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1.  Introduction

The scanning electron microscope (SEM) is an essential tool 
for observing micro-structures. The need for three-dimen-
sional (3D) surface measurements is significantly increasing. 
For example, in the semiconductor industry, the measure-
ments of heights and 3D geometric structures are becoming 
even more crucial for precise control of critical dimensions as 
the sizes of electronic devices continue to shrink.

However, SEM only produces 2D images rather than 3D 
shapes directly. Attempts have been made to transform SEM 
into a 3D measuring tool for over 30  years, and scientific 
research on 3D surface reconstruction in SEM continues to 

be intensively studied. Different approaches, which can be 
broadly classified into two groups, have been utilized. One 
popular group is generally referred to as the photogrammetry 
method [1–6], where a pair of stereo images of a specimen at 
different inclination angles are taken, and the shape or depth 
of surface features is determined by measuring the deviations 
of corresponding points on the two images. However, this 
method is practical only for measuring surface points where 
recognizable fine structures exist. In general, it cannot be used 
on smooth surfaces or to reconstruct a continuous surface 
profile at high magnification. The second approach is the so-
called SEM photometric stereo method where multiple sec-
ondary or backscattered electron detectors (generally two or 
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four) are symmetrically positioned about the beam axis, so 
that the gradient information on the surface being observed 
is estimated from multiple images that are simultaneously 
obtained by multiple detectors [7–13]. The 3D surface is con-
sequently computed from the gradient information. Despite 
extensive studies, SEM photometric stereo has not yet become 
a practical measurement technology. There exist several hin-
drances: two key issues are negative influences of shadowing 
effects and practical restrictions in the calibration process.

Shadowing is one of the most significant difficulties encoun-
tered in SEM photometric stereo, which frequently occurs in 
imaging processes and results in a smaller observed image 
intensity than the underlying shadowless one. Therefore, the 
gradient measurements in shadowed regions generally contain 
large deviations and consequently engender serious distortions 
in the reconstructed 3D surface. Paluszyński and Slówko [14] 
introduced several techniques for reconstructing the shape in 
the shadowed regions that utilize two or three unshadowed 
detectors under an arrangement of four secondary electron 
detectors. However, this method requires numerous manual 
interactions and interventions, such as shadowed regions that 
must be manually identified from the base images each time, 
and is restrictive in various actual applications.

Another practical difficulty is calibration, that is the recovery 
of parameters arising in gradient measurement formulas. 
Without proper calibrations, the shape cannot be reconstructed 
to an absolute level. Suganuma [9] utilized an off-line procedure 
with a sphere pattern as the calibration object. However, such an 
off-line approach is restrictive and inflexible. This is because a 
suitable calibration object may not always be available and the 
parameter may frequently vary due to a number of factors.

We present, in this study, a bootstrapping approach (refer 
also to figure 1) for joint surface reconstruction, a latent shadow-
less images estimation, and a self-calibration of the parameter 
to handle the challenging task of absolute height measurement 
from only two observed images via SEM photometric stereo in 
a blind setting, i.e. with no calibration objects or prior knowl-
edge of the parameter. In the de-shadowing procedure, once 
the parameter is correctly associated, the method performs 
well in the reconstruction of the 3D surface and in the estima-
tion of latent shadowless images. However, if the parameter is 
incorrect, the reconstruction will suffer from non-uniform dis-
tortions in the shadowed regions. To improve reconstruction, 

the proposed method combines de-shadowing and calibration 
and allows the two tasks to benefit from each other in the pur-
suit of producing an accurate 3D surface and determining the 
correct parameter. We investigate the interactions between de-
shadowing and calibration and introduce an objective function 
to evaluate the reconstruction after de-shadowing and to cor-
rect the parameter. Our algorithm iteratively performs between 
de-shadowing and self-calibration to simultaneously eliminate 
shadowing errors and correct the parameter to obtain a recon-
struction to the absolute level.

The main contributions of this study are as follows:

	 •	We mathematically model the shadowing generation 
process and derive a shadowing compensation model. 
This model provides an important clue for estimating 
underlying shadowless images from shadowed ones.

	 •	We present a novel de-shadowing approach utilizing 
our shadowing compensation model that produces both 
shadowless images and the 3D shape.

	 •	We introduce a self-calibration criterion based on investi-
gation of the internal relationships between the parameter 
and shadowing. We propose a solution to resolve the 

Figure 1.  Framework of bootstrapping de-shadowing and self-calibration (BDS). Given observed images (BL and BR) that suffer from 
shadowing effects, the method iteratively eliminates shadowing errors and corrects the parameter via evaluation of reconstruction distortions. 
The algorithm provides outputs for the reconstructed surface (Z), underlying shadowless images (BL* and BR*) and the parameter (k).

Figure 2.  Schematic diagram of measuring system with two BSE 
detectors.
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challenging blind reconstruction problem which corrects 
the parameter while handling the shadowing errors.

The remainder of the paper is organized as follows. 
Section  2 briefly introduces the basis of SEM photometric 
stereo and its existing practical difficulties. Section 3 proposes 
the framework of our bootstrapping approach and presents an 
efficient optimization procedure. Experiments on real image 
data are carried out in section  4. Finally, we provide some 
discussion and conclude the paper in section 5.

2.  Problem statement

In this section, we briefly introduce the basis of the SEM pho-
tometric stereo method and its existing problems.

2.1. The basis of SEM photometric stereo

SEM photometric stereo is substantially related to optic pho-
tometric techniques using an optical camera as the measuring 
device [15–18] in which both methods are used to estimate gra-
dient information for an object being observed from shading 
cues in the image data (the special case, where the data is a single 
image, is generally known as shape from shading [19–21]).  
However, because of different imaging principles, gradient 
estimation formulas are derived in different ways.

As schematically illustrated in figure 2, in our SEM meas-
urement system, two backscattering electron (BSE) detectors 
are symmetrically positioned along a direction. It is conven-
ient for us to define this direction as the x-axis. Such a system 
simultaneously provides two BSE images from the two detec-
tors, denoted as BL and BR, respectively. In general, we use 
BL and BR to refer to the left and right image, respectively. 
Under such system settings, Suganuma [19] proposed an 
experimentally derived model to measure the gradient compo-
nent in the direction of the x-axis (i.e. the slope tan α):

∂
∂

= −
+

Z

x
k

BL BR

(BL BR )
,

2 2

n n
2� (1)

where k is a parameter and BLn and BRn are signal outputs 
from two detectors on the horizontal specimen surface.

3D shapes are obtained from gradient measurements by 
either straightforward numerical integration [19] or advanced 
optimization techniques [22, 23].

2.2.  Problems

The accuracy of the reconstructed shape highly depends on 
the corresponding accuracy of the gradient measurements. It 
is thus obvious that shadowing and calibration are the two key 
issues hindering absolute level reconstructions in SEM photo-
metric stereo, as they directly affect image intensity (BL and 
BR) and the parameter (k) separately arising in (1).

As illustrated in figure 3(b), shadowing errors engender sig-
nificant distortions in the reconstruction. In fact, shadowing 
phenomena frequently occur in imaging processes due to the 
exceptional features of sample topography. As shown in figure 4, 
a portion of the electrons is screened out because of occlusion, 
resulting in fewer electrons collected by the BSE detector and a 
smaller observed image intensity than the underlying shadow-
less one. Therefore, the gradient measurements generally contain 
large deviations when applying (1) in a region with shadowing 
effects. It is thus obvious that shadowing effects will significantly 
contribute to the final error of a reconstructed 3D surface.

The parameter k is also essential for absolute level recon-
struction. It is clear that it can linearly change the non-zero 
measurements of the gradient in (1) and consequently deform 
the shape of non-flat regions (refer also to figures 3(c) and (d)). 
However, calibrating the parameter k is not a trivial task in 
practice. The conventional off-line calibration procedure is 
to acquire images of a calibration object with a known shape, 

Figure 3.  Schematic illustration of the effects of shadowing and parameter k.
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such as a sphere, and compute the parameter by minimizing 
the gradient error between the estimation made from the 
images and the true ones calculated geometrically. Such off-
line approaches generally provide good but constrained results. 
First, the parameter generally depends on a number of factors, 
such as the material of the specimen, and the imaging condi-
tions, such as accelerating voltage, emission current, etc [24]. 
As these factors frequently change in practice, the parameter 
will vary accordingly. Thus one has to recalibrate the param-
eter whenever a factor changes, causing significant practical 
difficulties and restrictions. Second, the material of the calibra-
tion objects should be identical to the specimen to be observed, 
and their shapes must be precisely controlled. So the acces-
sibility to proper calibration objects in practice is also limited.

To achieve an automatic and highly accurate SEM photo-
metric stereo, we solve the joint of the two problems (refer 
also to figures 3(e) and (f)) by simultaneous de-shadowing and 
self-calibration. The overview of our proposed method is illus-
trated in figure 1. On the one hand, we seek to remove shad-
owing errors in reconstruction (de-shadowing). On the other 
hand, we automatically adjust parameter k by utilizing shad-
owing cues in the de-shadowing procedure (self-calibration).

3.  Bootstrapping de-shadowing and self-calibration

In this section, we present our bootstrapping de-shadowing 
and self-calibration framework in a blind situation, i.e. with 
only shadowed left and right images as input and with no cali-
bration object available, and develop an efficient algorithm to 
solve the problem.

A natural procedure for SEM photometric stereo would be to 
first calibrate the parameter k in (1) and then perform a de-shad-
owing algorithm to obtain an accurate reconstruction. However, 
we may only have two observed images in practice, which suffer 
from shadowing effects and for which no calibration object or 
prior information for the parameter k is accessible. As previ-
ously discussed, the shape in non-flat regions may be deformed 

with incorrect values of k. In addition, as we will see, proper de-
shadowing also requires a correct k. Therefore, reconstruction 
to the absolute level from only shadowed images is a very chal-
lenging task (dubbed as blind reconstruction). To the best of 
our knowledge, few studies have involved this problem. Here, 
we address the task of blind reconstruction by exploiting the 
interactions between de-shadowing and calibration.

We divide the problem into two steps. First, we focus on 
resolving the shadowing problem under a temporary assump-
tion that the parameter k is known. We introduce a shadowing 
compensation model, which relates the underlying shadowless 
image to the observed one. Using the model, we formulate the 
proposed de-shadowing into a constrained optimization problem 
via a variational approach. We adopt an iterative scheme to solve 
the optimization problem, which effectively provides both an 
accurate 3D shape and compensated shadowless images after 
convergence. Second, we investigate how improper values of 
the parameter k affect reconstructed shapes in de-shadowing. 
Consequently, we design a novel self-calibration criterion by 
penalizing the distortions in the reconstructed shape caused by 
an incorrect k. We ultimately address the blind reconstruction 
problem by fusing de-shadowing and self-calibration.

3.1.  De-shadowing

3.1.1.  Shadowing compensation model.  We model the 
mechanism of the generation of shadowing effects based on 
the following assumptions:

	 •	The angle distribution of BSEs [24] is as follows:

η
Ω

η
π

ξ=d

d
cos ,n0

		 where ξ describes the direction of the electron emission; 
η0 and n are coefficients; and η and Ω denote the quantity 
of BSEs and the solid angle, respectively.

	 •	The image intensity can be modeled as the amount of 
BSEs collected by the detector.

Figure 4.  The shadowing effect. BSEs emitted in a direction below the tangent line are generally absorbed by the occlusion part and 
consequently are not collected by the detector.
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We first model the image intensity in the case of the pres-
ence of shadowing that in turn is convenient when modeling 
the shadowless case, where the shadowless case is consid-
ered just a special case of shadowing.

BSE intensity in the presence of shadowing.  The ideal range 
of the azimuth angle ϕ for detectors should be ϕ− ⩽ ⩽π π

2 2
.  

Nonetheless, BSEs in the region where ϕ is near ±π
2
 gener-

ally cannot be detected owing to the practical limitations of 
the detector. Therefore, we introduce the parameter ϕmin (refer 
also to figure 5) to model this shortfall; then the range of the 
azimuth angle in the practical detectable region should be 

ϕ ϕ ϕ− + ⩽ ⩽ −π π
2 min 2 min .

In the shadowing case, as shown in figure 4, the range of 
the zenith angle ξ is ξ θ ϕ⩽ ⩽ −π0 ( )2

 in general, i.e. the range 

is between the z axis (ξ = 0) and the shadowing tangent line 

ξ θ ϕ= −π( )( )2
, where θ(ϕ) is the shadowing angle along the 

ϕ direction and generally varies for different values of ϕ. 
However, due to the finite size of practical detectors, BSEs 
with an emission direction near the horizontal direction may 
not be collected. We therefore introduce another parameter 
θmin to model the lowest detectable direction. In the case of 
figure 6, when the shadowing tangent line is below the lowest 

detectable direction, i.e. θ ϕ θ− > −π π
( )2 2 min , there is in fact 

no shadowing in the ϕ direction and the range of ξ is only 
up to the lowest detectable direction. Including both cases for 
the zenith range, the upper limit of the zenith angle should be 

θ θ ϕ− −π π{ }min , ( )2 min 2
. Therefore, the detectable region 

takes the following form:

Figure 5.  Segmentation of the detectable region of a BSE detector.

0 2
φ π= −

1

2

1−i

i

2
π=

K

iθ

ξ

x

y

z

φ

φ

φ
φ

φ

0
φ

min
φ+ φ

min
φ−

K

min
φ

min
φ

Figure 6.  Geometric representations of practical factors θmin.
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⎪

⎪
⎧
⎨
⎩

Ω
ϕ ϕ ϕ

ξ θ ϕ θ ϕ θ θ ϕ θ

− + ⩽ ⩽ −

⩽ ⩽ − = <

π π

π:
,

0 ( ), ( ( ) , if ( ) ).
S 2 min 2 min

2 min min

Here, for convenience, we have transformed the expression of 
the upper limit of ξ via a thresholding operator.

With the assumption that the image intensity is modeled 
as the amount of BSEs collected by the detector, the observed 
BSE intensity is modeled by the following integral:

∫ ∫η
Ω

Ω
η
π

ξ Ω= =
Ω Ω

BSE
d

d
d cos d .n0

S S

However, the problem is that an analytical expression for 
θ(ϕ) is unlikely to be accessible. This issue can be resolved by 
dividing the detectable region into small segment regions with 
azimuth step Δϕ  = π/K (refer to figure 5). It is convenient to 
approximate ϕmin: ϕmin = SΔϕ, where S =  [ϕmin/Δϕ] and ‘[ ]’ 
denotes the rounding operator. It is reasonable to assume that the 
shadowing angle within each small region Ωi

S remains approxi-
mately constant. Thus, the detectable region is approximated by

∪Ω Ω=
= +

−
,S

i S

K S

i
S

1

where

⎪

⎪
⎧
⎨
⎩

Ω
ϕ ϕ ϕ

ξ θ θ θ θ θ
⩽ ⩽

⩽ ⩽ − = <π
−

:
,

0 , ( , if ).i
S i i

i i i

1

2 min min

Therefore, the BSE intensity can be derived as

∫ ∫∑

∑

η
π

ξ Ω
η
π

ξ Ω

η
θ

= =

=
+

−

Ω Ω= +

−

= +

−
+

K n

BSE cos d cos d

( 1)
· (1 sin ) .

n

i S

K S
n

i S

K S
n

i

0

1

0

0

1

1

S
i
S

� (2)

Here we have employed the fact that dΩ =  sin ξdξ dϕ in the 
calculation of the integral.

BSE Intensity in the absence of shadowing.  In fact, the shad-
owless case is considered as a special shadowing case where 
all the shadowing angles are zero. The shadowless BSE inten-
sity is derived by setting θi = 0 in (2). With the thresholding 
operator (θi = θmin, if θi < θmin), the BSE intensity in the case 
of absence of shadowing takes the following form:

η
θ=

+
− − +

K n
K SBSE

( 1)
·( 2 )(1 sin ) .n* 0 1

min� (3)

Practical modeling of θmax.  We previously gave the ideal 
assumption on occlusion phenomena, where the BSEs below 
the shadowing tangent line were totally absorbed. However, as 
illustrated in figure 7, when the emission direction of the BSEs 
is nearly parallel to the slope of the shadowing object (a con-
siderably large incident angle), the electrons are likely to be re-
scattered rather than absorbed into the shadowing objects. Such 
a reflected portion of BSEs is consequently detectable, which 
thus increases the corresponding image intensity and decreases 
shadowing effects. While this phenomenon is generally difficult 
to model exactly due to the complicated dependence on the struc-
ture of the occlusion feature, we thus approximately model it in 
a simple yet practical manner by setting another threshold, θmax, 
for the shadowing angle. When the shadowing angle is larger than 
θmax, it is set to θmax to eliminate false shadowing effects resulting 
from the unshadowed portion (reflected portion) of BSEs.

Shadowing compensation model.  Combining the image 
intensity of both cases of presence (2) and absence (3) of shad-
owing and summarizing this practical modeling of parameters, 
we obtain the following shadowing compensation model:

= ·*
R

BSE
1

BSE,� (4)

Figure 7.  Geometric representations of practical factors θmax.
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where the detection ratio is

∑ θ

θ
=

−

− −
= +

− +

+R
K S

(1 sin )

( 2 )(1 sin )
,i S

K S n
i

n
1

1

1
min

� (5)

and the thresholding operator is

⎧
⎨
⎪

⎩⎪
θ

θ θ θ
θ θ θ
θ

=
⩽
⩾

,
,

otherwise.
i

i

i

i

min min

max max

The detection ratio R describes the mechanism of generation 
of shadowing via shadowing angles that imply the occlusion 
amount. In fact, shadowing angles are determined by the 3D 
surface. Therefore each shadowing angle should be a function 
of the 3D surface, i.e. θi = θi(Z).

One advantage of the shadowing compensation model is 
that there is no need to treat the regions with shadowing errors 
separately from those without such errors, because the shad-
owless case is a special case of shadowing where detection 
ratio R = 1 (shadowing angles should be θmin after implemen-
tation of the thresholding operator). Therefore, in contrast to 
a literature example [14], this case does not require an image 
segmentation process to extract shadowing regions, a process 
that is substantially difficult to implement automatically.

3.1.2.  Estimation of 3D surface and shadowless images.  With 
the gradient measurement model described in (1) and the 
shadowing compensation model described in (4), the de-
shadowing problem is formulated as follows: minimize

D

⎡

⎣
⎢
⎢
⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥
⎥∫ ∫ λ= ∂

∂
− −

+
+ ∣∇ ∣

* *Z

x
k Z x yE

BL BR

(BL BR )
d d ,1

2 2

n n
2

2

� (6)

=

=

⎧
⎨
⎪

⎩
⎪

s.t.
BL ,

BR ,

R

R

* BL

* BR

L

R

� (7)

over some domain of interest D in the plane, where BL* and 
BR* are the underlying shadowless left and right images, RL 
and RR denote corresponding detection ratios, λ is a parameter 

and ∣ ∇ ∣= +∂
∂

∂
∂( )( )Z Z

x

Z

y

2 2
.

The formulation can be explained as follows. The first term 
in (6), named the fidelity term, is to guarantee that the gradient 
of the reconstructed surface is consistent with the gradient 
measurement. To eliminate shadowing effects in reconstruc-
tion, the gradient should be evaluated from the shadowless 
images (BL* and BR*). As constraints, shadowless images are 
related to the corresponding observed images (BL and BR) 
through our shadowing compensation model. The second 
term is total variation (TV), a regularizer used to penalize the 
roughness of the solution and consequently make our method 
robust to noise influence. A TV model preserves edges well 
while removing noise effects and has proven to be an effective 
method applicable to a range of problems in image processing 
and computer vision, such as reconstruction, denoising, and 
deblurring [25]. λ is a positive scalar factor that weighs the 

relative contributions of these two terms. Note that λ depends 
upon the noise level of the gradient measurements; the noisier 
the measurements, the larger should the value of λ be.

Solving such a constrained optimization problem is not 
trivial. As previously mentioned, shadowing angles arising in 
the detection ratio described in (5) is a function of surface Z, 
i.e. θi = θi(Z). Therefore, substituting (7) into (6) results in E1 
as a functional of Z. However, the dependence of shadowing 
angles on Z is very complicated. It is futile to present θi(Z) 
in an analytic form. Therefore, it is difficult to directly mini-
mize it. We adopt the alternating minimization scheme that 
performs commutatively between the following two steps:

	 (a)	Surface reconstruction
		 Fixing BL* and BR* in (6), we recover Z by solving the 

resulting unconstrained optimization problem (refer also 
to the Appendix).

	(b)	Shadowing compensation
		 Given surface Z, shadowing angles are numerically calcu-

lated. BL* and BR* are updated with (5).

The algorithm procedure is summarized in algorithm 1.

3.2.  Self-calibration

As previously discussed, the off-line calibration technique 
is practically inflexible and restrictive due to its prerequisite 
requirement of calibration objects and awkwardness in han-
dling frequent variations. In this section, we explore an alter-
nate self-calibration strategy.

One immediate idea may be to design a calibration cri-
terion by modeling the physical dependencies of the param-
eter k. However, such dependencies on specimen material and 
imaging conditions, for example, are physically complicated 
in general. Therefore, it is difficult to model these physical 
processes to obtain a self-calibration criterion.

In fact, the need for good reconstructions is generally a 
strong motivation for the pursuit of a proper parameter. We 
will introduce a self-calibration criterion to choose the proper 
k by enforcing a good reconstruction with minimum distor-
tions. Such an approach may not be physically tenable, but it 
turns out to be practical.

We introduce our self-calibration method based on the fol-
lowing assumptions:

	 •	The surface to be measured is piece-wise smooth and has 
a low total variation in general.

Algorithm 1.  De-shadowing

Input: k, BL and BR
Output: Z, BL*, and BR*

Initialize: BL* = BL, BR* = BR;
While no convergence do
  1: Fix BL* and BR*, update the surface Z from =Z Earg min

Z
1

  The implementation is presented in the appendix.
  2: Fix Z, update BL*, BR* via (7) with (5)
end
return Z, BL*, and BR*

Meas. Sci. Technol. 25 (2014) 105402



A Miyamoto et al

8

	 •	Shadowing effects exist, i.e. there are shadowing errors 
somewhere in at least one of the images (BL or BR).

The first assumption, in fact, has already been used in the 
de-shadowing procedure, where, from the statistical point of 
view, the low total variation assumption is equivalent to the 
Laplacian prior. The second assumption may appear some-
what strange, because, in the previous section, we focused our 
efforts on removing shadowing errors. In this section, we will 
make use of shadowing information as an important cue for 
self-calibration. However, the assumption of the existence of 
shadowing effects is reasonable in general, as shadowing phe-
nomena normally occur in actual measurements.

We will first investigate how improper values of k engender 
reconstruction distortions in de-shadowing which turns out to 
be a key constraint for our self-calibration. With such a con-
straint, we will design our self-calibration criterion and intro-
duce the blind reconstruction method.

3.2.1.  Constraints between k and reconstruction in 
de-shadowing.  Figure 8 shows how incorrect values of k 
affect the reconstruction results in the de-shadowing pro-
cedure. The de-shadowing results of a line pattern with 
three different values of k are presented. As shown, in the 
case of small k, the shadowing effects remain in the recon-
structed shape, named under-compensation; in the case 
of large k, an overshooting phenomenon occurs, called 
over-compensation.

The main cause of these distortions is that an improper k 
can incorrectly reflect shadowing in the shadowing compen-
sation stage, and can be explained as follows. As previously 
discussed, k may deform the shape of non-flat regions. Thus, 
once k is incorrect, the estimation of detection ratio R in the 
de-shadowing process will generally be inaccurate. This is 
because the corresponding shadowing angles that are calcu-
lated from the deformed 3D surface are incorrect. In short, 
when k is smaller than the true value, the shadowing angles 
will also be calculated smaller and consequently engender 
under-compensation effects. Conversely, large values of k 

will result in over-compensation effects. Note that incorrect 
k may also influence the boundary between estimated shad-
owing and shadowless regions in the de-shadowing process, 
i.e. the under-compensation phenomenon provides insuf-
ficient compensation in shadowing regions and may even 
mistreat some shadowing regions as shadowless regions, 
and vice versa; and the over-compensation phenomenon 
may mistakenly treat some shadowless regions as shad-
owing regions.

In summary, the constraint between parameter k and 
reconstruction is that proper reconstruction in de-shadowing 
requires a correct k. In short, if k is not correctly associated 
(either large or small), the reconstruction after de-shadowing 
will contain significant distortions due to improper compensa-
tions of shadowing.

3.2.2.  Self-calibration criterion.  Inspired by the previous 
constraint that an incorrect parameter causes reconstruction 
distortions in de-shadowing, the main idea of our self-calibra-
tion is to automatically adjust parameter k by enforcing the 
best reconstruction with least distortions in the de-shadowing 
procedure. However, one cannot know anything about distor-
tions without any information on the shape. The most straight-
forward idea for evaluating distortions would be measuring 
the difference with the true shape, such as by the use of root 
mean square error, but this is obviously too strong an assump-
tion and impossible for us to utilize, as the true shape is the 
goal we are pursuing. To overcome such a dilemma, we again 
employ the prior shape, i.e. the low total variation assumption 
that we have posited.

We thus introduce the following evaluation function as the 
reconstruction distortion metric:

∇
D

D

R R Z x y

R R x y
E

( min { , } ) d d

( min { , } ) d d
,

L R

L R

2

∫ ∫
∫ ∫

ω

ω
=

∣ ∣
� (8)

where the weight function is

Figure 8.  Under-compensation and over-compensation effects caused by improper k in de-shadowing. Section profiles of a line pattern are 
for demonstration purposes.
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⎤
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∈

( )r
r C

r C

( )
1 [0, ),

0 [ , 1].

r

C b

b

2 2

b� (9)

Here Cb is a positive constant.
The basic idea of this model is that if the value of k is 

incorrect, the reconstruction distortions after de-shadowing 
will give rise to a large deviation from the low total variation 
assumption. We thus seek the proper k that minimizes E2,  
which implies that the obtained reconstruction is the best in 
the sense of minimum distortion. Here we adopt a weighted 
TV model rather than the pure TV model given in (6). This 
is due to the fact that reconstruction deviations caused by 
incorrect k do not obey a uniform distribution over the 
domain D. As shown in figure  8, the distortions mainly 
occur in the shadowed regions, while in the shadowless 
regions the shape is seldom influenced. Therefore, if we use 
the pure TV model, it has a strong regularization effect on 
shadowless regions and the estimation of k may easily fail. 
Moreover, we also observe that in the shadowing regions the 
stronger the shadowing, the larger the deviation is. Based 
on these observations, our weight function (refer also to 
figure 9) is designed as a continuous monotone decreasing 
function, where Cb is a threshold that controls the shape 
of the weight function. Thus when min{RL, RR} is small, 
implying that at least one of the detectors suffers consider-
ably from strong shadowing at this position, the weight will 
be large enough to let this point contribute significantly to 
E2 and vice versa.

3.2.3.  Blind reconstruction with self-calibration.  With the 
de-shadowing method and the self-calibration criterion, we 
ultimately address the challenging blind reconstruction prob-
lem via a bootstrapping approach that performs iteratively 
between de-shadowing and self-calibration:

	 (a)	De-shadowing
Given k, de-shadowing procedure reconstructs surface Z, and 
its corresponding shadowless images.
	(b)	Self-calibration
With reconstructed surface Z, the self-calibration procedure 
updates k by decreasing the energy of E2.

Since k is implicitly hidden in E2, it is difficult to analyti-
cally compute the gradient to apply a gradient descent method. 

We thus adopt a numerical method to search descent direc-
tions. Algorithm 2 describes bootstrapping de-shadowing and 
a self-calibration algorithm.

4.  Experimental results

In this section, we present several experiments on real image 
data to demonstrate the robustness and effectiveness of the 
proposed method. Two different patterns with strong shad-
owing effects are used to evaluate the proposed reconstruction 
method, including a standard particle with a sphere pattern 
and a semiconductor device with a line pattern. The SEM used 
in our experiment performs raster scanning along the direction 
located 45° from the x-axis. (The x-axis is defined as the direc-
tion along which the detectors are positioned.) Therefore, the 
x′-axis and the y′-axis consistent with the image array are 
defined for convenience in displaying the results. For compu-
tational efficiency, we embedded denominator (BLn + BRn)2 
into k in the Suganuma’s gradient evaluation equation  (1). 
We set Cb = 0.8 for the weight function in (9). The iteration 
number in Algorithm 2 is set to T = 100.

To give a vivid view of how our proposed Bootstrapping 
De-shadowing and Self-Calibration (BDS) method automati-
cally corrects the parameter k and eliminates shadowing errors, 
we compare the proposed method with the following methods: 
(1) the traditional Suganuma method [9] applying the Depth 
From Gradient method (DFG) using (6) with BL* = BL and 
BR* = BR; and (2) the de-shadowing method: the Shadowing 
Compensation Model (SCM) method via Algorithm 2.

Reconstruction results.  Figure 10(a) and (b) show the origi-
nal left and right images and corresponding estimated shad-
owless images. The sphere part/line part plays the role of the 
shadowing object for the surrounding parts. Figures 11 and 13  

Figure 9.  Weight function.

Algorithm 2.  Bootstrapping de-shadowing and self-calibration

Input: BL, BR
Output: Z, BL*, BR*, k
Initialize: k;
Set: step length Δ, coefficient m (0 < m < 1);

=
* *

Z Z kEarg min ( )
Z

1
,BL ,BR

;

for t = 1 to T do
    k+ = k + Δ;
    =+ +

* *
Z Z kEarg min ( )

Z
1

,BL ,BR
;

    if <+Z ZE E( ) ( )2 2  then
      k = k+;
    end
    if >+Z ZE E( ) ( )2 2  then
      k− = k − Δ;
      =− −

* *
Z Z kEarg min ( )

Z
1

,BL ,BR
;

    end
     if <−Z ZE E( ) ( )2 2  then
      k = k−;
    end
    if ⩾ ⩾+ −Z Z Z ZE E E E( ( ) ( ))&&( ( ) ( ))2 2 2 2  then
        Δ = mΔ;
    end
end
return Z, k, BL* and BR*;
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Figure 10.  Original and estimated shadowless images: (a) original left and right images of a sphere pattern and line pattern;  
(b) corresponding estimated shadowless images; (c) difference images of original and shadowless images.

Figure 11.  Comparison of 3D surface of the sphere pattern with initial value of k: top row k = 0.00009, middle row k = 0.00019 and bottom 
row k = 0.00030.
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show the reconstruction results of the sphere pattern and line 
pattern, respectively. As we can see, the DFG method always 
suffers from the so-called rounding-slope effects in the actually 
flat region, which is in fact caused by shadowing effects, and 
the non-shadowing sphere part/line part shows stretch effects 
if k is incorrect. The SCM method, given proper k, eliminates 
shadowing effects well to achieve an accurate reconstruction, 
while, if k is too small or too large, the actual flat parts suffer 
from either under-compensation effects or over-compensation 
effects and non-shadowing parts show stretch effects. The 
proposed method provides stable and accurate reconstruc-
tion results for both flat parts and sphere/line parts in all three 
cases, as our method is able to evaluate and correct the param-
eter k when de-shadowing.

As shown in figure 10(a), the original images show that the 
brightness in the shadowing regions is less intense than that in 
the flat regions without shadowing, whereas, in the shadow-
less images (figure 10(b)), the brightness of the flat regions 
around the spherical particle/line part in both the left and right 
compensated image demonstrates a certain uniformity, which 
in turn implies good compensation of the image intensities. 
Figure  10(c) shows the subtract images of the original and 
shadowless images, where the darkness indicates the strength 
of the difference in image intensity. The subtract images 
reflect the distributions of shadowing effects. As observed in 
figure 10 (c), the regions near to the spherical particle/line part 
are displayed darker than the regions far away from them. This 
visual observation is in accordance with the actual occurrence 

Figure 12.  Convergence process of the sphere pattern with various initial values of parameter k: (a) convergence processes of k and (b) 
convergence processes of height.
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of the shadowing phenomena in both cases, which further 
implies the effective compensation of image intensities.

Convergence analysis.  To analyze the convergence prop-
erty of our method, we conducted extensive experiments with 
the initial value of k varying from 0.0001–0.00035 with step 
lengths of 0.00001. The convergence processes of k for both 
patterns are shown in figures 12(a) and 14(a), respectively. As 
observed, in both cases, the convergence range is considerably 
large. In the case of the line pattern, the convergence range is 
[0.0001, 0.0003]. In the case of the sphere pattern, the con-
vergence range of k is not smaller than [0.000 06, 0.000 035]; 
initial values larger than 0.000 35 are not verified and some 
of them may converge properly as well. Although there is a 
requirement for a proper initialization of the parameter k, the 
proposed method converges well with a very wide range of 
initialization values, which indicates its practicability.

Quantitative analysis.  For a quantitative assessment of the 
metric properties of our reconstruction system, we evaluate the 
reconstruction errors of the height of each pattern, i.e. the length 
from the bottom to the top of the pattern. The sphere pattern is a 
standard particle and the accuracy of the shape can be guaran-
teed. The true height of the sphere pattern is thus the radius of 
the sphere that is 50 (in pixels). According to the design data, the 
height of the line pattern is approximately 44 (in pixels) and is 
assumed as the true height. Taking all the measurement results 

that are appropriately converged (refer to figures  12(a) and 
14(a)), we model the derivation of the measured heights from the 
true value as 3σ (three times the standard deviation) that reaches 
a maximum of only 7.4% and 4.0% for sphere and line patterns, 
respectively (figures 12(b) and 14(b)). Such results indicate that 
the proposed method can achieve absolute level reconstruction 
with a high accuracy, once appropriately converged.

5.  Conclusion and future work

De-shadowing and automatic calibration is important for 
SEM photometric stereo to be practically applicable. In this 
study, we have presented a bootstrapping de-shadowing and 
self-calibration method for SEM photometric stereo to handle 
the challenging blind reconstruction problem from only two 
observed images that suffer from shadowing effects. We solve 
the de-shadowing problem by modeling the shadowing gen-
eration process. We have also developed a self-calibration 
method through making use of shadowing cues. These two 
problems are jointly solved by a bootstrapping approach. The 
proposed method can achieve absolute level reconstruction 
with a high accuracy and converges well with a very wide 
range of initialization values of parameter k. The experimental 
results demonstrate the significance of the proposed method.

For future work, the method may be extended to handle 
the more challenging scenario of spatially piecewise varying 

Figure 13.  Comparison of 3D surface of the line pattern with initial value of k: top row k = 0.00018, middle row k = 0.00025 and bottom 
row k = 0.00029.
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parameters for compound materials. Moreover, using dic-
tionary learning based sparseness prior rather than TV prior 
[26] is also interesting and worthy of investigation.

Appendix A.

In this appendix, the numerical implementation of surface 
reconstruction (minimizing (6)) is presented.

In the surface reconstruction procedure, we have assumed 
BL* and BR* are known. Therefore, the optimization problem 
is reformulated as the following functional minimization,

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥∇

D
Z

Z

x
p x y Z x y* arg min ( , ) d d ,

Z

2

∫ ∫ λ= ∂
∂

− + ∣ ∣�

(A.1)

where

= −
+

* *
p x y k( , )

BL BR

(BL BR )
.

2 2

n n
2

This optimization is also known as a variational problem in 
the calculus of variations. A fundamental result of the calculus 

of variations is that the extremum of the functional must sat-
isfy the associated Euler–Lagrange equation. Note that the 

Figure 14.  Convergence processes of the line pattern with various initial values of parameter k: (a) convergence processes of k and (b) 
convergence processes of height.

Figure A1.  Image coordinates.
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local minimum and the global minimum are both examples of 
the extrema. Thus the Euler–Lagrange equation is a necessary 
condition rather than a sufficient condition. However, the con-
vexity of (A.1) guarantees that any local minimum must be a 
global minimum. Therefore, addressing (A.1) is equivalent to 
solving the associated Euler–Lagrange equation

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟∇

∇
Z

x

p

x

Z

Z
2 div 0,

2

2
λ∂

∂
− ∂

∂
+ =� (A.2)

where div is the divergence operator.
For numerical implementation, we adopt the finite differ-

ence method to discretize (A.2) according to the coordinate 
system x − y. Note that the x − y coordinate system is rotated 
45° from the commonly used x′ − y′ coordinate system using 
our particular imaging setting (refer also to figure  A1). We 
regard the x′ − y′ coordinate system to be generally more suit-
able for a finite difference operator. Therefore, we transform the 
Euler–Lagrange equation  (A.2) into the representation in the 
x′ − y′ coordinate system. As the second term div(∇ Z/∣∇ Z∣) 
is rotationally invariant, its form will remain the same in the 
x′ − y′ coordinate system. Therefore, substitute ∂

∂
Z
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2

2
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into (A.2), and the Euler–Lagrange equation  in the x′  −  y′ 
coordinate system takes the following form:
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Moreover, we adopt the commonly used Neumann boundary 
conditions (also known as natural boundary conditions).

Let h denote the spatial grid size. Utilizing the central dif-
ference for the first term in the left-hand side, the right-hand 
side leads to
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The discretization of the second term in the left-hand side 
is a bit more elaborate. To obtain a high accuracy, we take
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Here the small positive parameter ϵ is for stabilization. One 
can imagine that in the case of a piecewise constant result, g 
can be unbounded. In our experiments, we set ϵ = 0.0001. In 
the discretization scheme, +g
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The finite difference operators result in a large nonlinear 
system. The nonlinearity is due to g. Let Z denote the vector 
obtained from the discretization of Z(x, y). Treat g +g(

i j1
2

,
, 

−g
i j1

2
,

, +g
i j, 1

2
 and −g )

i j, 1
2

 as coefficients, so that the nonlinear 

system takes the following quasi-linear matrix form:

=A Z Z b( ) ,� (A.4)

where A(Z) is large but sparse.
We adopt a so-called fixed point method to solve the quasi-

linear system (A.4). The key idea is to address the nonlinear 
problem by solving a sequence of linear systems with the non-
linear part arising in A(Z) being fixed. The method is summa-
rized as follows:

	 (a)	Initialize Z with a guess of Z(0).
	(b)	At the mth iteration, fix A(Z) with A(Z(m − 1)).
	 (c)	Obtain Z(m) by solving the resulting linear system

=−A Z Z b( ) ,m 1 m( ) ( )
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that can be solved effectively through methods such as the 
Jacobi method, the Gauss–Seidel method, successive over-
relaxation, etc.
	(d)	Iterate between (b) and (c) until convergence.

Note that the linear system need not be solved exactly in each 
iteration so as to yield fast convergence [27].
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