models. The V feature in-
fluenced classification the most because P. alopecuroides ears are 
black. Overall, the optimal classification accuracy was obtained 
by the model using HSV color features and the UAV dataset with 
the highest spatial resolution (OOB accuracy  =  0.992, GE accu-
racy = 1.000). In the future, the automation of OBIA-RF could fa-
cilitate real-time weed detection in pasture.

F I G U R E  8   Red-green-blue (RGB) 
image (a) and H (b), S (c) and V (d) bands 
from hue-saturation-brightness (HSV) 
image
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