論文

国際誌
2020年12月2日

CREB Coactivator CRTC2 Plays a Crucial Role in Endothelial Function.

The Journal of neuroscience : the official journal of the Society for Neuroscience
  • Hideaki Kanki
  • ,
  • Tsutomu Sasaki
  • ,
  • Shigenobu Matsumura
  • ,
  • Tomohiro Kawano
  • ,
  • Kenichi Todo
  • ,
  • Shuhei Okazaki
  • ,
  • Kumiko Nishiyama
  • ,
  • Hiroshi Takemori
  • ,
  • Hideki Mochizuki

40
49
開始ページ
9533
終了ページ
9546
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1523/JNEUROSCI.0407-20.2020

The cAMP pathway is known to stabilize endothelial barrier function and maintain vascular physiology. The family of cAMP-response element binding (CREB)-regulated transcription coactivators (CRTC)1-3 activate transcription by targeting the basic leucine zipper domain of CREB. CRTC2 is a master regulator of glucose metabolism in liver and adipose tissue. However, the role of CRTC2 in endothelium remains unknown. The aim of this study was to evaluate the effect of CRTC2 on endothelial function. We focused the effect of CRTC2 in endothelial cells and its relationship with p190RhoGAP-A. We examined the effect of CRTC2 on endothelial function using a mouse aorta ring assay ex vivo and with photothrombotic stroke in endothelial cell-specific CRTC2-knock-out male mice in vivo CRTC2 was highly expressed in endothelial cells and related to angiogenesis. Among CRTC1-3, only CRTC2 was activated under ischemic conditions at endothelial cells, and CRTC2 maintained endothelial barrier function through p190RhoGAP-A expression. Ser171 was a pivotal regulatory site for CRTC2 intracellular localization, and Ser307 functioned as a crucial phosphorylation site. Endothelial cell-specific CRTC2-knock-out mice showed reduced angiogenesis ex vivo, exacerbated stroke via endothelial dysfunction, and impaired neurologic recovery via reduced vascular beds in vivo These findings suggest that CRTC2 plays a crucial protective role in vascular integrity of the endothelium via p190RhoGAP-A under ischemic conditions.SIGNIFICANCE STATEMENT Previously, the role of CRTC2 in endothelial cells was unknown. In this study, we firstly clarified that CRTC2 was expressed in endothelial cells and among CRTC1-3, only CRTC2 was related to endothelial function. Most importantly, only CRTC2 was activated under ischemic conditions at endothelial cells and maintained endothelial barrier function through p190RhoGAP-A expression. Ser307 in CRTC2 functioned as a crucial phosphorylation site. Endothelial cell-specific CRTC2-knock-out mice showed reduced angiogenesis ex vivo, exacerbated stroke via endothelial dysfunction, and impaired neurologic recovery via reduced vascular beds in vivo These results suggested that CRTC2 maybe a potential therapeutic target for reducing blood-brain barrier (BBB) damage and improving recovery.

リンク情報
DOI
https://doi.org/10.1523/JNEUROSCI.0407-20.2020
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/33127851
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7724130
ID情報
  • DOI : 10.1523/JNEUROSCI.0407-20.2020
  • PubMed ID : 33127851
  • PubMed Central 記事ID : PMC7724130

エクスポート
BibTeX RIS