論文

査読有り 国際誌
2019年3月20日

Computational geometry analysis of dendritic spines by structured illumination microscopy.

Nature communications
  • Yutaro Kashiwagi
  • ,
  • Takahito Higashi
  • ,
  • Kazuki Obashi
  • ,
  • Yuka Sato
  • ,
  • Noboru H Komiyama
  • ,
  • Seth G N Grant
  • ,
  • Shigeo Okabe

10
1
開始ページ
1285
終了ページ
1285
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1038/s41467-019-09337-0

Dendritic spines are the postsynaptic sites that receive most of the excitatory synaptic inputs, and thus provide the structural basis for synaptic function. Here, we describe an accurate method for measurement and analysis of spine morphology based on structured illumination microscopy (SIM) and computational geometry in cultured neurons. Surface mesh data converted from SIM images were comparable to data reconstructed from electron microscopic images. Dimensional reduction and machine learning applied to large data sets enabled identification of spine phenotypes caused by genetic mutations in key signal transduction molecules. This method, combined with time-lapse live imaging and glutamate uncaging, could detect plasticity-related changes in spine head curvature. The results suggested that the concave surfaces of spines are important for the long-term structural stabilization of spines by synaptic adhesion molecules.

リンク情報
DOI
https://doi.org/10.1038/s41467-019-09337-0
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/30894537
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427002
URL
https://www.nature.com/articles/s41467-019-09337-0

エクスポート
BibTeX RIS