
Takafumi Sakai
Aichi Institute of Technology

Toyota, Aichi 470-0392, Japan
fumi@pluslab.org

Kenshin Hata
Aichi Institute of Technology

Toyota, Aichi 470-0392, Japan
kenshin@pluslab.org

Kensuke Suzuki
Aichi Institute of Technology

Toyota, Aichi 470-0392, Japan
kens11@pluslab.org

Katsuhiro Naito
Aichi Institute of Technology

Toyota, Aichi 470-0392, Japan
naito@pluslab.org

Abstract—We are developing an IoT platform called InfoFlow.
InfoFlow allows users to run IoT services in their IoT devices
without the knowledge of IoT and to receive, process, and publish
real-time data from devices owned by third parties. However,
since IoT devices are machines, there is a possibility that an
anomaly may occur and the real-time data may fail to be
published. As a solution to this problem, there is a concept of
network monitoring, which checks for anomalies in the state
of devices and surrounding networks. The primary purpose of
conventional network monitoring systems is to monitor devices
within the scope of individuals or devices within an organization
and to notify users when an abnormality occurs. While it is
possible to check the status of devices and applications, it isn’t
easy to implement functions to monitor the status of services
running within applications and display the status to third-party
devices.

This paper proposes a device state management system in
InfoFlow. The device state management system will manage
user-owned devices and send notifications to users and devices
according to the status of the devices they communicate with.
The evaluation result shows that the proposed system can send
the status of third-party devices without additional hardware and
that the time to send the notification is at the tolerance level.

Index Terms—information flow, IoT, data stream, real-time
processing, network monitoring

I. INTRODUCTION

IoT is currently used in a variety of fields and is expected
to enrich our lives by increasing the number of IoT devices
[1], [2]. On the other hand, frequent communication between
IoT devices and the cloud has increased the load on the cloud,
resulting in cloud failures and communication delays [3], [4].
One solution to this problem has been proposed by information
flow [5]. Information flow is a concept where information is
not stored in a single location. Data will be processed as a
stream and, in advance, utilized in various locations. However,
its effectiveness has not been verified in the field of IoT.

The authors have been developing an IoT platform based on
the idea of information flow called InfoFlow [6]. In InfoFlow,

users can create IoT services without the knowledge of IoT.
IoT services can be deployed to users’ devices and may affect
the real world using real-time data from the device sensor or
third-party devices. The acquired real-time data can also be
published for other devices to use. We expect the published
data to create new values when integrating with other real-time
data.

When using InfoFlow to publish real-time data in a device,
the device may not be able to publish the data correctly for
reasons such as network errors and device failures [7]. In
this case, there is a possibility that the services of the device
receiving the target real-time data and the device receiving the
processed data will be affected.

There is a concept of network monitoring, which checks that
the server and its surrounding network are working properly.
In network monitoring, it is possible to monitor hardware
aspects such as whether the server itself is working properly.
In advance, software aspects such as whether applications are
down can also be checked [8].

Network monitoring can be performed by using dedicated
software or Open Source Software such as Datadog and Zab-
bix [9], [10]. In recent years, there are also software packages
that have the function of network monitoring in the execution
software itself, for example, the LivenessProbe function in
Kubernetes [11]. Network monitoring software mainly consists
of a management server and an agent that monitors each server,
and the agent is often a dedicated hardware outside the server.
The agents monitor the status of the servers and applications
by sending pings to the servers and monitoring the application
ports, and in case of an abnormality, they send information to
the monitoring software, which displays the abnormality on
the browser for administrators to check.

Existing technologies are designed to detect only errors
in applications and servers, and their primary purpose is to
display such information to users. In InfoFlow, it is necessary

IoT Device State Management System
to Inform Defect of Third Party Devices

Fig. 1. Overview of InfoFlow.

to determine the state of the device, applications, and services
inside the application. It is necessary to have a mechanism
to inform the information to other devices in case of an error
and recovery. It isn’t easy to implement monitoring of services
in applications and transmission of such information to other
devices.

Therefore, this paper proposes a device state management
system for InfoFlow. The proposed system informs the device
receiving the data from the defective device in the event of
device malfunction. The prototype implementation shows that
the proposed system can send notifications, and the time taken
to send the notification does not pose a problem even when
the number of connected devices increases.

II. PROPOSED SYSTEM

A. Info Flow

Figure 1 shows the overview of InfoFlow and the proposed
system. The purpose of InfoFlow is to verify the effectiveness
of the information flow and to enable users without IoT
knowledge to create IoT services across IoT devices without
being aware of the communication and roles of the devices.
Using InfoFlow, users can create IoT services that utilize real-
time data from third-party devices. We expect that new value
will be created by communicating with third-party devices.
To use InfoFlow, users first prepare an IoT device, launch
the InfoFlow program, and register the device. Then, the user
creates an IoT service on the browser and deploys it to the
registered device. The service is created from a recipe, which
is an object that serves as a design document of the service.

InfoFlow consists of two components: InfoFlowCloud and
InfoFlowNode. InfoFlowNode is a component that utilizes
real-time data. It can receive and publish real-time data from

or to other devices depending on the recipe. This paper defines
the device that publishes information in a service as a publisher
node and the device that receives real-time data as a subscriber
node. The publisher node and subscriber node depend on
services. Furthermore, InfoFlowNode consists of the following
two components.

• NodeConnectionClient
Constantly connects to InfoFlowCloud to receive infor-
mation necessary to build services and passes to the
NodeRecipeRuntime.

• NodeRecipeRuntime
Execution environment of the IoT service created by
users.

InfoFlowCloud is a component for managing InfoFlow and
services. InfoFlowCloud consists of the following five com-
ponents.

• CloudWebUI
Provides UI which can be operated from a browser to
users.

• CloudAPI
Provides API for CloudWebUI to retrieve data necessary
for displaying pages.

• CloudDB
Database for CloudAPI and CloudConnectionManager to
persist data.

• CloudConnectionManager
Provides constant connection with InfoFlowNode and
sends information necessary for building IoT services to
the appropriate devices.

• CloudRelayServer
Used by InfoFlowNode to send and receive real-time
data in the publish/subscribe pattern. InfoFlowNodes can
publish or subscribe to data through topics.

B. Concept of The Proposed System

By using InfoFlow, it is possible to utilize real-time data
from other devices, including third-party devices. On the
other hand, a device may fail to send or receive data due to
communication failures or other reasons. In this case, there is
a possibility that one device’s failure may cause secondary or
tertiary problems for multiple related devices, such as devices
subscribing to the real-time data of the device that failed in
communication or devices receiving the processed data. To
prevent such a situation, it is necessary to have a mechanism
that enables the service to confirm that the device receiving
the data is working properly, and to change the processing
contents of the service if it is not working properly.

In this paper, we propose a state management system for
IoT devices. The proposed system analyzes the real-time data
flow of the service. It notifies the device of receiving the data
when there is an anomaly in the device publishing the data. By
using the notifications, the service can seamlessly change its

Fig. 2. Overview of the Proposed System.

TABLE I
DEVICE NOTIFICATION STATUS

DEAD Publish device dead
RESTARTED Publish device restored
UNKNOWN Any other status occurred

processing, and the service can be executed. The proposed
system enables us to check the status of applications and
devices, which has been possible with conventional network
monitoring technologies, and also to check the status of
services, which has been challenging to check.

The proposed system consists of a device status notification
function and a device management function. Figure 2 shows
a schematic diagram of this research. In the proposed system,
InfoFlowCloud detects device anomalies, analyzes the data
flow, and sends notifications to the devices receiving data from
the anomalous device. The device receiving the notification
can perform error handling by processing the information in
the notification, such as switching the process. In addition,
the browser user can know the device’s abnormality. Although
the proposed system also restarts applications when an error
occurs, users still need to touch the device directly in case of
hardware failures.

C. Device Status Notification Function

The device status notification function is a function to
send a notification to InfoFlowNodes based on the status of
the publisher node used in the IoT service. The proposed
system analyzes the recipe and stores the publisher node used
in the service to CloudDB during the service deployment
flow. Notifications will be sent depending on the state of the
publisher node, regardless of the owner of the publisher node
and the subscriber node. To send a notification to devices, the

proposed system must know which device gets real-time data
from which device.

Table I shows the list of statuses of the notification the
proposed system can send. These systems are common and un-
affected by services running on the device. DEAD will be sent
when the publisher node disconnects from InfoFlowCloud,
and RESTARTED will be sent when InfoFlowCloud detects
the connection. UNKNOWN is a status code that represents
another status of the device. In addition to the status code,
the date and time the error occurred and the device’s id is
sent. Notifications will be sent to the NodeConnectionClient
through the streaming between NodeConnectionClient and
the CloudConnectionManager without additional hardware.
NodeConnectionClient will transfer the notification data to
JSON format and send it to NodeRecipeRuntime. Notifications
can be used in NodeRecipeRuntime. When a notification is
received, it can be used in various ways, depending on the
user’s perspective, such as publishing data to the device’s
subscribe node that the service is running in an incomplete
state, performing alternative processing, or receiving data from
a different device.

Fig. 3 shows the deployment flow using the proposed
system. CloudAPI analyzes the recipe in the proposed system
and determines the publisher node. Storing the information
from the publisher node allows the proposed system to send
notifications. In advance, the proposed system checks the
device connection and stores the service information. The
information can be seen on the device management dashboard.
Since the recipe is in JSON format with objects in an array, the
system can detect the publish nodes by searching for specific
key-value pairs.

Fig. 4 shows the sequence of how the proposed system sends
a notification to devices. There are two main reasons notices
are sent. When the publisher node starts or the publisher node
disconnected from the InfoFlowCloud caused by the device’s
defect. The notification process when the publish node starts
works as follows.

1) The publisher node starts and checks if it can connect to
InfoFlowCloud. If the connection is confirmed, it sends a
server-side streaming request to CloudConnectionMan-
ager in InfoFlowCloud. The publisher node sends the
device ID as information when sending the request.

2) When the CloudConnectionManager accepts the server-
side streaming request, it will first update the device
status stored in the CloudDB.

3) After updating the device information, the server-side
streaming between the publisher node and the Cloud-
ConnectionManager will start.

4) CloudConnectionManager searches for the subscriber
node of the connected publisher node. If there is a
connected subscriber node, it will send a notification
with the status RESTARTED.

Fig. 3. InfoFlow Service Deploy flow.

The notification process when the publish node is discon-
nected from InfoFlowCloud works as follows.

1) When the CloudConnectionManager and publisher node
are connected, it will keep the connection by sending the
Keep-Alive signal. If the publisher node gracefully ends
the program, the node sends the stream end request. Oth-
erwise, CloudConnectionManager will determine that
the node is not connected to InfoFlowCloud when the
Keep-Alive request fails. Regardless of the termination
method, the process is the same after this.

2) CloudConnectionManager deletes the information from
the device stored when streaming.

3) Updates the device status stored in the CloudDB as
disconnected.

4) Query the subscribing node of the disconnected device.
5) Send a notification with the status DEAD.

D. Device Management Function

In the conventional InfoFlow, the device register function
was implemented. However, users must identify their devices
using the device ID determined by the system, which cannot be
changed. To check if the device was running correctly, users
had to check the device directly. As a solution, the device
management function allows users to manage their devices
easily. This feature can be divided into two main functions.

First, we provide the device management dashboard to
simplify device management by UI. Through the dashboard,
the user can see the status of their owned devices and whether
it is connected to the cloud or not. In the dashboard, user can
identify their devices by device names. The device name can
be given during device registration and modified through the
CloudWebUI or in the device settings. Moreover, information
on the running service can be confirmed.

Second, to reduce the frequency with which users directly
touch the device, the proposed system provides the function
to restart the program in a run-time error automatically. Since
the program restarts on run time errors, the frequency of direct
contact with a device can decrease. InfoFlowNode sends Keep-
Alive signals between the device and the cloud to periodically
check the device status to maintain the connection between
the device and the cloud.

III. IMPLEMENTATION

We implemented the device management function and
device status notification function. Since CloudWebUI and
CloudAPI are implemented using TypeScript, and CloudCon-
nectionManager and NodeConnectionClient are implemented
using Golang, the proposed system is also implemented using
TypeScript and Golang. Since MySQL is used in CloudDB
for data persistence, tables, and relations were added to
the existing implementation. The execution environment of

Fig. 4. InfoFlow Notification flow.

InfoFlowNode is built using Docker to reduce the differences
in the environment of IoT devices. The implementation of
NodeConnectionClient is modified so that the program ter-
minates abnormally when an error occurs. When the program
terminates abnormally, the container, which is the execution
environment, also terminates. Since Docker is configured to
perform the container health checks, the container is restarted
even if terminated.

The InfoFlowNode notification mechanism is implemented
by extending the existing service deployment function. The
current system is implemented using server-side streaming
of gRPC. In extending this function, both recipes and noti-
fications are received in the same RPC, and the processing
contents are determined based on the type of data sent.
NodeRecipeRuntime in InfoFlowNode is based on Node-RED,
enabling applications to be created in low code. We imple-
mented a custom node for Node-RED to receive notifications
from InfoFlowCloud and utilize them in NodeRecipeRuntime.
The custom node is a built-in feature of Node-RED and does
not require dedicated hardware. The custom node releases an
endpoint in NodeRecipeRuntime accessible only from within
the device. The custom node does not accept any information
and has only one output to send the received notifications. The
user can use the notification information by constructing a flow
from a single work. Since this endpoint is for receiving errors,
it is implemented as a POST method endpoint named /error.
When NodeConnectionClient gets a notification, it converts it
into JSON format and sends the information to this endpoint,
which can be used in NodeRecipeRuntime.

TABLE II
SPECIFICATIONS OF THE MEASURING DEVICES

PC
OS Ubuntu 20.04.1 LTS
CPU Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz
Memory 64GB RAM

Raspberry Pi 4 Model B
OS Raspbian GNU/Linux 11.0 (Bullseye)
CPU Quad Core Cortex-A72 (ARM v8) 64-bit
Memory 8GB RAM

TABLE III
CPU USAGE WHEN RECEIVING NOTIFICATION

Number of notifications CPU usage
0 (no notification) 5.2%
1 5.7%
3 5.9%
5 6.8%

IV. EVALUATION

Fig. 5 shows the evaluation environment for this evaluation.
We prepared InfoFlowCloud, Publisher Node, and Subscriber
Nodes for this verification. Table. II shows the devices’
specifications used in this verification. Since Publisher Nodes
and Subscriber Nodes are reproduced in a virtual environment,
the numbers can be dynamically changed.

To demonstrate the appropriateness of the proposed system,
we perform the operation test of the proposed system. We set
up six devices, each owned by a different user, and each runs
a different service. As a test environment, we prepared two
Publisher Nodes and three Subscriber Nodes, each receiving
data from one Publisher Node. We repeatedly started and
stopped the program of one Publisher Node and confirmed
that notifications were sent to the Subscriber Nodes that
received data from the relevant Publisher Node. As a result
of the verification, we demonstrated that users could receive
notifications from third-party Publisher Nodes without addi-
tional hardware. Furthermore, we confirmed that the device
management dashboard reflects the state of the connection
between the device and the cloud.

We measured the load on the nodes when receiving notifi-
cations. We used Raspberry Pi 4 for this evaluation. Fig. III
shows the results of the verification. The values in the table
show the CPU usage of the task running by the InfoFlowNode
and the Node-RED, and they are an average of 10 times for
each condition. Since it is difficult to expect more than one
notification at a time, we estimated many notifications this
time. We verified up to five notifications at the same time. As
a result of the verification, we confirmed that the notifications
on the device side are not too large and do not significantly
affect the service operation of the device.

We also measured the time the cloud takes to send a
notification to the Subscriber Node after it detects a device
failure. We categorized the time until InfoFlowCloud detects

Fig. 5. Evaluation Environment.

Fig. 6. Time taken to send notifications.

a device failure and the time until InfoFlowCloud processes the
detected information and sends a notification to the Subscriber
Node. Fig. 6 shows the average of 30 measurements taken
under each condition. Since we expect that the number of real-
time data used by one service is about five for many devices,
each InfoFlowNode is configured to publish and subscribe
to five other devices. As a result, we found that sending
a notification for each device disconnection detection took
almost twice as long. We believe this is because complex
queries are made to CloudDB when sending notifications.
We also found that the connection detection time and the
notification time do not increase significantly even when the
number of devices increases. From these results, we confirmed
that the proposed system is acceptable in terms of speed,
even when the number of devices increases, and there is no
significant increase in the time required for notification when
a problem occurs in the publisher node of the service.

V. CONCLUSION

In this paper, we have proposed a device management func-
tion and a device status notification function that can be used in
InfoFlow. In the proposed system, we added a function to send
a notification when a device used by an IoT service deployed

on an InfoFlowNode disconnects from the InfoFlowCloud.
The InfoFlowNode can change the processing of the service
based on the received notifications and can also indicate to
other devices that the service is running inadequately. We also
added a function to restart the device management dashboard
automatically and InfoFlowNode when they are terminated
for some reason so that users can easily manage many IoT
devices. The verification results show that the proposed system
can tolerate the time required for InfoFlowNode to detect
disconnection and send a notification even when the number
of connected devices in the InfoFlowCloud increases.

ACKNOWLEDGMENT

This work is supported in part by Grant-in-Aid for Scientific
Research (C)(21K11877), Japan Society for the Promotion of
Science (JSPS).

REFERENCES

[1] M. Bansal, I. Chana, and S. Clarke, “A Survey on IoT Big Data: Current
Status, 13 V’s Challenges, and Future Directions,” ACM Computing
Surveys, vol. 53, no. 6, pp. 1–59, Nov. 2021.

[2] M. Aledhari, R. Razzak, B. Qolomany, A. Al-Fuqaha, and F. Saeed,
“Biomedical IoT: Enabling Technologies, Architectural Elements, Chal-
lenges, and Future Directions,” IEEE Access, vol. 10, pp. 31 306–31 339,
2022.

[3] M. M. Sadeeq, N. M. Abdulkareem, S. R. M. Zeebaree, D. M. Ahmed,
A. S. Sami, and R. R. Zebari, “IoT and Cloud Computing Issues,
Challenges and Opportunities: A Review,” Qubahan Academic Journal,
vol. 1, no. 2, pp. 1–7, Mar. 2021.

[4] M. Laroui, B. Nour, H. Moungla, M. A. Cherif, H. Afifi, and M. Guizani,
“Edge and fog computing for IoT: A survey on current research activities
& future directions,” Computer Communications, vol. 180, pp. 210–231,
Dec. 2021.

[5] K. Yasumoto, H. Yamaguchi, and H. Shigeno, “Survey of Real-time
Processing Technologies of IoT Data Streams,” Journal of Information
Processing, vol. 24, no. 2, pp. 195–202, 2016.

[6] T. Sakai, K. Hata, T. Wada, and K. Naito, “IoT platform using in-
formation flow to reduce load on cloud,” in 2022 IEEE 46th Annual
Computers, Software, and Applications Conference (COMPSAC), pp.
1211–1216, Jun. 2022.

[7] M. Aboubakar, M. Kellil, and P. Roux, “A review of IoT network
management: Current status and perspectives,” Journal of King Saud
University - Computer and Information Sciences, vol. 34, no. 7, pp.
4163–4176, Jul. 2022.

[8] X. Hu, Y. Xiang, Y. Li, B. Qiu, K. Wang, and J. Li, “Trident: Efficient
and practical software network monitoring,” Tsinghua Science and
Technology, vol. 26, no. 4, pp. 452–463, Aug. 2021.

[9] Datadog, “Cloud Monitoring as a Service — Datadog,”
https://docs.datadoghq.com, February 2023.

[10] Zabbix, “Zabbix :: The enterprise-class open source network monitoring
solution,” https://www.zabbix.com, February 2023.

[11] D. McIntosh, “The Utility of Service Oriented Architectures (SOA) and
Microservice Architectures in Naval Systems.”

