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Abstract: Phosphorus is among the main limiting nutrients for plant growth and productivity in 
both agricultural and natural ecosystems in the tropics, which are characterized by weathered soil. 
Soil bioavailable P measurement is necessary to predict the potential growth of plant biomass in 
these ecosystems. Visible and near-infrared reflectance spectroscopy (Vis-NIRS) is widely used to 
predict soil chemical and biological parameters as an alternative to time-consuming conventional 
laboratory analyses. However, quantitative spectroscopic prediction of soil P remains a challenge 
owing to the difficulty of direct detection of orthophosphate. This study tested the performance of 
Vis-NIRS with partial least square regression to predict oxalate-extractable P (Pox) content, 
representing available P for plants in natural (forest and non-forest including fallows and degraded 
land) and cultivated (upland and flooded rice fields) soils in Madagascar. Model predictive accuracy 
was assessed based on the coefficient of determination (R2), the root mean squared error of cross-
validation (RMSECV), and the residual predictive deviation (RPD). The results demonstrated 
successful Pox prediction accuracy in natural (n = 74, R² = 0.90, RMSECV = 2.39, and RPD = 3.22), 
and cultivated systems (n = 142, R² = 0.90, RMSECV = 48.57, and RPD = 3.15) and moderate 
usefulness at the regional scale incorporating both system types (R² = 0.70, RMSECV = 71.87 and 
RPD = 1.81). These results were also confirmed with modified bootstrap procedures (N = 10,000 
times) using selected wavebands on iterative stepwise elimination–partial least square (ISE–PLS) 
models. The wavebands relevant to soil organic matter content and Fe content were identified as 
important components for the prediction of soil Pox. This predictive accuracy for the cultivated 
system was related to the variability of some samples with high Pox values. However, the use of 
“pseudo-independent” validation can overestimate the prediction accuracy when applied at site 
scale suggesting the use of larger and dispersed geographical cover sample sets to build a robust 
model. Our study offers new opportunities for P quantification in a wide range of ecosystems in the 
tropics. 

Keywords: Madagascar; partial least square (PLS) regression; precision farming; soil oxalate 
phosphorus; spectroscopy 

 

1. Introduction 

Phosphorus is an essential plant nutrient. The low P availability of strongly weathered soil can 
seriously affect plant growth and limit crop yields [1] while soil P limitation can cause a decline in 
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climax ecosystems by decreasing biomass productivity [2]. The limitation of net primary production 
in terrestrial ecosystems with low soil P, such as tropical forests, leads to a carbon balance that tends 
to increase CO2 release [3]. Ferralsols are characterized by very low available soil P, mainly due to 
sorption on and in Fe and Al oxyhydroxides [4,5]. The availability of P for plants has been evaluated 
from soil P tests and calibrated with field and pot experiments [6,7]. Oxalate-extractable P (Pox) is 
reported to accurately predict the availability of P in highly weathered soil [8] because of oxalate’s 
potential to extract the active reductant-soluble P fraction [9]. The quantification of Pox is based on P 
extraction with ammonium oxalate and oxalic acid [10]. Acidified ammonium oxalate extractant 
dissolves amorphous, poorly crystalline oxides, and hydroxides of Fe and Al, and consequently 
released P [4,9,11]. Oxalate P is highly correlated with rice plant P uptake in lowland and upland 
fields [4,12]. It also extracts more P than other chemical methods [13,14]. Pox is thus the best indicator 
of P availability for both fertilizer management in agricultural systems and natural ecosystem 
management.  

There is a need for more reliable, rapid, and accurate soil P assessment as an alternative to time-
consuming conventional laboratory analyses. The more rapid, cost-effective alternative approaches 
of spectrometry analysis and chemometric techniques have been widely used to estimate soil and 
plant compositions [15–17]. Spectrometry in visible and near infra-red (Vis-NIR) is based on the 
absorption of radiation at a specific wavelength by certain molecular bonds in the near-infrared (NIR) 
region [18]. Spectral data are calibrated using the specific soil properties of samples, determined by 
conventional methods. The Vis-NIR region (400–2500 nm) is dominated by weaker and broader 
signals from vibration overtones and combination bands [19]. The absorption coefficients are much 
lower, which allows for better penetration of light into the material [20]. The Vis-NIRS approach has 
been successfully applied to predict soil chemical and biological parameters [21–23]. 

Challenges, however, still remain. P is not spectrally active in the Vis-NIR region, and thus, it 
can only be detected indirectly, in an organically bound form [24]. However, previous studies have 
shown the potential of this approach to predict soil P, such as that of Kawamura et al. [25], who 
reported that Vis-NIRS coupled with partial least square (PLS) regression can predict soil Pox in 
Malagasy lowland and upland rice fields with moderate accuracy (R² = 0.78). These authors also 
suggested that the performance of PLS models could be improved through wavelength selection. 
However, the PLS models were developed only for rice fields, with a dataset (106 samples) obtained 
in central Madagascar, and their applicability to non-farm soils is still unknown. Thus, further 
analysis using a larger number of datasets including other land uses is needed. In Madagascar, almost 
45% of the cultivated area is occupied by rice fields, as rice is the staple food crop for Malagasy people 
and is cultivated by 85% of farmers [26,27]. Moreover, the so-called “natural system”, as found in 
eastern Madagascar, was characterized by traditional farming practices in which forest and fallow 
land are subject to slash and burn agriculture. Land-use change affects soil properties [28] and 
assessment of these is in turn required to inform land management practices. Therefore, the present 
study evaluated the potential of the PLS model to predict Pox across different Malagasy land-use 
systems, including those where the natural system has been converted into a cultivated system. 

This study aimed to investigate the usefulness of the Vis-NIRS approach with PLS modeling in 
predicting soil Pox in cultivated and natural systems and its applicability as a rapid method to assess 
soil properties at the ecosystem scale. To improve its predictive accuracy, we applied wavelength 
selection in the PLS procedures and compared its performance against standard full-spectrum PLS 
(FS-PLS) in cultivated and natural systems. 

2. Materials and Methods 

2.1. Study Area and Soil Sample Dataset 

The soil samples used for this study were collected from areas of central and eastern Madagascar 
(Figure 1). The central sites, located in the Vakinankaratra region, were characterized by a humid 
climate with an annual mean precipitation of 1381 mm and a mean annual temperature of 16.9 °C. 
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They are dominated by ferritic soils (FAO soil classification) which are generally acid with low 
available phosphorus [29,30]. The Vakinankaratra region is also among the rice-growing areas of 
Madagascar. The eastern sites are characterized by perhumid and humid climates with a mean 
annual rainfall of 2500 mm and a mean annual temperature of 18–24 °C [31,32]. This region is 
characterized by red and yellow ferralsols [33]. 

In the Vakinankaratra area, soil sampling at 15 cm depth was conducted in 142 farmer field plots 
under irrigated and upland rice systems during 2018 and 2019 (Table 1). In eastern Madagascar, soil 
samples were collected similarly during 2014 and 2015 from 74 forest and non-forest plots, the latter 
including fallow and degraded land systems [34]. The descriptive statistics of soil parameters for each 
studied site are reported in Table 2. 

 
Figure 1. Spatial distribution of site for sampling. Cultivated system samples were from the 
Vakinankaratra region and natural system samples were from eastern Madagascar. 

Table 1. Spatial characterization of the soil sample used for the study. 

Regions System Land Uses 
Altitude 

(m) 
MAT 
(°C) 

MAP 
(mm) 

Sampling 
Year 

Number of 
Samples 

Central 
(Vakinankaratra) 

Cultivate
d systems 

Upland rice 1247–1481 
16.9 1381 

2017–2018 8 
Lowland rice 1237–1481 2017–2018 134 

Eastern 
Natural 
systems 

Forest 134–1200 
18–24 2500 

2014–2015 16 
Non-Forest 94–1101 2014–2015 58 

MAT, Mean annual temperature (°C), MAP, Mean annual precipitation (mm). 

Table 2. Soil parameters description of the study sites. The values in parentheses show the range. 

Soil Parameters Cultivated System Area Natural System Area 
Sand (%) 34.6 [10.4–72.5] 53.6 [30.8–80.6 ] 
Silt (%) 32.8 [7.92–63.7] 14.4 [4.72–23.6] 

Clay (%) 32.6 [4.30–52.0] 32.0 [9.45–53.6] 
SOC (mg kg−1) 25.5 [9.47–94.9] 37.9 [7.29–75.4] 
Feox (g kg−1) 7.44 [1.03–19.1] 2.38 [0.32–9.45] 
Pox (mg kg−1) 115.1 [22.3–856.8] 35.1 [21.9–57.9] 

SOC—Soil organic carbon, Feox—oxalate-extractable Fe, Pox—oxalate-extractable P. 
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2.2. Laboratory Analyses 

Soils were air-dried, ground, and sieved through 2 mm and 0.2 mm mesh prior to chemical 
analysis. All soil samples were analyzed for texture and for phosphorus and organic carbon contents. 
Oxalate-extractable P and Fe were determined following Schwertmann [10]. Soil organic carbon was 
determined by wet combustion using dichromate oxidation [35]. The separation of soil fractions for 
the soil texture analysis was carried out with the pipetting method in which soil samples pretreated 
with heat and H2O2 (35%) to remove organic matter are dispersed into clay, silt and sand fractions 
using NaOH. 

2.3. Spectral Data Acquisition Using Vis-NIRS  

Spectral data were recorded in a dark room at the Laboratoire des Radioisotopes, Antananarivo 
University using a Vis-NIR portable spectro-radiometer with 350–2500 nm range (ASD FieldSpec 4 
Hi-Res, ASD Inc., Longmont, CO, USA). The recorded spectral resolution was 3 nm between 350 nm 
and 1000 nm and 6 nm between 1000 nm and 2500 nm. The output data were generated at 1 nm 
resolution using the cubic spline interpolation function in the ASD software (RS3 for Windows; ASD). 
Before each measurement, the spectrometer was calibrated using a white reference spectrum [17]. 
Soil samples were previously spread and leveled in optical-glass Petri dishes 85 mm in diameter. Five 
measurements were carried out at different positions for each soil sample. For each measurement, 
the instrument made 25 internal scans to optimize the signal-to-noise ratio. The generated spectra 
were averaged into one spectrum for each sample. Further details can be found in Kawamura et al. 
[36]. 

2.4. Spectral Analyses and Modeling Approaches 

Prior to the modeling of Pox using PLS regression, data pre-processing was applied. Spectral 
data were reduced to 400–2400 nm by removing the spectral regions of 350–399 nm and 2401–2500 
nm, in order to eliminate the influence of noise [36–38]. The reflectance spectra (R) were transformed 
into apparent absorbance (A = log (1/R)). To reduce noise and enhance the signals, first derivative 
reflectance (FDR) using a Savitzky–Golay smoothing filter [39] was used with an order 3 polynomial. 
The generated Vis-NIR spectra were mean-centered. Scatter correction using a standard normal 
variate transform (SNV) was applied to all spectra to reduce the particle size effect. 

The modeling approach consisted of testing whether these reflectance spectra could be used to 
predict chemical data and identifying which spectral regions contribute to the prediction [40]. The 
PLS model incorporated the algorithms that extract a small number of latent factors as the 
independent variables relating to reflectance spectra, then used these factors in regression analysis 
with the chemical data as the dependent variables. The PLS regression model describing the 
relationship between soil spectra and measured soil Pox was built from the spectroscopic modeling. 
Leave–one-out cross-validation was used to select the best latent variable number and to avoid over-
fitting of the PLS regression model [36,38,41]. The optimum number of latent variables was chosen 
by minimizing both the root mean squared error (RMSE) and the number of factors or latent vectors.  

Two PLS regression approaches were performed to estimate soil parameters: FS-PLS and 
iterative stepwise elimination regression (ISE–PLS) [36]. The FS-PLS is a standard PLS model using 
FDR datasets. ISE–PLS is a PLS model using a waveband elimination algorithm to remove noisy 
variables and to select those able to improve predictive performance. 

The prediction accuracies were evaluated using the coefficient of determination (R2), the root 
mean squared error of cross-validation (RMSECV), and the residual predictive deviation (RPD). The 
RPD is the ratio of standard deviation (SD) of the measured data to the standard error of prediction 
[42]. The model with the larger R² and RPD, and the smaller RMSE was considered the best model to 
predict soil Pox. It is generally accepted that an RPD value greater than 3 indicates an excellent 
predictive model for agricultural applications, and values between 2 and 3 indicate good predictive 
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ability; values between 1.5 and 2 indicate an acceptable model requiring some improvement, and 
those below 1.5 indicate a poor predictive model [36,40]. 

To assess the predictive ability and reliability of the PLS models, a modified bootstrap procedure 
was performed [25]; the data was divided randomly into training (70%) and test (30%) data sets with 
a replacement for N = 10,000 times. In each process, a PLS model was developed using the training 
data set. Here, FS-PLS and ISE–PLS were developed using selected wavebands, and then the models 
were used to predict Pox in the test data set. The robustness of the prediction models was evaluated 
by the mean (±SD) values of R2 and the root mean squared error of prediction (RMSEP) from 10,000 
runs in the test data sets. 

All data handling and statistical analysis were performed using MATLAB software (Version 9.3; 
The MathWorks, Sherborn, MA, USA) and R software version 3.1.3 [43] (R Core Team 2015). 

3. Results and Discussion 

3.1. Soil Characteristics by Chemical Analysis 

The descriptive statistics for soil Pox as measured by chemical analysis for all data and by the 
system are summarized in Table 3. The coefficient of variation (CV) for Pox when all data were 
combined data indicated large Pox variability (148.57%) with a heterogeneous distribution. The Pox 
content averaged 87.66 mg·kg−1 across all data, ranging from 21.89 to 856.84 mg·kg−1. As illustrated in 
Figure 2, the Pox level varied markedly within the cultivated rice systems, much more so than in the 
natural systems. Indeed, the highest Pox value recorded from natural systems was 57.93 mg·kg−1 with 
a CV of 22.23%, in contrast to that of the cultivated system, which was 856.84 mg·kg−1 with a CV of 
133.56%. The third quartile cutoff, containing 75% of the data was 38.73 mg·kg−1 for all the natural 
systems and 106.62 mg·kg−1 for all the cultivated systems. The variation in P level seen in the 
substantial dispersion of the cultivated system data probably results from the different levels of 
fertilizer application to farmers’ plots. Based on the study by Dardenne et al. [44], such wide variation 
(CV  50%) is recommended to achieve good NIRS calibration accuracy, indicating that our soil data 
were suitable for developing the spectroscopy model. 

Table 3. Summary statistics for soil oxalate-extractable P content (mg P kg−1 soil) obtained by chemical 
analysis by system. 

System n Min Max Mean SD CV (%) 
All systems 216 21.89 856.84 87.66 130.23 148.57 

Cultivated system 142 22.25 856.84 115.07 153.69 133.56 
Natural system  74 21.89 57.93 35.05 7.79 22.23 

n, number of samples; SD, standard deviation; CV, coefficient of variation (SD/mean × 100%). 
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Figure 2. Distribution (left side) and kernel density plots (right side) for oxalate-extractable P content 
by the land-use system. RF: Upland rice field, IR: Lowland rice field. 

The difference in soil characteristics, including soil texture and the level of Pox in each system, 
can explain the high accuracy of prediction for each specific model. The correlation matrix between 
the Pox, SOC, and their related soil parameters are shown in Table 4. In the ensemble of the data, no 
significant correlation was observed for Pox and SOC. Among the significant relationships observed, 
soil parameters which could affect the Pox were SOC, sand, clay, and Fe contents. In the natural 
system, the Pox was positively correlated with SOC, clay, and Feox while negative relations were 
observed between Pox and Feox with sand content suggesting a direct effect of soil organic matter 
and texture on Pox contents. In the cultivated system, Pox is more affected by Feox than the SOC. 
Principal component (Figure 3) and texture triangle (Figure 4) analyses showed the contrasting 
properties of cultivated and natural soils. Natural system soils with a coarse texture were marked by 
low Pox and Feox content compared to the cultivated soils. Cultivated soils with a clayey loam texture 
had high Pox and lower SOC compared to natural soils, probably due to the soil management 
techniques applied.  
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Figure 3. Principal component analysis incorporating measured variables by soil system. Pox, oxalate-
extractable P; Feox, oxalate Fe; SOC, soil organic carbon. 

 
Figure 4. Soil texture triangle for different land-use systems based on the USDA classification. 

Table 4. Pearson correlation coefficients between soil properties for each system. 

 Pox SOC Sand Silt Clay Feox 
All Systems 

Pox 1.00 0.10 −0.20 0.23 −0.00 0.55 
SOC  1.00 0.15 −0.32 0.24 −0.06 
Sand   1.00 −0.82 −0.49 −0.41 
Silt    1.00 −0.09 0.35 

Clay     1.00 0.18 
Feox      1.00 

       
Natural 
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Pox 1.00 0.61 −0.29 −0.06 0.37 0.45 
SOC  1.00 −0.44 -0.00 0.53 0.32 
Sand   1.00 −0.67 −0.96 −0.48 
Silt    1.00 0.45 0.22 

Clay     1.00 0.50 
Feox      1.00 

       
Cultivated 

Pox 1.00 0.30 −0.03 0.05 -0.03 0.51 
SOC  1.00 −0.05 −0.05 0.15 0.33 
Sand   1.00 −0.79 −0.32 0.06 
Silt    1.00 −0.33 −0.15 

Clay     1.00 0.14 
Feox      1.00 

Values in bold are significant at P < 0.05. 

The mineral properties of soil are strongly related to their NIR-spectra absorption patterns [45]. 
Mouazen et al. [46] confirmed that soil texture affected the reflectance of the soil surface during NIR 
spectral measurement. Light scattering increased with increasing sand content due to a large amount 
of quartz in the sand fraction, which increases the intensity of spectral reflectance [47]. The spectral 
absorption related to some soil components (O-H and metal O-H, O-H in water) increased with 
increasing clay content [48]. 

Soil preparation, specifically tillage, could break up soil particles and aggregates and thereby 
accelerate the mineralization of soil organic matter, resulting in lower SOC compared to that of 
natural systems [49,50]. The level of Pox in the cultivated systems is due to fertilizer input and high 
mineralization rates, which released the soil nutrients (including phosphorus).  

3.2. Model Prediction Accuracy for Oxalate-Extractable P Under Different Land-Use Systems 

Predictions of Pox content were made using standard FS-PLS and ISE–PLS regressions for all 
combined systems and for each system individually. The PLS regression model predictions of Pox 
levels are shown in Table 5 and Figure 5. ISE–PLS regression always improved Pox prediction 
compared to FS-PLS regardless of the land-use system.  

 
Figure 5. Relationships between observed and predicted values of soil oxalate-extractable P contents 
using ISE–PLS (iterative stepwise elimination–partial least square) regression with first derivative 
reflectance data for (a) natural systems (n = 74), (b) cultivated systems (n = 142), and (c) all systems 
combined (n = 216). RMSE, root mean square error; RPD, residual predictive deviation. 
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Table 5. Comparison of different soil oxalate-extractable P prediction models for all land-use systems. 

Processing Systems n NLV R2 RMSECV RPD 

FS-PLS 
All systems 216 13 0.48 96.58 1.34 
Cultivated 142 15 0.70 83.72 1.82 

Natural 74 2 0.18 7.10 1.08 

ISE–PLS 
All systems 216 13 0.70 71.87 1.81 
Cultivated 142 15 0.90 48.57 3.15 

Natural 74 14 0.90 2.39 3.22 
n, number of samples, NLV, number of latent variables; FS-PLS, full-spectrum partial least square 
regression; ISE–PLS, iterative stepwise elimination–partial least square regression. 

ISE–PLS regression performed well; we attributed this to the importance of waveband selection 
for Pox prediction. The percentage of wavebands (NW%) used in the model was the ratio of the 
number of selected wavebands (NW) to the total wavebands for a full-spectrum (NW% = NW / 2001 
bands × 100). The NW% results were 20.6% and 7.5% for cultivated and natural systems, respectively. 
In other words, fewer than 21% of available wavelengths contributed to the prediction of Pox for the 
cultivated system, with over 79% neither contributing to nor disturbing the predictions [51]. Selecting 
wavebands related to soil Pox and eliminating unusable wavebands improved the predictive ability 
of ISE–PLS for Pox compared to FS-PLS. This finding was in agreement with previous studies, in 
which fewer than 20% of wavelengths contained information relevant to the prediction of soil 
properties [25,36]. ISE–PLS produced excellent predictions of Pox in natural and cultivated systems, 
with RPD values greater than three and an R² of 0.90 (Table 5). Although the performance of model 
prediction is better for the cultivated system than the natural system, this prediction model accuracy 
seems to be associated with the large distribution of Pox values, which were characterized here by 
some samples with high Pox value. A high variation of the data set could affect the accuracy of NIRS 
calibration and predictive performance [52]. The performance of ISE–PLS models was better for 
individual land-use systems than for the combined data (R² = 0.70, RMSE = 71.9, RPD = 1.81). Stevens 
et al. [48] highlighted the importance of building local, more accurate models that are specific to a 
given geographical entity or soil type, suggesting that this feature is a strength, rather than a 
weakness, of this model. 

The results of a modified bootstrap procedure were reported in Table 6 and Figure 6. Table 6 
gives the mean values of R2 and RMSEP between FS-PLS and ISE–PLS models for each system in the 
test data set (30%). Figure 6 illustrated the distribution of R2 values in the test data set for each system. 
The accuracy of the model prediction with validation data showed that the ISE–PLS models predicted 
soil oxalate-extractable P more accurately than FS-PLS in terms of R2 and RMSEP for all systems. The 
ISE–PLS resolved 70% to 88% of the variation in Pox whereas total variance explained with FS-PLS 
was from 14% to 50%. The best mean R2 and the lowest RMSEP values were obtained from the natural 
system. The predictive ability and reliability of the ISE–PLS models were confirmed by this modified 
bootstrap procedure. 

Table 6. Mean and standard deviation (SD) values of R2 and RMSEP from N = 10,000 evaluations with 
FS-PLS and ISE–PLS in test data sets (30%). 

Processing Systems n R2 RMSEP 

FS-PLS 
All systems 64 0.502 ± 0.124 89.01 ± 9.21 
Cultivated 42 0.678 ± 0.079 79.13 ± 8.30 

Natural 22 0.141 ± 0.096 7.15 ± 1.62 

ISE–PLS 
All systems 64 0.703 ± 0.115 60.48 ± 5.94 
Cultivated 42 0.883 ± 0.038 57.42 ± 5.57 

Natural 22 0.822 ± 0.051 3.26 ± 0.59 
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Figure 6. Comparisons of the frequency distributions of R2 values in the test data for each system: (a) 
all systems; (b) cultivated; (c) natural using FS-PLS and ISE–PLS models, with mean (red and blue 
line) ± standard deviation (SD) values. 

3.3. Properties of the Prediction-Relevant Wavebands 

Figure 7 shows the selected wavebands used for the PLS regression modeling and prediction of 
Pox resulting from the preprocessing of the spectra using first derivative data. All samples showed 
similar spectral absorption features, characteristic of mineral and organic spectra as reported by 
several authors [15,53]. The most influential wavelengths in terms of the Pox prediction model were 
recorded in the visible light range (around 500 nm) and in the NIR range (at 1400 nm and from 2000 
nm). The spectral absorption peaks in the Vis-NIRS region are related to iron oxides, clay minerals, 
and some functional groups of soil organic matter (SOM) [37]. In our study, the selected wavebands 
in the visible region common to both natural and cultivated systems (409, 430, 431, 443, 444, 591, and 
592 nm) were associated with Fe-containing minerals (hematite, goethite) and dark-colored organic 
matter [54,55]. Residual minerals like hematite and goethite have an effect on the organic matter 
sorption of soil nutrients such as phosphorus [56]. 
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Figure 7. Wavebands used in the ISE–PLS analysis for all combined data (blue bars, All), cultivated 
systems (red bars, Cult), and natural systems (green bars, Nat) using the first derivative reflectance 
(FDR) dataset to estimate oxalate-extractable phosphorus. Specific absorption wavebands for the 
different bonds present in soil are specified on the top x-axis (modified from Kawamura et al. [25]). 

The bands in the NIR range usually attributed to O-H chemical bonds at 1400 nm, to C-H stretch 
at 1700 nm, to water (H-O-H) at 1900 nm, and metal-OH bending and O-H stretching modes near 
2000 nm, 2300 nm, and 2400 nm are often associated with clay mineral types (Table 7) [15,53,57]. The 
spectral bands at 1906–1907 nm, 2200–2235 nm, and 306–2400 nm, related to minerals and water 
[15,58], and that at 2270 nm, corresponding to gibbsite (an Al oxide mineral) [56,59], contribute to Pox 
prediction. The detection of the mineral and organic compounds in soils allow soil spectroscopy to 
predict Pox because of the potential relation between phosphorus and carbon content [22]. 

The number of selected wavelengths for Pox prediction is higher for cultivated systems than 
natural systems (Figure 7). The specific selected visible wavelengths for cultivated areas were 527–
590 nm, associated with hematite and organic matter; and 763–870 nm, related to amine N-H, 
aromatic C-H, Fe3+, and ferric oxide [58–60]. The regions related to amine N-H at 1000 nm; aromatic 
C-H at 1100 nm; alkyl C-H at 1170 nm; O-H in water, CH2, lignin, and cellulose at 1464–1483 nm [61]; 
and Al- OH and kaolin at 2160–2164 nm [62] contributed to Pox prediction in the NIR regions. In 
contrast, the specific selected wavelengths for natural systems were 738–740 nm and 753 nm (amine 
N-H); and 1291 nm, related to lignin, starch, and protein [59–61]. These specific bands for each system 
demonstrated the variation in SOM and absorbents contributing to Pox prediction, which may 
explain the low accuracy of prediction when all data were combined.  
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Table 7. Selected visible and near infra-red (NIR) wavelengths related to soil components and 
functional groups as reported in the literature, and common and specific selected wavelengths 
observed in our study. 

Spectra 
Regions 

(nm) 

Common 
Selected 

Wavelength 
(nm) 

Specific 
Wavelength 

(nm) 
for Cultivated 

Specific 
Wavelength 

(nm) 
for Natural 

Functional Groups References 

Visible 

400–700 
409, 430, 431, 

443, 444, 
591, 592 

527–590  

Associated to 
mineral with Fe 

(hematite, goethite) 
SOM: 

chromophores and 
darkness of OM 

[54,55] 

550  550–557  
Chromophore 

FeOOH in goethite 
[55] 

Near Infra-Red (NIR) 

751, 825  763, 826 738–740, 753 
Amine C-H, 

aromatic C-H 
[59] 

860  870  Ferric oxide, Fe3+ [58] 
1000  1000  Amine N-H [59] 
1100  1122- 1144  Aromatic C-H [59] 

1170  1170  
Alkyl asymmetric-
symmetric doublet 

(C-H) 
[59,60] 

1260   1291 
Lignin, starch, 

protein, 
[61] 

1465, 1470  1464–1483  
OH in water, CH2, 
cellulose, lignin, 

starch, pectin 
[61] 

2160  2160–2164  Al-OH, Kaolin [62] 
2200–2300 2200–2270   Metal-OH, O-H [15] 

2300, 2350  
2302–2306 
2350–2355 

 
C-H stretch 

fundamentals 
[59,60] 

2335 2330–2334   Carbonates [58] 
850, 1200, 
1400, 1900 

 1950–1956  H2O [15,58] 

2200, 2300 2200–2270   Al-OH, O-H [59] 
1900 1906–1907   H-O-H [59] 

Visible-NIR 
450, 900 453–457   Fe+3 [54] 

3.4. Factors Influencing the Prediction Model Accuracy for Oxalate-Extractable P  

According to our results, the main soil components which contributed to the prediction of Pox 
were organic matter and iron oxides, in both natural and cultivated systems. This is consistent with 
the study of Sørensen and Dalsgaard, which suggested that indirect relationships between soil P and 
organic components would be useful in soil P prediction using spectrographic methods [63], and that 
of Ludwig et al., in which a useful calibration of soil P, measured using the Olsen method, was found 
to positively correlate with SOC [22]. The present study showed that Pox is significantly correlated 
with SOC in natural and cultivated systems with coefficients of correlation (r) of 0.61 (P < 0.001) and 



Agriculture 2020, 10, 177 13 of 17 

 

0.30 (P < 0.001), respectively, but not when all data are combined (r = 0.10, P = 0.15). Abdi et al. 
confirmed that successful prediction of soil total P is related to its significant correlation with soil 
carbon [42]. Soil P is obtainable by NIRS through covariation with other soil properties but this 
relation may vary between datasets [16], possibly explaining the lack of correlation between soil 
carbon and Pox for all combined data. The high correlation between Pox and SOC in natural systems 
may have resulted from the accumulation of P in the surface layer through litter input, while in the 
cultivated system P is lost with the harvested crops. 

Phosphorus in soil was mainly fixed and in solid phase with Fe, Al in acidic soil, and Ca in 
alkaline soil. These elements are the main adsorbing agents for phosphate [64]. Khalid et al. [65] found 
that higher P availability under flooded soil was related to ammonium oxalate Fe. In our study, Pox 
and oxalate Fe (Feox) were significantly and positively correlated for cultivated, natural and all 
combined systems with correlation coefficients of 0.51 (P < 0.001), 0.45 (P < 0.001), and 0.55 (P < 0.001), 
respectively. In addition to the selected wavebands for Pox prediction in the Vis-NIRS regions 
associated with iron oxides, this result is in agreement with previous studies confirming the primary 
role of Fe in P sorption [7,25]. This highlights the importance of Fe to Pox prediction model 
development. 

The high correlation between Pox, SOC, and Feox observed mainly under the natural system can 
be associated with the related properties of this system such as fallow without fertilization, justifying 
here the high accuracy of the model. As the high performance of model prediction in the cultivated 
system could be related to some samples with high Pox content (n = 15), a low prediction accuracy 
was obtained with selected samples excluding these high Pox samples (data not shown) suggesting 
that in the cultivated system under varying fertilization and other management practices may 
interfere and disturb the correlation of Pox with organic matter and iron oxides. The correlations of 
Pox with SOC and Feox are very weak for the selected samples (without the high Pox samples), r = 
0.22, P < 0.05 and r = 0.03, P = 0.69, respectively. Application of ISE–PLS model in a large sample with 
a large geographical cover can help to understand the main drivers of Pox in the cultivated and the 
natural system in order to build more robust models. 

In this study, the “pseudo-independent” approach of using a randomly selected sample (30%) 
for a validation in the modified bootstrap procedure or LOOCV, which provide more accurate PLS 
models in Pox prediction, presents a limitation. A previous study on SOC prediction using the first 
derivative Vis-NIRS PLS approach reports a stable model accuracy from a “pseudo-independent” 
validation (random selection of non-independent test samples), but the prediction models failed 
when applied for each site through site-hold validation (using samples from one site for validation 
and the samples from the remaining sites for model calibration) [66]. We attempted to perform the 
FS-PLS based on the site-hold cross-validation by considering the seven studied sites and found very 
poor results (data not shown). This may be due to the mixture of sites and land-use systems using a 
small number of samples. This suggests building models using a large geographical cover and 
relatively dispersed sample sets for a regional application. 

4. Conclusions 

Soil P is an important limiting nutrient for plant growth. An accurate assessment of available P 
is essential for effective fertilizer management in agriculture and sustainable management of 
ecosystems. Vis-NIRS is a simple and nondestructive method that can be used to predict several soil 
properties. This study demonstrates that Vis-NIRS models, in combination with ISE–PLS regression, 
can successfully predict soil oxalate-extractable phosphorus (Pox) in soil samples from natural and 
cultivated systems in Madagascar. Together, these methods were able to estimate soil Pox in both 
systems with high accuracy (R² = 0.90, RPD > 3) using fewer than 21% of wavelengths in the Vis-NIRS 
region. ISE–PLS regression outperformed FS-PLS regression. However, model accuracy for cultivated 
systems was affected by some samples with high Pox value. The effective wavebands for the two 
land-use systems were associated with Fe and Al oxides, and organic components. The accuracy of 
Pox prediction was related to its significant correlation with soil organic carbon and iron content. The 
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use of “pseudo-independent” validation in the current study can also overestimate the prediction 
accuracy when applied at site scale suggesting the use of larger and dispersed geographical cover 
sample sets to build a robust model in the future. The Vis-NIRS approach has potential as a tool for 
rapid soil P evaluation and may be useful for soil management. Further investigations using large 
numbers of soil samples for external validation of the Vis-NIRS approach are required to enable 
application at regional and national scales. 
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