
Distributed processing framework for
cooperative service among edge devices
Airi Nakamura

Aichi Institute of Technology
Toyota, Aichi 470-0392, Japan

airi-1@pluslab.org

Katsuhiro Naito
Aichi Institute of Technology

Toyota, Aichi 470-0392, Japan
naito@pluslab.org

Takaya Yamazato
Nagoya University

Nagoya, Aichi 464-8601, Japan
yamazato@nagoya-u.jp

Abstract—This paper proposes a new distributed processing
framework to realize cooperative service among edge devices. The
proposed framework provides service developers with an execu-
tion environment on the edge device. Since it provides abstracted
sensor values and camera images, service developers can easily
design their service without the specification of peripheral devices
such as sensors, cameras, etc. Additionally, our framework
performs reliable automatic recognition among neighbor edge
devices. Therefore, the service developers can realize distributed
service on neighbor edge devices according to the recognition
information. This paper implements the proposed framework
and creates a person detection service as the demonstration. The
experimental results show the demonstration service works on
the embedded Linux board.

Index Terms—Internet of Things, Distributed service, Edge
processing system, Flexible service deployments

I. INTRODUCTION

The recent spread of Internet of Things (IoT) devices has
been noted as a means of realizing the concept of smart
cities [1]–[3]. Conventional systems typically use special IoT
devices designed for unique services [4]–[6]. Therefore, the
systems do not have any flexibility to extend or update the
services. Additionally, they use cloud services to process
information from IoT devices even if recent devices have
enough processing power.

As smart cities service continue to develop, the installation
of IoT devices throughout the city will increase the number
of devices. As a result, cloud service in the current systems
will suffer from the information concentration of many IoT
devices. Since the concentration causes a high processing load
and delays processing, adequate preprocessing in IoT devices
will be an essential function [7], [8]. In addition, creating
services for dedicated IoT devices will hinder data sharing
among devices and flexible service deployment. Therefore,
smart city service requires a new framework for cooperative
processing among IoT devices to provide flexible and scalable
services [9].

The authors have proposed a new flexible service deploy-
ment environment for edge processing systems [10]. The
proposed environment uses container technology to realize
independent deployment of each service. As a result, any
developers can install or update their service on edge devices.
On the contrary, distributed smart city service has some
challenges in realizing cooperative service among IoT devices

in a limited area. Firstly, each IoT device should process
services cooperatively. Secondly, cooperative services should
share data among IoT devices. Thirdly, IoT devices should
recognize each other safely.

This paper proposes a new distributed processing framework
to realize cooperative service among edge devices. The pro-
posed framework provides automatic recognition mechanisms
among edge devices with digital certificates. It also provides
cooperative environments to realize a service on neighbor edge
devices. Since the proposed framework is a comprehensive
system of the proposed environment, it also supports flexible
service deployments. As a result, service developers can
distribute their service to many edge devices efficiently and
realize cooperative service on the edge devices. The prototype
implementation shows the sample person detection service
to process image data cooperatively among neighbor edge
devices.

II. PROPOSED SYSTEM

Figure 1 shows the proposed system. The proposed system
is an open architecture for providing multiple edge-device
services. Therefore, it assumes three types of collaborators:
the service developer, the device owner, and the cloud admin-
istrator. The proposed system consists of an edge framework
and cloud services.

The edge framework provides processing environments for
multiple services. Since the environment supports container
technology to process each service, each service can work
simultaneously and independently. Some services may re-
quire neighbor information based on sensors. The framework
handles equipped sensors, converts actual sensor values to
abstracted information such as temperature, and shares the in-
formation with services. As a result, developers can efficiently
process neighbor information based on the abstracted name.
The benefit of employing a containerized virtual environment
is easy deployment and update of services.

The cloud service is the manager of each edge device. It
provides an authentication service for the service developer,
the device owner, and the cloud administrator. It also provides
a digital certificate to each edge device to ensure its legitimacy.
Since service developer can upload their service containers to
the cloud, the edge device can easily download the containers
from the cloud and process them on its edge device. Therefore,



Fig. 1. System model of distributed processing framework

the cloud service does not collect and process data from edge
devices like conventional systems. As a result, each edge
device can perform distributed processing even if it may be
offline.

A. User types

• Service Developer
The service developers are responsible for creating the
service container. Since the proposed framework provides
a container execution environment to realize their service,
they can develop their service as a container. Additionally,
the framework also provides neighbor device information
to them. Therefore, their service container can perform
distributed processing by exchanging information among
neighbor devices. Some service containers may access
sensors on the devices. Typically, each sensor is available
for exclusive use. Therefore, the framework accesses the
sensors exclusively and provides sensor information to
multiple containers. Since the container services require
abstracted sensor information such as temperature, hu-
midity, illuminance, etc., the framework converts ab-
stracted values from actual sensor values. As a result,
the service developers can create their own distributed
service among devices without considering the details
of devices and sensor specifications. Additionally, they
can distribute their container service to many devices by
uploading to the cloud service because each device can
obtain the container image from the cloud service.

• Cloud Administrator
The cloud administrators are the manager of the whole
system. They register and manage the authentication
information for each user type: service developers and
device owners. Therefore, the cloud service authenticates
whole users to prevent unauthorized users from accessing
the system. Additionally, they check service developers’

uploaded service containers to certify them without ma-
licious service. As a result, they distribute the certified
service container to devices according to the request of
the service.

• Device Owner
The device owners are owners of edge devices. Typically,
they buy edge devices and install them into their facilities
and access the cloud through the edge devices to join
the proposed system. The devices assume that supported
sensors or camera devices are available. Additionally,
they can select a container service from the service
container lists on the cloud. As a result, they can provide
dedicated service to users in the vicinity of the device
even if they cannot develop a service.

B. Cloud service
The cloud service has some sub-services for the user,

container, and device management.
• User management

The user management sub-service handles actual user
data to manage their profile and authentication. Since
service developers manage their container service on the
cloud, they also control the administrative privileges of
each container service. Device owners also register their
edge devices to the cloud. Therefore, the administrative
privileges of each device also follow the user management
information.

• Container management
Each service container has its profile for controlling
parameters and specifications. For example, some service
container requires some sensor values. Therefore, the
container management sub-service should manage the re-
quired sensor lists for each service container. As a result,
owner users can select an available service container for
their edge device by checking the list.



• Device management
The device management sub-service manages the profile
of each edge device. Since device owners select a con-
tainer service from the available service list, it manages
the container service list for each edge device. Each edge
device downloads the selected container image according
to the container service list and starts the container
service. In addition, they can re-download the container
image when developer users update the container image.

C. Edge Framework

The edge framework consists of two types of containers:
additional service containers and infrastructure containers.
Additional service containers are service containers developed
by service developers. The edge device downloads them from
the cloud service. Since service developers can update the
service container image, the edge device also updates the
container as necessary. Device owners can reselect the service
container to stop. In this case, it deletes the container image
on the edge device.

Infrastructure containers provide the proposed framework
functions. The functions consist of five services: terminal,
database, ad-hoc, sensing, and management sub-services. Each
sub-service performs as an independent container. Therefore,
the proposed framework can update each sub-service indepen-
dently.

The terminal sub-service provides an access interface to
users’ equipment such as smartphones, pads, etc. The database
sub-service provides a database function for users and service
containers. Therefore, users can select a service from the
available service list on the edge device, and service containers
can obtain framework information. The ad-hoc sub-service
provides a neighbor discovery function for neighbor edge
devices. It also confirms its legitimacy with neighbor edge
devices using mutual authentication of digital certificates.
Therefore, service containers can use reliable communica-
tion among neighbor devices. The sensing container provides
abstracted sensor information. Typically, an application can
access actual sensors exclusively. Therefore, multiple appli-
cations cannot access the sensors simultaneously. The sub-
service access whole sensors instead of all service containers
and converts the actual sensor values to abstracted values
such as temperature. As a result, service developers can
design their service to access sensor information by abstracted
names. The management sub-service handles the computation
resource of the edge device. It measures system resource
conditions and controls each service container according to
user and neighbor containers’ requests. Since the infrastructure
containers provide the core service of the proposed framework,
device owners cannot delete these containers. Details of the
containers are shown below.

• Database Container
The database container is one of the infrastructure con-
tainers for storing requested services and surrounding
connection information. It manages the three types of
tables: device information, neighbor device information,

TABLE I
DATABASE TABLE CONFIGURATION

Device Information TABLE
Service Name Name of services that can be provided
Container IP Container IP of the service container
Service Type Conditions of Service Operation

Neighbor Device Information TABLE
Service Name Neighbor Service Name
Device IP The IP of the neighbor device
Container Port Neighbor Service Container Port

Request Buffer TABLE
Request ID Priority of services
Request Service Name of requested service
Requester Type Identification of the requesting device
Requester IP The IP of the requested device

Fig. 2. Mutual recognition process among edge devices

and request buffer shown in Table I. The device infor-
mation table stores the list of available service containers
on the device. Since each service works as a container,
they have their IP address to access them. The neigh-
bor device information table stores the list of neighbor
edge devices recognized by the ad-hoc sub-service. Each
service container can access its container on neighbor
devices based on the information to perform distributed
processing. The request buffer table handles the service
providing information to users and service requesting
information from neighbor service containers. According
to the table information, the framework can manage the
service container.

• Terminal Communication Container
The terminal communication container is an interface
for users around the edge device. Since the edge device
provides Wi-Fi access points for neighbor terminals, users
can access the service interface provided by the terminal
communication container. Users can obtain the available
service lists on the device and request a service. The
terminal communication container stores the requested
information in the table on the database container.

• Ad-hoc Container
The ad-hoc container guarantees reliable communication
to neighbor devices for the service. Since the edge device
has a unique Wi-Fi interface for ad-hoc mode commu-
nication among neighbor devices, the ad-hoc container



can scan the neighbor devices. It also exchanges digital
certificates to realize secure, reliable communication by
Secure Sockets Layer (SSL)/Transport Layer Security
(TLS) when it finds a neighbor device.
Figure 2 shows the packet sequence to establish reliable
communication among neighbor devices. The ad-hoc
container periodically transmits a hello message to the
broadcast address. The neighbor device responds with
an acknowledgment message when it receives the hello
message. Then, it starts the authentication process for the
correspondent device based on SSL/TLS authentication.
Since each edge device has a digital certificate published
from the cloud service, they can achieve mutual authen-
tication with the correspondent device. It also stores the
information of the certificated devices in the neighbor
device information table.

• Management Container
The management container is the core control function
of the proposed framework. It downloads the service
container image from the cloud when a device owner
starts a newly available service. It also updates the service
container image when a service developer updates the
image.
When the resource shortage occurs due to multiple ser-
vice processing, it determines the processing priority
according to the type of service container. As a result, the
prioritized service container can work first. In addition,
the management container continuously measures the
computation resource on the edge device and releases the
resource of services when the services are not in use.

• Sensing Container
The sensing container access sensors and camera devices
instead of service containers because exclusive access
is only available for real neighbor devices. As a result,
some services can share a sensor or camera device to
obtain neighbor information. In addition, typical service
developers tend to use abstracted information instead of
real sensor values. Therefore, the sensing container can
convert the real sensor values to abstracted ones such as
temperature, humidity, illuminance, air pressure, etc. As a
result, service developers can easily design their service
with the abstracted name information without knowing
the actual specification of neighbor devices.

• Service Container
A service container is a type of additional container
downloaded from a cloud service. It provides specific
services such as human tracking, human detection, envi-
ronment measurements, etc. Since the service container
works independently on the proposed framework, service
developers can concentrate on their service design even if
multiple service containers work on the same edge device.
Additionally, they can use abstracted sensor values and
camera images from the sensing containers. Since the
cloud service distributes the service container image
instead of service developers, it is easy to publish their
service to many edge devices.

TABLE II
EXECUTION ENVIRONMENT

Edge Device Raspberry Pi 4 Model B (Raspbian 10.7)
Camera SANWA Webcam CMS-V59BK
User Terminal iPod touch (iOS version 12.5.1)
External Wifi Module TP-LINK T4U archer

III. IMPLEMENTATION

We have implemented a prototype system of the proposed
service framework. The prototype system supports a ser-
vice container that provides a person detection service as
the demonstration. The prototype system uses two devices
equipped with cameras and a user terminal. The prototype
system consists of multiple containers inside the devices,
which communicate with each other. The service container
indicates to the user terminal when it has detected a person.

We used Raspberry Pi 4 as the edge device and iPod touch
as the user terminal. Raspberry Pi 4 equips SANWA Web-
cam CMS-V59BK as the camera device on the edge device.
Docker application works on the edge device as the container
virtualization technology. Since the edge device provides two
types of wireless interfaces for distributed processing and
service delivery, it installs two wireless LAN adapters. One
adapter provides an ad-hoc network connection to the neighbor
device, and the other provides an access point function to user
terminals. Table II shows the implementation environment.

The demonstration service realizes a distributed processing
among two edge devices by the service containers to detect
a person in a camera image. Since the user terminal accesses
Device A, Device A provides the user interface of the demon-
stration service through the access point function. It also works
as the person detection function. Device B works as the only
person detection function and collaborates with Device A to
notify the person detection to the user terminal.

Since the proposed framework requires the infrastructure
containers, both devices preload these containers: manage-
ment, database, ad-hoc, sensing, and terminal communication
containers. Additionally, it also downloads the service con-
tainer from the cloud service.

Both devices start to sense neighbor devices on the ad-hoc
network when they start up. They exchange digital certificates
through SSL/TLS communication when they find each other.
Then, they exchange the information about the service con-
tainers and store it in the database. They also start up the
access point function for neighbor user terminals.

Figure 3 shows the diagram of service operating procedures.
The operating procedures are described below.

1) The user’s terminal connects to the access point of
Device A.

2) The user terminal sends the user’s IP address and service
name as a service request to the terminal communication
container of Device A.

3) The terminal communication container registers the ser-
vice request information to the database container.



Fig. 3. Service operating procedures of the demonstration

4) The database container returns information about neigh-
bor devices and server Uniform Resource Locator (URL)
to the terminal.

5) The terminal communication container sends the server
URL to the user terminal.

6) The terminal communication container sends the neigh-
bor device information and the requested service name
to the ad-hoc container.

7) The ad-hoc container makes a service request to the ad-
hoc container of Device B through the ad-hoc network
based on the neighbor device information. It also sends
the service name and the port number of the service
container of Device A.

8) The ad-hoc container of Device B registers the received
service request information in its database container.

9) The database container returns the service container
information of the requested service to the ad-hoc con-
tainer.

10) The ad-hoc container passes the IP address of Device
A and the port number of the service container to the
service container.

11) The service container on Device B sends the results of
the person detection process to the service container on
Device A.

12) The service container on Device A receives the results of
the service processing from Device B. It merges it with
the results of the person detection service on Device A
and notifies the results through the user interface.

Figure 4 shows the block diagram of the demonstration
service container. The demonstration container consists of two
functions: person detection and user interface.

The person detection function acquires camera images from
the camera sensing container in real-time and performs person

TABLE III
CONTAINER IMAGE STORAGE RESOURCES

Additional Service Containers
Service Container 4,733 MB

Infrastructure Containers
Terminal Container 680 MB
Database Container 1,200 MB
Ad-hoc Container 680 MB
Camera Sensing Container 4,020 MB

detection. It also notifies the detection results to the user
interface function when it detects a person.

The user interface function has a web service for user
terminals. Since the docker configures port forwarding to the
web service, user terminals can access it through the access
point.

IV. PERFORMANCE EVALUATION

We have evaluated the performance of the prototype system.
Figure 5 shows the example of the screen image of the
demonstration service. The web service notifies the detected
person image to users when the person detection function
detects a person. The users can check the result of the person
detection service on Devices A and B with their user terminal.

We have also measured the mutual detection and distributed
processing processes ten times and taken averages of them. In
the mutual detection process, the measurement starts when
Device A broadcasts a hello message to the ad-hoc network.
It ends when Devices A and B send and receive the device
information. The average measured time for the mutual detec-
tion process was 111 ms. Therefore, each edge device can
recognize the other quickly, even if they are moving. The
measurement starts with receiving a service request from a



Fig. 4. Block diagram of the demonstration service

,PDJH�RI��

WKH�GHWHFWHG�SHUVRQ�

�%OXH�IUDPH��

Fig. 5. Demonstration view of the service

user near Device A. It ends when Device B starts processing
to collaborate with Device A. The average measured time for
the device coordination process was 7.36 ms. Additionally,
we have measured the storage usage of each container. Table
III shows the storage resources used by the images of each
container.

V. CONCLUSION

This paper has proposed a new distributed processing frame-
work to realize cooperative service among edge devices. Since
the proposed framework provides reliable device recognition
mechanisms, the service can easily collaborate among neigh-
bor devices. The framework also provides the service’s distri-
bution function to edge devices from the cloud. As a result,
service developers can distribute their service to many devices
efficiently and realize cooperative service on edge devices.
The prototype implementation showed the demonstration of
the person detection service. The experimental evalufations

showed that the proposed framework works adequately on the
Raspberry Pi 4, a well-known embedded Linux board.

ACKNOWLEDGMENT

This work is supported in part by the Collaborative Research
Project with Ultimatrust Co., Ltd., Grant-in-Aid for Scientific
Research (C)(21K11877), the Japan Society for the Promotion
of Science (JSPS), and the Collaborative Research Project of
the Research Institute of Electrical Communication, Tohoku
University.

REFERENCES

[1] E. Bertino, K.-K. R. Choo, D. Georgakopolous, and S. Nepal, “Internet
of Things (IoT): Smart and Secure Service Delivery,” ACM Trans.
Internet Technology, vol. 16, no. 4, pp. 1–7, 2016.

[2] A. Harit, A. Ezzati, and R. Elharti, “Internet of things security:
challenges and perspectives,” The Second International Conference on
Internet of things, Data and Cloud Computing, pp. 1–8, 2017.

[3] Y. Fathy, P. Barnaghi, and R. Tafazolli, “Large-Scale Indexing, Discov-
ery, and Ranking for the Internet of Things (IoT),” ACM Comput. Surv,
vol. 51, no. 2, pp. 1–53, 2018.

[4] S. Myneni, G. Agrawal, Y. Deng, A. Chowdhary, N. Vadnere, and D.
Huang, “SCVS: On AI and Edge Clouds Enabled Privacy-preserved
Smart-city Video Surveillance Services,” ACM Trans. Internet Things,
vol. 3, no. 4, pp. 1–26, Sep. 2022.

[5] M. Bhatia, S. Kaur, and S. K. Sood, “IoT-Inspired Smart Toilet System
for Home-Based Urine Infection Prediction,” ACM Trans. Comput.
Healthcare, vol. 1, no. 3, pp. 1-–25, may 2020.

[6] F. Liu, Y. Guo, Z. Cai, N. Xiao, and Z. Zhao, “Edge-enabled Disaster
Rescue: A Case Study of Searching for Missing People,” ACM Trans.
Intell. Syst. Technol, vol. 10, no. 6, pp. 1–21, 2019.

[7] M. Abdallah, C. Griwodz, K. T. Chen, G. Simon, P. C. Wang, and C.
H. Hsu, “Delay-Sensitive Video Computing in the Cloud: A Survey,”
ACM Trans. Multimedia Comput. Commun. Appl, vol. 14, no. 3, pp.
1–29, 2018.

[8] B. Zhenbo, Z. Shiyou, P. Hongjun, W. Yuanhong, and Y. Hua, “A Survey
of Preprocessing Methods for Marine Ship Target Detection Based on
Video Surveillance ,” 2021 7th International Conference on Computing
and Artificial Intelligence (ICCAI 2021), pp. 1-–7, 2021.

[9] A. Giri, S. Dutta, S. Neogy, K. Dahal, and Z. Pervez, “Internet of things
(IoT): A survey on architecture, enabling technologies, applications and
challenges,” The 1st International Conference on Internet of Things and
Machine Learning, Association for Computing Machinery, pp. 1–12,
2017.

[10] A. Nakamura, T. Yamazato, and K. Naito, “Proposal of flexible ser-
vice deployment environment for the edge processing system,” IEICE
Communications Express, vol. 11-B, no. 8, pp. 503–508, 2022.


