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REGULAR PAPER
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and Sengthong Phongchanmixayd
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Government, Fujiyoshida, Japan; cMaize and Cash Crops Research Center, National Agriculture and Forestry Research Institute (NAFRI),
Vientiane, Laos; dRice Research Center, National Agriculture and Forestry Research Institute (NAFRI), Vientiane, Laos

ABSTRACT
Plant height (PH) is an important agronomical parameter to assess the growth status in upland rice
fields. Recently, field-based phenotyping using unmanned aerial vehicles (UAVs) has received
increasing attention as a cost-effective, well-suited sensing technology to measure PH. In this
study, we evaluated feasibility of a low-cost small UAV for estimating PH in upland rice fields in
Laos with a canopy height model (CHM). Images of the upland field, including 501 plots (= 167
accessions × 3 replicates), were captured by a commercial small UAV (DJI Phantom 4) before
emergence and in the near-flowering stage to generate digital surface models (DSMs). The CHM
was developed from the difference of the DSMs using UAV images obtained before emergence and
before flowering. The CHM metrics of each plot were then calculated using 90–99th percentiles
and the top 1–10% largest pixel values of CHM and were compared with the manually measured
field PH (78.25–189.75 cm). The predictive accuracy was assessed in the 90–99th percentiles and
top 1–10% values of CHM metrics with 5-fold cross-validation procedures. Simple linear regression
analyses between the field PH and CHMmetrics showed that the top 3% CHMmetrics had the best
correlation with the field PH (R2 = 0.712, root-mean-square error (RMSE) = 9.142 cm, p < 0.001).
Cross-validation procedures also confirmed that the top 3% CHMmetrics were the best in terms of
accuracy for estimating PH, with an error of 6.963% (8.823 cm) error.
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1. Introduction

Upland rice grown in unbundled fields without water
flooding is still a dominant crop in developing countries,
where irrigation facilities are poorly equipped (Saito
et al., 2018). In the Lao People’s Democratic Republic
(hereafter, Laos), upland subsistence farmers crop rice
on sloping land with crop-fallow rotational manage-
ment. The ethnic and environmental diversity together

with the fact that Laos is a neighboring area of rice origin
result in the formation of rich genotypic diversity in
upland rice ecosystems (Appa Rao et al., 2006).
However, the yield level is generally low (approximately,
2.0 t ha–1) due to the erratic rainfall pattern and soil
nutrient depletion, and it has been generally stagnant
over the past two decades (Asai et al., 2017; Asai et al.,
2009). To overcome the yield barrier, the development
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of new varieties that can adapt to stress conditions could
represent a key approach and the existing genotypic
diversity could provide promisingmaterials for breeding.
However, these local resources have been rarely evalu-
ated and never used for breeding because phenotyping
is a time-consuming process that often represents
a constraint due to the limitation of financial and
human-resource capacities. Therefore, high-throughput
strategies in the phenotyping process are necessary
requirement to maximize the potential of local genoty-
pic resources.

In crop phenotyping, plant height (PH) is a basic
agronomical parameter for field investigation, and
widely used to assess the aboveground biomass and
potential grain yield (Boomsma et al., 2010; Salas
Fernandez et al., 2009). Traditionally, the crop PH is
manually measured using a ruler in the field by selecting
a few plants per plot (usually 1 to 2 m2) to represent the
canopy status. However, manual PH measurements in
the field are labor-intensive for large-scale multi-variety
trials and can be limited by bad weather and access to
plots over a large area. Therefore, several high-
throughput technologies have been developed to
retrieve the PH and three-dimensional (3D) structures
under field conditions (Sankaran et al., 2015).

High-throughput phenotyping systems require the
ability to non-destructively and noninvasively character-
ize phenotypic traits for thousands of individual plants
with high efficiency and precision (Furbank & Tester, 2011;
Großkinsky et al., 2015) and to monitor the same plot
throughout the whole lifecycle to increase the experimen-
tal capacity (Fahlgren et al., 2015). Data acquisition at very
high temporal resolution (daily) is essential for certain
phenological stages (e.g. heading, emergence, etc.) and
the evaluation and selection of the best-performing culti-
vars (Andrade-Sanchez et al., 2013). For such work, satel-
lites are limited by their overpass frequency and spatial
resolution (>50 cm), which does not correlate well with
single rice plants. Because rice plants are usually sown in
a grid of 20–25 cm intervals, identifying single rice plants
is not feasible. Similarly, ground-based sensing platforms
are not easily transported from one location to another,
surfacemapsmay not be generated in real time, and plant
parameters of several plots cannot be measured simulta-
neously (Sankaran et al., 2015).

Detailed three-dimensional (3D) information on the
plant canopy can be obtained via laser scanning techni-
ques, such as airborne light detection and ranging
(LiDAR) (Korhonen et al., 2011) and terrestrial laser scan-
ning (TLS) (Côté et al., 2009; Eitel et al., 2014; Hoffmeister
et al., 2016). TLS is a ground-based laser scanning tech-
nique used to measure the position and dimension of
objects in 3D space. Using TLS, Zhang and Grift (2012)

developed a stem height measurement system for the
bioenergy crop Miscanthus giganteus, and it presented
an error of 3.8%. W. Zhang et al. (2019) developed
a segment-based method for efficient stem detection
at the plot level with >95% accuracy. Despite their pre-
cision, LiDAR and TLS are not widely available in crop
fields due to the payload limitations of small unmanned
aerial vehicles (UAVs) and the high relative expense of
such vehicles.

Currently, a large number of studies are underway to
realize field-based phenotyping by utilizing UAVs. Small
UAVs with suitable sensors (e.g. multi-spectral or hyper-
spectral camera, thermal camera) for remote sensing of
plant responses (to induced abiotic and biotic stress)
and performance (yield) under field conditions have
several benefits. The integrated system can provide (i)
better access to the field, (ii) high-resolution data
(1–2 cm depending on the flying altitude), (iii) timely
data collection (even under cloudy conditions), (iv)
quick field growth evaluations, (v) simultaneous image
acquisition, (vi) self-automated flights for monitoring the
plots at regular periods in a given growing season, and
(vii) low operational costs compared to other low-
altitude platforms (e.g. airborne, balloon, etc.; Araus &
Cairns, 2014; Berni et al., 2009; Hunt et al., 2010; Nebiker
et al., 2008; Zhang & Kovacs, 2012).

To date, the feasibility of UAV platforms for estimat-
ing PH and 3D structure has been demonstrated in
barley (Bendig et al., 2013, 2014, 2015), maize (Li et al.,
2016; Wang et al., 2019), sugarcane (De Souza et al.,
2017) and sorghum (Han, Thomasson, Bagnall, Rooney
et al., 2018; Hu et al., 2018; Watanabe et al., 2017).
Compared with such tall crops (~3.2 m), fewer studies
have been conducted on short (~1.2 m) crops such as
grassland (Rueda-Ayala et al., 2019; H. Zhang et al.,
2018), paddy fields (Stavrakoudis et al., 2019) and
wheat (Holman et al., 2016), because of the small varia-
tion in PH, thus suggesting lower accuracy. This study
conducted in an upland rice field as just a case study on
short crops.

In this study, we aimed to evaluate the feasibility of
small UAV for estimating PH in multi-variety trials in
Laos, which compared the local genetic resource of
upland rice, using a canopy height model (CHM). The
CHM is a methodology designed to extract the vegeta-
tion canopy height parameter from point clouds or digi-
tal surface models (DSMs). To extract the CHM linked to
the referenced field PH, CHM metrics from the 95th and/
or 99th percentiles have widely been used as a better
approach to isolate the top photosynthetic tissue of
each plant rather than the standard mean or median
(Holman et al., 2016; Madec et al., 2017; Watanabe
et al., 2017). However, these estimations were based on
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the average PH of whole canopy in a plot, which
included the heights of lower leaves and even the eleva-
tion of bare ground patches within canopy gaps (Bendig
et al., 2015). The proportion of the lower layer pixels may
increase due to differences in plant structure depending
on the successions of rice. Ideally, the CHM metrics
generated from the top few percent of pixels may reflect
PH more accurately. In this study, CHM metrics from the
top 1–10% of the largest pixel values and CHM metrics
from the 90–99th percentiles were calculated to esti-
mate the field PH and compare the predictive accuracies.

2. Materials and methods

2.1. Experimental site and field design

Laos is a country that contains one of the largest genetic
resources of upland rice in the world (Rao et al., 2006).
This study was conducted in an experimental field at the
Rice Research Center (RRC) of the National Agriculture
and Forestry Research Institute (NAFRI) (18º8ʹ56.65ʹ’N,
102º44ʹ9.78ʹ’E), in the central part of Vientiane in Laos
(Figure 1). This area has a hot, humid summer season
and belongs to a tropical climate (‘Aw’ in Kȍppen’s cli-
mate classification). The mean annual temperature is
25.4ºC, and the annual precipitation is 1622 mm. The
soil type is characterized by clay loam (CL, 0–30 cm) and
light clay (LiC, 40–60 cm).

In the rainy season (May to October) of 2018, a field
trial was installed for genotypic evaluation of traditional

upland rice germplasms of Laos. In total, 167 accessions
were collected in Laos, which were selected from
a preliminary survey to maximize the phenotypic varia-
tions. These germplasms included diverse genotypic
backgrounds of indica and tropical japonica with gluti-
nous and nonglutinous quality. The plots, with a size of
2.0 m × 1.5 m, were laid out in a randomized complete
block design with three replications in the experimental
field (44 m × 43 m = 1,892 m2) (Figure 2). Thus, the
experimental field contained a total of 501 plots (= 167
accessions × 3 replicates). On 9 June 2018, 5–10 seeds
were sown with a dibbling stick at a spacing of 25 cm ×
25 cm. Rice was grown under rainfed upland conditions
without the addition of water and fertilizer. Before
experimental installation, the field was fallow for
2 years. Field preparation was performed with hallow
plowing 1 week prior to sowing. Missing hills that did
not germinate were replaced 2 weeks after sowing.

The system used in field-based phenotyping should
be easier to use and cost-effective. Therefore, small
UAVs with an optical camera have been increasingly
used to estimate the PH and canopy structure using
a combination of the structure from motion (SfM)
algorithm and CHM. The SfM is a computer technique
that can generate 3D geometries by automatically
extracting the corresponding feature points from
unordered, overlapped multi-view stereo UAV-based
RGB (red-green-blue) images and optimizing the 3D
location of corresponding features based on the

Figure 1. Location of the rice research center (RRC) (a); and the photographs for seeding date (8 June 2018) (b) and before the
flowering season (6 September 2018) (c).
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principles of photogrammetry (Snavely et al., 2008;
Westoby et al., 2012). Using DSMs, the CHM can be
computed from the distance between the DSM at
ground level and the DSM of the vegetation (Van
Iersel et al., 2018). The lower boundary of the DSM at
ground level can be easily determined by drone flights
at either the pre-sowing stage or early in the season
before emergence (Bendig et al., 2013; Holman et al.,
2016). Such a raster-based CHM is more precisely
2.5-dimensional (2.5D) because only one z value is
stored per x/y coordinate pair (Brocks et al., 2016),
and it continuously covers a whole crop stand. The
height of an individual plant in the field is of high
value for agricultural research.

The field PH, which is referred to as the ground-truth
height (cm) from the ground to the apex (highest point),
differs depending on the plant growth stage, such as a leaf
in the vegetative stage or an ear in a mature stage (Han,
Thomasson, Bagnall, Pugh et al., 2018). In the present
study, the field PH before flowering was measured weekly
over the period from 28 days after sowing (DAS;
29 June 2018) to 110 DAS (19 September 2018) at the
rice apices on flag leaf. For prevention of intentional selec-
tion, four plants were selected at a fixed hill position for
every time of the measurements. Plant growth is expected
to peak and PH variations will likely occur due to succes-
sions; thus, PH data obtained before flowering on
5 September 2018 (88 DAS) from a total of 501 plots
were provided for a coupling analysis with the UAV images

taken 3 days after the measurement (8 September 2018;
91 DAS).

2.2. Overview of the methodology

In this section, an overview of the research process is
described using a flowchart in Figure 3 that summarizes
four steps: (1) acquire RGB images using a small UAV in
two seasons (before emergence (RGBt1) and near the
peak growth stage (RGBt2)); (2) generate dense point
clouds and DSMs from RGBt1 and RGBt2; (3) calculate
the CHM from the distance between DSMt2 and DSMt1;

Figure 2. Plot design (167 accessions × 3 replicates, n = 501) and plot blocks and region of interest (ROI) in UAV image processing.

Figure 3. Flowchart depicting a general overview of the
methodology.
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and (4) develop a PH estimation model. More detailed
information is described in the following sections.

UAV image acquisition in step 1 was conducted using
a DJI Phantom 4 (DJI, Shenzhen, China) and its 12.4
megapixels standard integrated sensor (4000 × 3000
pixels) was fitted to a 3-axis stabilized gimbal to main-
tain a fixed viewing angle. The UAV flight operation was
performed using Pix4Dcapture version 4.5.0 (Pix4D S.A.,
Lausanne, Switzerland). Dense point clouds and DSM
generation in step 2 were performed using Agisoft
Metashape version 1.5.1 (Agisoft LLC, St. Petersburg,
Russia). Image processing and regression analysis in
steps 3–4 were performed using the statistical software
R version 3.5.1 (R Core Team, 2018).

2.3. UAV-RGB image acquisition

A small consumer UAV, the DJI Phantom 4 (DJI,
Shenzhen, China), was used to capture the RGB images
after seeding (12 June 2018, DAS = 3) and before the
flowering stage (8 September 2018, DAS = 91). The UAV
flights followed an autonomous flight plan using the
‘double grid’ mission in Pix4Dcapture (https://support.
pix4d.com/hc/en-us/articles/115002496206) (Figure 4)
to ensure substantial overlap (i.e. 90% forward and
70% side), and the flight height was 20 m. The camera
angle was set at 80º because a previous literature
reported that SfM-based DSMs (or digital elevation mod-
els (DEMs)) derived from UAV images showed systematic
broad-scale deformations, which are expressed as
a central ‘doming’ (Rosnell & Honkavaara, 2012), and

the systematic error could be reduced through the col-
lection of oblique imagery (James & Robson, 2014).

For this trial and UAV, the total flight time was
approximately 12 min to cover the whole field. Six
ground-control points (GCPs) were permanently set up
during the trial (Figure 2). In this study, five wooden
boards (30 cm × 30 cm) that were painted black or
white were used as GCPs. Their positions were measured
and recorded using a Trimble Geo 7X GPS (http://www.
trimble.com).

2.4. Dense point cloud and DSM generation

Using the commercial SfM software Metashape Pro
ver.1.5.1 (Agisoft LLC, St. Petersburg, Russia), the 3D
point clouds, ortho-mosaic images and DSMs were con-
structed from images taken by the UAV with the geo-
graphic coordinates of six GCPs (UTM 48 N). The
parameter settings used for Agisoft Metashape software
are summarized in Table 1.

The accuracy of PH estimation from a CHM is closely
related to the upper boundary of generated point-cloud or
DSM values. When the quality of the generated point cloud
or DSM data is insufficient for distinguishing the ground
(lower boundary) and vegetation (upper boundary), the
CHM cannot accurately represent the PH information. To
achieve the best accuracy in the data set, we set the
‘Highest’ accuracy in ‘Camera alignment’ and the ‘Ultra
high’ quality in the ‘Build point cloud’ processes. In the
‘Build point clouds’ process, ‘Mild depth filtering’ was used
to achieve greater CHM accuracy (Holman et al., 2016).

The DSMs at ground level (DSMt1) and canopy level
(DSMt2) were generated with RGB images on
12 June 2018 (before emergence (RGBt1)) and

Figure 4. UAV flight trajectory of the flight mode. The solid red
dots are the locations of aerial photographs. The pink and white
lines are the flight trajectory of the UAV.

Table 1. Parameters of the drone flights and image processing by
Metashape Pro software.
Process Parameter Setting

Drone flight Altitude (m) 20 m
Overlaps Forward 90% and Side

70%
Number of GCPs 6
Coordinate system WGS 84/UTM 48 N

Camera
alignment

Accuracy Highest

Adaptive camera model
fitting

Yes

Build point
clouds

Quality Ultra high

Depth filtering Mild
Build texture Mapping mode Adaptive ortho-photo

Blending mode Mosaic
Build tile model Source data Dense cloud

Tile size 2048
DSM Source data Dense cloud

Interpolation Enabled
Orthomosaic Blending mode Mosaic

Surface DSM
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8 September 2018 (near the peak growth stage (RGBt2)).
The ground sample distance (GSD) and pixel size for DSMt1
and DSMt2 were approximately 0.93 and 0.88 cm pixel–1,
respectively. To simplify for further analyses, the DSMs
were exported as GeoTiff format image files with 1 cmGSD.

2.5. CHM and CHM metrics

Based on R software version 3.5.1 (R Core Team, 2018),
the DSM Geotiff images were imported, and then DSMt2
was resampled to fit the pixels with DSMt1 using the
nearest-neighbor method based on the ‘resample’ func-
tion in the ‘raster’ package version 2.9–5 (Hijmans, 2019).
The CHM was generated by computing the distances
between DSMt1 and DSMt2 as follows:

CHM ¼ DSMt2�DSMt1 (1)

Because adjacent plots in the experimental field were
close to each other, the CHMs of plot boundaries were
considered to be contaminated with data originating
from adjacent plots and might have larger error than
those inside a plot. To exclude the marginal areas,
regions of interest (ROIs) (1.0 m × 1.5 m) were set inside
the plot block (1.5 m × 2.0 m), as shown in Figure 2, and
the pixel values in ROIs were extracted as CHM metrics.
Here, we calculated two types of CHM metric values:
90–99th percentiles (CHM90th to CHM99th) and top
1–10% values (CHM1% to CHM10%) in ROIs as the repre-
sentative values of CHM metrics for the plot height.

2.6. Statistical analysis

An analysis of variation (ANOVA) for PH was conducted
on the data set obtained from 501 plots (167 accessions
× 3 replications) using JMP software version 14 (SAS
Institute Inc., Cary, NC, 1989–2019). In this analysis, we
considered the effects of accession and replication to be
fixed. Contribution ratios (%) were estimated for effects
of accession and replication by using Equation (2),
respectively. Then, contribution ratio for error term was
calculated by subtracting the ratios of accession and
replication from 100%.

Px ¼ Sx � Φx � Ve
St

(2)

where Px, Sx and Φx are contribution ratio, sum of square
and degree of freedom for the effect of x. The terms of Ve
and St represent the variance (mean square) of error term
and total sum of square.

The relationship between the CHM metrics and field
PH was assessed by simple linear regression analysis
using R software version 3.5.1 (R Core Team, 2018). The
relationships were evaluated by the coefficient of

determination (R2), root mean squared difference
(RMSE) and relative RMSE (RMSEr).

R2 ¼ 1�
Pn

i�1 ðyi � ŷiÞ2Pn
i�1 ðyi � �yiÞ2

(3)

RMSEr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

Xn

i�1
ðyi � ŷiÞ2

q
(4)

RMSEr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

Pn
i�1 ðyi � ŷiÞ2

�y
� 100

s
(5)

where xi and yi represent the explanatory variable (CHM)
and response variable (field PH) for the ith sample, ŷi is the
predicted values, ȳ is the mean of the observed values,
and n is the number of samples (plots) in the data set.

To evaluate the predictive ability of CHM metrics,
a k-fold cross-validation procedure based on independent
training and test data sets was performed (Emmert-Streib
& Dehmer, 2019). Initially, the data were divided randomly
into training (n = 400) and test (n = 101) data sets. Next,
the training data were split randomly into k-folds. Here,
we used k = 5; therefore, each k-hold has n = 80 samples.
A linear regression model was built on k – 1 folds of
training data set (n = 320), and then the error of the kth
fold was recorded as validation data (n = 80). This process
was repeated until each of the k-folds served as the
validation data set. The mean R2 and RMSE values were
used to assess the model accuracy. Finally, the model was
applied to the test data set, and then the predictive ability
was evaluated from the R2, RMSE and RMSEr values.

3. Results

3.1. Plant height from field observations

The field PH of 167 accessions of upland rice was mea-
sured on 5 September 2018 (DAS 88) is shown in Figure 5,
and Table 2 summarizes the minimum, maximum, med-
ian, mean, SD and coefficients of variation (CV) values. In
theory, the accuracy of linear regression analysis is influ-
enced by the SD and range of a sample, which is consid-
ered to be the reason why research on tall crops (e.g.
barley, maize, sorghum) is prioritized. In the present
study, our field PH data set covered a wide range of
variations in plant 3D structure. The mean (and SD)
value was 126.71 cm (±17.06 cm), with a range of
78.25–189.75 cm, and CV of 13.46%. The ANOVA results
indicated that the effect of accession was statistically
significant (p < 0.001) and its contribution ratio was esti-
mated to be approximately 20% (Table 3). The remaining
was accounted by error term, presumably because of
large soil heterogeneity.
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3.2. Development of CHM from DSMt1 and DSMt2

Figure 6 shows the georeferenced orthomosaic RGB and
DSM images for t1 (12 June 2018) and t2 (8 September
2018), and the CHM image of the upland rice field. The
DSMt1 values at emergence (no vegetation) ranged
between 167.8 and 169.4 m, while the DSMt2 values before
the flowering stage ranged between 167.7 and 171.0 m.

The CHM in cm unit was developed from the DSMt2-
DSMt1 difference based on the GSD 1 cm raster image
(Figure 6(e)). To assess the vertical error, the CHM values
at 6 GCPs (see Figure 2) were extracted. The mean value of
the CHMs at GCPs was – 1.34 cm (standard deviation
[SD] = 7.36 cm). In addition to PH data set, the CHM
image also exhibited the large spatial variation and

included ‘among-plot’ variation as well ‘within-plot’
variation.

3.3. CHMs-PH relationships

Relationships between field PH and CHM metrics of
90–99th percentiles (CHM90th to CHM99th) and top
1–10% values (CHM1% to CHM10%) are shown in
Figure 7, and Table 4 summarizes the R2, RMSE, RMSEr,
intercept and slope of the regression line. Most of the
CHM metrics had a significant correlation with field PH
(p < 0.001), but they showed higher values than field PH.
These biases became larger from the 99th percentile to
the 90th percentile. Similar trends were obtained in the
top 1–10% values of the CHM metrics, but the best R2

and minimum RMSE values were obtained for the CHM
metrics when CHM3% was used, and above CHM2%, the
RMSE values were slightly increased.

3.4. Evaluation of the predictive ability

To evaluate the predictive ability of the CHM metrics, a 5-
fold cross validation was conducted. Figure 8 shows the
cross-validated mean RMSE values in the training/valida-
tion data (n = 400) from the 90–99th percentile and top
1–10% values in ROIs, and Table 5 summarizes the cross-
validated mean R2 and RMSE values in the validation data
set and R2, RMSE and RMSEr values from themodel on the
independent test data set (n = 101). Similar to the field
PH-CHM relationship, the best mean R2 (0.701) and mini-
mummean RMSE (9.264 cm) values in the cross validation
were obtained for the CHM metrics when CHM3% was
used. When the model was applied to the test data set,

Figure 5. Box plot (a) and histogram (b) of the field PH on 5 September 2018 (DAS = 88).

Table 2. Descriptive statistics of field PH data. n, number of
samples; SD, standard deviation; CV, coefficient of variation (SD/
mean × 100%).
Data set n Min Max Median Mean SD CV

PH (cm) 501 78.25 189.75 126.50 126.71 17.06 13.46

Table 3. Statistical results from ANOVA and percentage of con-
tribution ratio by effects of accession, replication and error.

Degree of
freedom

Sum of
square

Mean
square F ratio

Contribution
rate (%)

Variety 158 65,487 414 1.77 *** 19.6
Rep 2 478 239 1.02 ns 0.0
Error 340 79,527 234 80.4
Total 500 145,492 　 　 　 　

Contribution ratios for the effects of accession and replication were esti-
mated by using Equation (2). The ratio for error term was calculated by
subtracting the ratios of accession and replication from 100%.

***: p < 0.001
ns: not significant
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the best R2 (0.780) and the minimum RMSE (8.823 cm) and
RMSEr (6.963%) values were also obtained.

4. Discussion

This study investigated the potential of UAV platforms to
use field-based phenotyping and focused especially on the
PH as a case study for upland rice field in Laos. Our field PH
data of 167 successions obtained before the flowering
stage, indicated a wide variation in PH (78.25–189.75 cm)
(Table 2). Previous research on upland rice fields reported
that the field measured PH at the maturity stage ranged
from 66 to 94 cm from nine genotypes in 10 environments
in Luang Prabang province, Laos (Asai et al., 2009) or
66–126 cm from six cultivars under lowor high soil fertilities
inWest Africa (Saito & Futakuchi, 2009). By comparison, our
data set can be considered to have a wider range of varia-
tion in PH due to the great diversity of 167 accessions.
A wide variation in data is essential to obtain a good corre-
lation between the field PH and CHM metrics. The CHM in
this study obtained from distance from two DTMs, so the
vertical error was not so strongly depending on the GNSS
accuracy, and the 10 cm error could be expected to use for
the initial screenings in efficient way at the field.

The timing of UAV observation is also important for
assessing PH. Previous studies in maize (Wang et al.,

2019) and wheat (Holman et al., 2016) indicated that the
PH varies greatly among different stages of development,
and the correlation between the field PH and CHM
increases with plant growth and PH. In contrast, the corre-
lations are weaker in the early growth stages due to the
limited range of variation of PH (Madec et al., 2017) and the
lower canopy coverage because a higher proportion of
pixels showing a lower level plant structure (Holman
et al., 2016). To remove the effects, earlier studies gener-
ated CHM metrics from the 95th or 99th percentile rather
than the standard mean or median because this method
was best at isolating the top photosynthetic tissue of each
plant and avoiding occasional contamination of individual
rogue or anomalous plants.

However, even with CHM metrics from the 99th per-
centile, the proportion of the lower layer pixels may
increase due to differences in plant structure depending
on the successions of rice. Therefore, this study developed
a CHM from the top 1–10% of the largest pixel values
(CHM1% to CHM10%) for assessing PH and compared it
with the CHM from the 90–99th percentiles (CHM90th to
CHM99th). As we expected, CHM1–10% showed a better
correlation (R2 = 0.703–0.712, RMSE = 7.215–7.325 cm and
RMSER = 7.215–7.325%) with field PH than CHM91–99th

(R2 = 0.678–0.708, RMSE = 9.201–9.675 cm, and
RMSEr = 7.262–7.636%) (Table 4). The results in the 5-
fold cross validation also showed a similar tendency, as

Figure 6. Orthomosaic-RGB images on June 12 (a) and September 8 (b) in 2018; DSMs at ground (c) and canopy levels (d), and CHM (e).
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the cross-validated mean RMSE of CHM1–10%
(R2 = 0.692–0.701 and RMSE = 9.264–9.387 cm) overcame
that of CHM90–99th (R2 = 0.664–0.698 and
RMSE = 9.322–9.772 cm) (Figure 8; Table 5). Overall, the
best R2 and minimum RMSE values were obtained by
CHM3%, both in the correlation analysis and cross valida-
tion. These results indicated that the top 1–10% of the
largest pixel values were a better approach to extract the
CHM for assessing PH than the percentile values, and
CHM3% would be optimal in the upland field.

In the present study, the 5-fold cross validation
demonstrated that the field PH before flowering in
upland rice can be estimated from CHM3% with
a RMSE of 9.264 cm. When the model was applied for
the test data set, the PH could be estimated with a RMSE
of 8.823 cm (R2 = 0.780), which represents a 6.963% error
(RMSEr). Compared with a similar study by Shi et al.

(2016) on maize (R2 = 0.35) and sorghum (R2 = 0.55) at
the vegetative stage using CHM from multispectral cam-
era image with 6.5 cm GSD at 122 m altitude, our results
obtained better predictive accuracy for PH estimations
using higher spatial resolution images (GSD 1 cm).
Higher point cloud density and spatial resolution with
lower flight level are critical to producing a high-quality
CHM (Brocks et al., 2016). Moreover, the correlation
between the field PH and CHM is varied due to the
crop type and growth stage (Brocks & Bareth, 2018;
Malambo et al., 2018). For example, the expected height
before and after flowering changes from the leaf to ear
(Han, Thomasson, Bagnall, Pugh et al., 2018). Malambo
et al. (Malambo et al., 2018) reported that the correlation
and RMSE values varied for maize (R2 = 0.42–0.91,
11–18 cm) and sorghum (R2 = 0.67–0.85, 12–22 cm)
and found that the 99th percentile was generally more

Figure 7. Relationships between field PH and CHM metrics of 90–99th percentiles (a) and top 1–10% of the largest values (a) in ROIs.
The dashed line is the 1:1 line, and the red solid line is the regression line.
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strongly correlated with the field PH for maize while the
90th percentile was more strongly correlated with the
field PH for sorghum. When even higher accuracy is
required, terrestrial LiDAR is another option, although it
is relatively expensive and has lower mobility. Previous
studies have reported that ground LiDAR-based PH esti-
mations achieved better accuracy than the UAV-CHM
approach (Holman et al., 2016; Madec et al., 2017). For
example, Holman et al. (Holman et al., 2016) reported
that LiDAR biases in wheat are only 0.4 cm, which is low

relative to that of UAV-CHM (2.4–15.8 cm error).
Nevertheless, for practical use or first screening in breed-
ing trials, the flexibility and affordability of UAV plat-
forms and recent improvements to cameras will
probably make UAVs the standard tool high-
throughput field phenotyping of PH (Madec et al., 2017).

The CHM metrics in the present study showed
a systematic overestimation compared with the field PH

Table 4. Coefficient of determination (R2), root mean squared
error (RMSE), relative RMSE (RMSEr), intercept and slope from
regression analyses between field PH and CHM metrics.
CHM metrics R2 RMSE RMSEr Intercept Slope

90–99th percentile
90th 0.678 9.675 7.636 60.052 0.674
91st 0.681 9.624 7.595 58.767 0.681
92nd 0.684 9.573 7.555 57.363 0.689
93rd 0.688 9.518 7.512 55.874 0.698
94th 0.692 9.460 7.466 54.278 0.706
95th 0.696 9.399 7.418 52.464 0.716
96th 0.700 9.328 7.362 50.306 0.728
97th 0.704 9.267 7.313 47.679 0.741
98th 0.707 9.232 7.286 44.442 0.758
99th 0.708 9.201 7.262 39.748 0.780

Top 1–10%
10% 0.703 9.281 7.325 50.073 0.731
9% 0.705 9.257 7.306 49.089 0.736
8% 0.707 9.232 7.286 48.028 0.742
7% 0.708 9.207 7.266 46.876 0.748
6% 0.710 9.183 7.247 45.601 0.754
5% 0.711 9.161 7.230 44.168 0.761
4% 0.712 9.146 7.218 42.528 0.769
3% 0.712 9.142 7.215 40.594 0.778
2% 0.712 9.149 7.221 38.178 0.788
1% 0.709 9.195 7.257 34.723 0.801

Figure 8. Changes in the mean RMSE values from the 5-fold cross validation in regression analyses between field PH and CHM height
based on the 90–99th percentile (blue dots) and top 1–10% of the largest values (red dots) in ROIs. The red vertical line represents the
minimum value of RMSE.

Table 5.Mean values of R2 and RMSE from 5-fold cross validation
using training/validation data sets based on a linear regression
analysis and R2, RMSE, and RMSEr based on the model applied to
the test data sets.

Validation data Test data

CHM metrics Mean R2 Mean RMSE R2 RMSE RMSEr

90–99th percentile
90th 0.664 9.772 0.761 9.347 7.377
91st 0.668 9.721 0.763 9.301 7.340
92nd 0.672 9.670 0.764 9.260 7.308
93rd 0.676 9.616 0.766 9.216 7.273
94th 0.680 9.559 0.768 9.167 7.235
95th 0.685 9.502 0.770 9.106 7.186
96th 0.689 9.437 0.773 9.028 7.125
97th 0.693 9.380 0.775 8.963 7.074
98th 0.695 9.364 0.780 8.863 6.995
99th 0.698 9.322 0.776 8.899 7.023

Top 1–10%
10% 0.692 9.387 0.776 8.968 7.078
9% 0.693 9.364 0.776 8.948 7.062
8% 0.695 9.340 0.777 8.926 7.045
7% 0.697 9.316 0.778 8.903 7.027
6% 0.699 9.294 0.779 8.879 7.008
5% 0.700 9.276 0.780 8.855 6.988
4% 0.701 9.264 0.780 8.835 6.973
3% 0.701 9.264 0.780 8.823 6.963
2% 0.701 9.272 0.779 8.835 6.973
1% 0.697 9.309 0.775 8.923 7.042
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(Figure 7). This result is consistent with previous findings
(Bareth et al., 2016; Grenzdörffer, 2014), indicating that the
UAV-based SfM techniques lack the ability to accurately
reconstruct the top of the canopy. Additionally, this result is
partly affected by the spatial resolution compared to the
size of the objects at the top of the canopy (Madec et al.,
2017). Holman et al. (2016) also reported that the CHM
underestimated wheat PH (2.4–15.8 cm error), with the
lowest altitude imagery (highest spatial resolution) show-
ing the lowest bias. In contrast, increasing the spatial reso-
lution will lead to more noisy dense clouds with more gaps
over plant coverage areas (Brocks et al., 2016; Madec et al.,
2017). Moreover, Madec et al. (2017) indicated that a larger
field of view with shorter focal lengths would generate
more accurate 3D dense point clouds from SfM. Thus,
better accuracy can be expected with optimal higher reso-
lution images obtained at lower altitudes with adequate
camera settings, although a trade-off occurs between accu-
racy and efficiency. While low-altitude UAV flights offer
much higher image resolution, the ground coverage of
an individual image is much smaller, which may result in
inadequate coverage and insufficient overlap between
images if a low flight speed cannot be maintained (Shi
et al., 2016). The results of the present study were obtained
at 20 m altitude (GSD 1 cm) in a small experimental field.
For practical use by farmers, additional tests with different
flight parameters to consider work efficiency are needed in
the future.

Based on the CHM from UAV imagery, in this study, the
PH was determined before the flowering stage, which is
an almost mature stage that can be used to obtain data
for a stable trait. CHMs can also be used for site-specific
crop management (Schellberg et al., 2008; N. Zhang et al.,
2002), plant nitrogen estimates (Eitel et al., 2014), and
yield and biomass estimations (Bendig et al., 2015;
Hoffmeister et al., 2016; Li et al., 2016). However, the
best CHM metrics would vary according to the crop
growth stage due to the difference of plant canopy struc-
ture (Brocks & Bareth, 2018; Malambo et al., 2018). Thus, in
the present study, the single date measurements limit the
monitoring of dynamic development and the relationship
between plant growth and environmental variables,
which form an important focus of next-generation phe-
notyping (Walter et al., 2015). Therefore, further analysis is
needed for investigations using CHM metrics with multi-
temporal data sets collected during the growing season.

5. Conclusions

Low-cost small UAVs have great potential for rapid mea-
surements of PH in crop fields. In this study, we used
a small UAV for field-based phenotyping to estimate the
PH in an upland rice field in Laos. Based on a comparative

approach using 90–99 percentiles and top 1–10% values,
our results indicated that PH was accurately estimated by
CHM metrics of the top 3% pixel values with an 8.839 cm
error, and the CHM3% was the best for assessing PH of
whole canopy in a plot before flowering stage. The field
data collection at 501 plots requiredmore than 3 people ×
1 day, while the UAV flight operation required only one
person × 12 min. These results indicated that the CHM
from aUAV platform can be used to estimate PH in a quick
and cost-effective manner. Because genomics-assisted
breeding studies require phenotyping of a large number
of accessions or plants, our proposed method based on
UAV remote sensing would be an important and valuable
tool for high-throughput in-field phenotyping. Moreover,
the dynamic development of rice plants could be
assessed by multitemporal data sets. Future studies
should obtain data sets through the growing season,
examine the changes in PH and calculate the growth rate.
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