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Abstract—Predicting trajectories of neighboring vehicles accu-
rately is essential for safe driving in Advanced Driving Assistance
Systems (ADAS). Conventional approaches for predicting trajec-
tory rely upon an expensive image sensor (i.e., lidar). However,
high cost but limited sensing range of lidar makes installing a tra-
jectory prediction system on existing vehicles impractical. Using
two functionalities provided by a smartphone, i.e., periodic bea-
coning and GPS positioning could address issues of conventional
approaches. However, modules for wireless communications and
GPS are limited in achieving accurate prediction in their current
form: transmission error and inaccurate GPS data. In this paper,
we propose a novel scheme for predicting neighbors’ trajectories
using periodic beaconing and GPS, and show that our scheme is
feasible to trajectory prediction. To address the limitations of the
wireless and GPS modules, our scheme integrates Long Short-
Term Memory (LSTM) with two strategies: 1) Tailoring Multi-
band Transmission to Prediction (TMTP) and 2) Environment-
Aware Positioning (EAP). To improve prediction accuracy even
with the imperfect input, our scheme employs interactive LSTM
model. To our knowledge, this is the first to enable predicting the
neighbors’ trajectories using periodic beaconing with inaccurate
GPS data. Experimental results using real traces demonstrate
that our scheme is accurate in predicting neighbors’ trajectories.

Index Terms—trajectory prediction, periodic beaconing, inac-
curate GPS data, interactive LSTM, surrounding vehicle

I. INTRODUCTION

Conventional approaches for predicting neighbors’ trajec-
tories rely on Deep Neural Network (DNN) that uses data
from an expensive image sensor (i.e., lidar) [1], [2]. Specif-
ically, each vehicle periodically obtains kinematic data of
its neighbors (e.g., position, velocity, and acceleration) using
its own lidar, and then feeds them to a DNN to predict
future trajectories of the neighbors. However, the use of lidar
has several limitations: 1) high cost1 and 2) limited sensing
range due to obstacles or adverse weather. These limitations
motivate finding alternatives to achieve trajectory prediction
that facilitates implementation with low cost.

Using resources available in a smartphone would address the
limitations of conventional approaches because most people
possess a smartphone [4], which has a Global Positioning
System (GPS) module for positioning and a wireless module
for Inter-Vehicle Communication (IVC) such as LTE and Wi-
Fi interfaces. To predict neighbors’ trajectories, two primitives
of a smartphone can be used: 1) positioning via a GPS module
and 2) periodic beaconing via IVC. Specifically, a vehicle
obtains its own kinematic data using a GPS module, and then
periodically exchanges its beacon including the data through
IVC. A receiving vehicle obtains the data of the sending
vehicle. Using a prediction module with a series of kinematic
data, the receiver predicts the trajectories of the sender.

It is non-trivial to predict trajectories of neighbors using the
two primitives because of the limitations of wireless and GPS

1The lidar used in google’s self-driving car costs $ 75,000 [3].

modules. First, a vehicle sometimes fails to receive beacons of
neighbors via IVC. Specifically, a beacon broadcasted through
a Wi-Fi interface suffers from network congestion, leading to
frequent packet collisions; a packet transmission using an LTE
interface is robust to the packet collision, but using an LTE
band is not free. Second, kinematic data from a GPS receiver
might be inaccurate, particularly in an urban canyon. The
incorporation of inaccurate kinematic data into a prediction
algorithm like Long Short-Term Model (LSTM) would likely
reduce prediction accuracy.

In this paper, we propose a novel scheme that enables
accurate trajectory prediction using periodic beaconing with
inaccurate GPS data, and investigate its feasibility to trajectory
prediction. To enable accurate prediction even with the limita-
tions of wireless and GPS modules, our scheme integrates an
LSTM with two strategies. First, we employ Tailoring Multi-
band Transmission to Prediction (TMTP) wherein a vehicle
exploits a Wi-Fi band for broadcasting a beacon and an LTE
band for sharing a neural network and offloading a fraction
of beacon traffic. Second, our scheme employs Environment-
Aware Positioning (EAP) whereby a vehicle dynamically
selects a sensing module depending on its assessment of the
accuracy of the module. To further improve the prediction
accuracy even with the imperfect input, our scheme employs
an interactive LSTM model. The interactive model enables
accurate prediction because vehicles in close proximity move
in a flow, implying that the movement of one vehicle is
associated with that of its neighbor.

We evaluate the proposed scheme using a testbed consisting
of TensorFlow [5] and QUALNET [6] with real vehicle traces
from NGSIM [7]. The experimental results demonstrate that
the proposed scheme is accurate in predicting neighbors’
trajectories and is comparable to the previous schemes that
adopt lidar and do not employ IVC. To our knowledge, this
is the first to enable predicting neighbors’ trajectories using
periodic beaconing with inaccurate GPS data

The contributions of this paper are multi-fold:
• Propose a novel scheme for predicting neighbors’ trajec-

tories via periodic beaconing with inaccurate positioning data.
• Propose an TMTP and an EAP for improving prediction

accuracy even with limitations of wireless and GPS modules.
• Propose a simple interactive LSTM improving prediction

accuracy even with imperfect inputs.
• Explore the feasibility of predicting neighbors’ trajectories

using periodic beaconing with inaccurate positioning data.

II. OVERVIEW OF PROPOSED SCHEME

To predict neighbors’ trajectories accurately, a vehicle ex-
ploits wireless interfaces and a GPS module of a smartphone.
Specifically, each vehicle obtains its own kinematic data using
a GPS module and shares the data with its neighbors via
periodic beaconing. Here, the kinematic data refers to data
representing the movement of a vehicle and two dimensional



Fig. 1. The proposed strategy in using Wi-Fi and LTE interface (Wi-Fi: solid
line, LTE: dotted line)

position, velocity, and acceleration are used in our scheme.
When receiving beacons from neighbors, the vehicle trains its
LSTM model and predicts their trajectories using the model.
However, the innate limitations in wireless communications
(i.e., packet delivery error) and a GPS module (i.e., sensing
error) hinder the accurate prediction with only a smartphone.
These limitations make inputs to an LSTM network imperfect,
causing inaccurate prediction of neighbors’ trajectories.

For predicting neighbors’ trajectories accurately even with
these limitations, we propose a novel scheme integrating an
interactive LSTM with two strategies. Specifically, a vehicle
exploits either a Wi-Fi or LTE interface to improve transmis-
sion reliability and resulting prediction accuracy. Moreover,
a vehicle selects a sensing module to obtain its kinematic
data and opportunistically delivers the data to its neighbors
based on the accuracy of the module. To improve the predic-
tion accuracy even with the stated limitations, we adopt an
interactive LSTM network. We will elaborate on each strategy
in the following paragraphs.

We adopt TMTP for efficient usage of communication
module. A vehicle exploits a Wi-Fi interface to periodically
broadcast its beacon; the vehicle uses an LTE interface to
share its LSTM network with neighbors when receiving a
request from them as depicted in Figure.1. To reduce network
congestion in a Wi-Fi band, a vehicle offloads a fraction of
the beacon traffic from the Wi-Fi band into the LTE band.

Our scheme employs EAP whereby a vehicle obtains its
kinematic data from either a GPS module or Dead Reckoning
(DR) equation with an Inertia Measurement Unit (IMU). By
default, a vehicle gets its kinematic data from a GPS module
and broadcasts a beacon including the data every BI; neighbors
estimate the trajectory of the vehicle from the received beacon.
However, when noticing that the module is likely to be
inaccurate, the vehicle gets kinematic data using DR equation
and IMU, and broadcasts the DR equation; neighbors derive
the trajectory of a sender using the equation.

An interactive LSTM model is adopted to compensate for
imperfect input because in reality the movement of one vehicle
is significantly affected by those of its neighbors. For example,
as shown in Figure 1, S-VEH anticipates that T-VEH will not
change its lane due to surrounding vehicles (T1 and T2) even
if the S-VEH fails to receive kinematic data from T-VEH.

III. DETAILS OF PROPOSED SCHEME

A. Overall Procedure
Figure 2 illustrates the overall procedure of the proposed

scheme. When a vehicle starts to move, the vehicle begins
TMTP for using Wi-Fi and LTE interfaces intelligently and
sets its own sensing mode to a GPS mode and obtains
kinematic data from a GPS module. When noticing that data
from the module is becoming inaccurate, a vehicle (T-VEH in
Figure 2) switches its mode to a DR mode in which the vehicle
obtains the data using a DR equation and IMU. So that the
neighbors (S-VEH and T1 in Figure 2) can notice the mode

Fig. 2. Overall procedure of the proposed scheme

of T-VEH, T-VEH piggybacks its own mode onto its beacon.
To reflect interactions among neighbors, T-VEH divides its
surrounding area into multiple grid cells and generates a
neighbor vector describing the occupancy of each grid cell
(see Figure 5 for neighbor vector). Then, T-VEH piggybacks
the vector onto its beacon. Whenever receiving a beacon from
a T-VEH, S-VEH updates the vector about T-VEH. Using
this vector and a series of kinematic data of T-VEH, S-VEH
predicts the best possible trajectory of T-VEH based on an
interactive LSTM. We will elaborate on TMTP, EAP, and
interactive LSTM in the following three subsections.

B. Tailoring Multi-band Transmission to Prediction (TMTP)
In TMTP, two processes work together in parallel: 1) a

beacon process and 2) an LSTM process. In a beacon process,
a vehicle exploits a Wi-Fi interface for periodic beaconing in
most cases, but sometimes offloads the beacon traffic to an
LTE band. In an LSTM process, a vehicle shares an LSTM
network using an LTE interface

Figure 3 illustrates a flowchart describing the operations
of the two processes in each vehicle. In a beacon process,
a vehicle checks whether to broadcast its beacon. If in pos-
session of a beacon, the vehicle checks whether to offload
its broadcast to an LTE band. To achieve this, the vehicle
chooses its RF interface whenever broadcasting its beacon.
Specifically, the vehicle broadcasts its beacon through a Wi-Fi
interface by default but broadcasts the beacon through an LTE
interface with a probability α (i.e., offloading factor)2 . In an
LSTM process, a vehicle checks whether it has a well-trained
network3 associated with its current driving road4. Unless
having the network, the vehicle piggybacks a request message
onto its beacon via its Wi-Fi interface. When receiving the
request, other vehicles having the well-trained network send
it via an LTE interface5.

C. Environment-Aware Positioning (EAP)
Recall that each vehicle decides its sensing mode between

GPS and DR modes based on the measured accuracy of a
GPS module. In a GPS mode, a vehicle periodically samples
its position from the GPS receiver of a smartphone, and

2We decide α based on the level of congestion in Wi-Fi bands. The
mechanism for selecting α and an optimization algorithm will be our future
work.

3A vehicle recognizes whether it has well-trained network based on the
number of epochs in training the model.

4Our scheme uses multiple classes of LSTM networks and each network
is related to a type of road (e.g., urban intersection, highway, local freeway)

5To reduce the usage of LTE band, a vehicle could download all the LSTM
networks associated with its driving path when the vehicle starts.



(a) Beacon process (b) LSTM process

Fig. 3. Flowchart for describing the operation of TMTP

then derives its kinematic data using the sampled positions.
Then, the vehicle periodically broadcasts a beacon including
the kinematic data and its neighbors obtain the data when
receiving the beacon. In a DR mode, each vehicle obtains its
kinematic data using a DR equation and data measured from
IMU. Our system employs a simple equation [8] as follows6.

⃗p(t) = ⃗p(t0) +

∫ t

t0

⃗v(τ)dτ (1)

where t0 is the initial time of the DR equation; ⃗p(t) and ⃗v(t)
are two-dimensional position and velocity at t, respectively7.
Each vehicle generates its DR equation and shares the equation
with its neighbors. For this, the vehicle piggybacks the equa-
tion onto its beacon. When receiving the beacon, the neighbors
estimates the kinematic data of the vehicle using the equation
in the beacon. Notably, we insert a one-bit flag indicating a
sensing mode into a beacon so that receivers recognize the
sender’s mode.

To assess the accuracy of a GPS module, a vehicle must
derive measurement errors from the module. However, it is
difficult to measure the errors because a vehicle cannot get
the ground-truth of its position. To circumvent this issue, we
exploit a well-known method to estimate the accuracy using
Dilution of Precision (DOP), provided by a GPS satellite
[9]. DOP corresponds to the region where the actual position
would likely be located centered around a position measured
by a GPS module. If DOP is large, the GPS error is likely to be
large and thus we cannot trust the measured data; otherwise,
the error would likely be small. Thus, each vehicle switches its
mode into a DR mode if the DOP is larger than the threshold8;
otherwise, the vehicle remains at GPS mode.

Figure 4(a) illustrates a flowchart describing the operation
of a vehicle measuring its own kinematic data in EAP. A
vehicle periodically compares DOP obtained from its GPS
module with a pre-defined threshold. If DOP is less than
the threshold, the vehicle obtains its kinematic data from
a GPS module and broadcasts a beacon including the data.
Otherwise, the vehicle switches its mode to a DR mode. In a

6The DR equation can be easily replaced with other equations for DR.
7Here, initial position ( ⃗p(t0)) is derived from GPS measurement and

velocity( ⃗v(t)) is obtained from a speedometer in equation 1.
8We should determine this threshold depending on the requirement for

positioning accuracy of an application system. For ITS applications, the typical
value for the threshold is 1.5, which is comparable to 1.5m error [10].

(a) Vehicle measuring kinematic data (b) Neighbors of target vehicle
Fig. 4. Flowcharts for describing (a) operation of EAP at a vehicle measuring
a kinematic data and (b) operation of EAP at neighbors of the vehicle

DR mode, a vehicle periodically obtains kinematic data using
a DR equation and IMU, and then broadcasts its own beacon.
Figure 4(b) illustrates a flowchart describing how neighbors of
the vehicle recognize the kinematic data of the target vehicle.
The neighbors recognize the sensing mode of the target vehicle
when receiving a beacon from it. If the sender of the beacon is
in a GPS mode, the neighbors obtain kinematic data from the
beacon. If the sender is in a DR mode, the neighbors derive
the kinematic data of the sender using its DR equation. When
receiving the DR equation updated by the sender, the neighbors
use the updated equation to obtain the kinematic data.

We should note that a positioning error is large throughout
a DR mode if the error measured from GPS is large at the start
of a DR mode. This is because the error is accumulated with
time in a DR mode. To address this issue, a vehicle establishes
several DR equations using GPS data measured at different
times before a DR mode starts; the vehicle estimates the posi-
tioning error at the start of a DR mode (err(ts)) corresponding
to each equation and selects the equation minimizing err(ts),
which is derived by

err(ts) = errgps(t0) + δ(ts − t0) (2)

where errgps(t0) is GPS measurement error at t0 and δ is an
error in vehicle speedometer.

D. Interactive LSTM
The interactive LSTM model employs the stacked LSTM

architecture, which is a deeper model with multiple hidden
LSTM and neural network layers. The first and third hidden
layers are LSTM layers, each with 256 cells; the last layer
generates outputs using the sigmoid function as an activation
function. Between these layers, we insert dropout layers to
apply the dropout regularization for preventing overfitting [11].

To reduce prediction inaccuracy caused by imperfect input,
our interactive LSTM model associates the movements of one
vehicle with those of its neighbors by utilizing the trajectory
of a target vehicle as well as occupancy information of
surrounding vehicles.

Table I lists the features used for the interactive LSTM
model. Our model uses the information about the interactions
with surrounding vehicles and their kinematic data: i.e., each



TABLE I
FEATURES USED IN THE INTERACTIVE LSTM MODEL

Feature Description
PosX, PosY Position in X and Y axis

Spd Speed of vehicle
VelX, VelY Speed of vehicle in X and Y direction

Acc Acceleration of vehicle
AccX, AccY Acceleration of vehicle in X and Y direction

Neighbor vector (Biti) 8-bit neighbor vector

Fig. 5. Neighbor vector of T-VEH describing occupancy around T-VEH

vehicle trains the LSTM model to predict future trajectories
of the others given the series of their previous position,
velocity, acceleration, and occupancy information. All numeric
features such as position and velocity are normalized. The
occupancy information is represented as a neighbor vector,
which indicates whether any vehicle occupies any of the
eight grid cells surrounding the target vehicle (see Figure
5 for illustration). If any vehicle occupies a grid cell, the
corresponding element of the vector becomes one; otherwise,
zero. By assigning one or zero to each grid cell, each vehicle
constructs an 8-bit vector for the neighbor vector, and each bit
in the vector is used as a feature for the model. Therefore, our
model uses a total of 16 features for training and prediction.

Using the neighbor vector offers several advantages. First,
incorporating the neighbor vector into the model is easier to
implement in a smartphone than relying on other more com-
plex mechanisms [12]–[14] wherein objects exchange hidden
states of their LSTM models with each other. Second, even
if this approach is simple and computationally efficient, the
accuracy of predicting neighbors’ trajectories is comparable
to those of the previous interactive models [12]–[14]. Our
proposal simply relies on the status of the occupancy of each
grid cell being the predominant factor impacting the potential
movements of the target vehicle.

The size of a grid cell decides how far vehicles can
provide interaction information, affecting the performance of
the model. Thus, a vehicle must appropriately decide the size
of the cell depending on its movement. To this end, the size
increases linearly with the speed of T-VEH in our scheme.This
is because the movement of a vehicle far from T-VEH would
affect that of T-VEH if those two vehicles are moving fast. In
contrast, the movement of the T-VEH would be affected by
only nearby vehicles if those vehicles are moving slowly.

IV. EXPERIMENTS

A. Experimental Settings
To assess the proposed scheme, we build a testbed consist-

ing of two components: 1) QUALNET for modeling TMTP
and EAP [6] and 2) TensorFlow for implementing an interac-
tive LSTM [5]. Using this testbed, we evaluate the proposed

TABLE II
DEFAULT PARAMETER SETTINGS

Default parameters Values
Generation interval of beacon 100ms

TX rate of Wi-Fi and LTE 6, 12 Mbps
TX power of Wi-Fi and LTE 15, 23 dBm

RX sensitivity of Wi-Fi and LTE -85, -85 dBm
Channel model Nakagami

Interval for inputs to LSTM 5 sec
Predicting time of LSTM 1 sec

scheme as follows. First, we preprocess a publicly available
vehicle trajectory dataset provided by NGSIM [7] [15] to
make it suitable to QUALNET. Second, we feed the prepro-
cessed data into QUALNET and analyze the received beacons
in QUALNET operation according to the vehicle trajectory.
Based on the analysis, we build the traces of features for
training and testing the interactive LSTM: we use 85% of the
data for training and the rest for testing. Third, we examine the
prediction accuracy of the trained model on the test dataset.

We use the trajectories collected in Lankershim Boulevard
and US101 of Los Angeles by NGSIM [7].We regard the
original trajectories from NGSIM as Ground-Truth (GT) and
generate trajectories measured at vehicles by adding position-
ing errors to the GT trajectories. We model the error using
a normal distribution in a GPS mode [16]. In a DR mode,
we use equation 2 with δ = 0.08m/s [17] by replacing DR
starting time ts with current time t.

We summarize default parameter settings used in our ex-
periment in Table 3. In the MAC layer, each radio interface
adopts different methods for multiple access control. More
specifically, a Wi-Fi interface adopts Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) [18], whereas
an LTE interface employs a scheduled channel access control
and operates in 10 MHz bandwidth [19]. In the PHY layer, we
use the lowest transmission rate for Wi-Fi and LTE interfaces.
As a propagation model, we adopt a Nakagami model, which is
well-known to be suitable to a channel model for VANET [8],
[20]. The threshold of DOP for switching a mode is 1.5, which
is suggested for using ITS [10] We set the number of grid cells
for neighbor vector to be 8. A vehicle decides the size of each
cell according to an equation in [21]. An interactive LSTM
takes 5 second trajectory as an input and predicts the trajectory
of neighbors in one second ahead. We consider two options in
training an LSTM model: a) integration with repetitive training
(‘w/ rep’) and b) integration without repetitive training (‘w/o
rep’). In the repetitive training, we first train the model using
a dataset and then train the model again using data causing
worst 25% errors in the first training results.

We get the following performance metrics in this exper-
iment: 1) average distance error, 2) 25% and 75% quartile
of distance error, and 3) maximum and minimum of distance
error. Here, the distance error refers to the root mean square
error (RMSE) between ground-truth of position and predicted
position. To understand the experimental results clearly, we
derive network-related metrics: 1) IBRT and 2) collision
probability in a Wi-Fi band. Here, the collision probability in a
Wi-Fi band points out the level of congestion in a Wi-Fi band.
All these parameters are derived according to four independent
variables: 1) BI, 2) offloading factor, 3) adoption of EAP, and
4) the number of Wi-Fi devices. The typical settings on the
variables are 100ms, 0.05, and ‘EAP is not adopted’, and ‘no
devices’. To isolate the effect of each variable, we change the
variable while fixing others to the typical settings.



 0

 10

 20

 30

 40

 50

 60

100ms 200ms 500ms 1000ms

D
is

ta
n

ce
 e

rr
o

r 
(m

)

Beacon Interval

w/o rep
w/ rep

(a) Distance error

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

100ms 200ms 500ms 1000ms
 0

 0.2

 0.4

 0.6

 0.8

 1

IB
R

T
 (

m
s)

C
o

ll
is

io
n

 P
ro

b
ab

il
it

y

Beacon Interval

IBRT
Collision Prob.

(b) IBRT and collision probability

Fig. 6. Distance error, IBRT, and collision probability according to BI in
Lankershim Blvd.: (a) distance error and (b) IBRT and collision probability

B. In-depth Study of the Proposed Scheme
1) Impact of BI: Figure 6(a) and Figure 7(a) presents

Whisker plots showing the minimum, first quartile (Q1),
median, third quartile (Q3), and maximum of the distance
errors of the proposed scheme according to BI in Lankershim
Boulevard and US101, respectively. The figures show that the
distance error becomes larger as BI increases. It is because
IBRT rises with BI even with fewer beacon collisions as shown
in the Figures 6(b) and 7(b); that is, a vehicle less often obtains
kinematic data of its neighbors.

Note that BI of 100ms yields the average prediction error of
less than 1.5m, which satisfies the typical requirement for var-
ious safety services [17]. It shows that a careful configuration
of the parameters such as BI enables a neighbors’ trajectory
predictor suitable for ADAS even using a smartphone. Also,
the distance error of the 75% quartile is relatively smaller than
the maximum (see ‘w/o rep’ option in Figures 6(a) and 7(a)).
It implies that our proposed scheme predicts the neighbor’s
trajectory very accurately in most cases.

From the analysis of the trajectories of ten worst prediction
errors in these experiments, we found that those cases fall
into three categories: 1) turning left/right at intersections, 2)
changing lanes, and 3) stopping suddenly. The fraction of
trajectories corresponding to these three cases is very small
(less than 1% in Lankershim trace), implying that the LSTM
model is not trained well to these trajectories. To reduce the
maximum error, we train an LSTM model and then re-train
the model using data in which instances with the worst 25%
errors, which likely fall into the above three cases, are repeated
once. This training method decreases the maximum error by
up to 39% in both traces (see ‘w/ rep’ in figures 6(a) and 7(a)).

2) Impact of offloading factor: A vehicle mitigates network
congestion in a Wi-Fi band by offloading a fraction of its
beacon traffic to an LTE band. It in turn improves prediction
accuracy by decreasing beacon losses. To study the impact of
offloading factor, we explore a scenario in which background
Wi-Fi traffic coexists with beacon traffic in a Wi-Fi band
(e.g., an urban hot spot). In this scenario, 80 users are
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Fig. 7. Distance error, IBRT, and collision probability according to BI in
US101: (a) distance error and (b) IBRT and collision probability
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Fig. 8. Distance error, IBRT, and collision probability according to offloading
factor in Lankershim Blvd: (a) distance error and (b) IBRT and collision
probability

distributed over the shoulder of the road, generating 200kbps
CBR traffic. We examine only Lankershim dataset because Wi-
Fi background traffic is rare in highway areas such as US101.
Also, we investigate only ‘w/o rep’ option to focus on the
impact of offloading factor.

Figure 8(a) demonstrates that the distance error decreases
with an offloading factor. This is because offloading beacon
traffic to an LTE band reduces network congestion in Wi-Fi
traffic, which leads to the decrease in IBRT. We confirm this
by observing that IBRT and the collision probability decreases
with the offloading factor in Figure 8(b)



 0

 5

 10

 15

 20

100ms 200ms 500ms 1000ms

D
is

ta
n
c
e
 e

rr
o
r 

(m
)

Beacon Interval

w/o EAP
w/ EAP

(a) Lankershim

 0

 5

 10

 15

 20

100ms 200ms 500ms 1000ms

D
is

ta
n
c
e
 e

rr
o
r 

(m
)

Beacon Interval

w/o EAP
w/ EAP

(b) US101

Fig. 9. Comparison between distance error with EAP and that without EAP
as a function of BI in Lankershim Blvd. Here, the box shows 25% and 75%
quartiles of the error; black line in the box represents an average error.: (a)
Lankershim and (b) US101

3) Impact of EAP: When adopting EAP, a vehicle dynam-
ically changes its sensing mode based on the accuracy of a
GPS module. We investigate the impact of EAP in a scenario
where a GPS error is relatively large (e.g., urban canyon,
invisible satellite due to a large mountain in a highway area).
In this scenario, the change of mode is likely to occur. We
construct this scenario by adding GPS errors with a large
standard deviation to the NGSIM dataset. Similar to Figure
8, we examine only ‘w/o rep’ option to focus on the effect of
adopting EAP under various BIs. As depicted in Figure 9(a)
and 9(b), adopting EAP reduces the distance error by up to
70% and 40% in Lankershim Blvd and US101, respectively.
It demonstrates that our scheme improves prediction accuracy
even when GPS error is large by adopting EAP.

4) Impact of the number of Wi-Fi users: : In an urban area,
background Wi-Fi traffic often hinders the reliable delivery
of beacons, which would reduce the accuracy of predicting
a neighbor’s trajectory. We investigate how the background
traffic affects the accuracy by measuring the distance errors
of our scheme according to the number of Wi-Fi users in
Lankershim Blvd. To this end, each Wi-Fi user generates
CBR traffic with 200kbps at the shoulder of the road in our
testbed. In Figure 10(a), we observe that the error rises with
the number of Wi-Fi users. This is because the background
traffic induces congestion in a Wi-Fi band, hindering beacon
delivery as shown in Figure 10(b).

C. Comparison
In this subsection, we compare our scheme with two bench-

marks [13], [22] as well as two variants of our scheme: 1)
vanilla LSTM with accurate sensing data and 2) interactive
LSTM with accurate sensing data. In the first variant, vanilla
LSTM does not use neighbor vector as its feature to preclude
interactions among vehicles. The second variant adopts an
interactive LSTM. To mimic the situation in which vehicles
obtain accurate data from expensive sensors such as lidar in
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Fig. 10. Distance error, IBRT, and collision probability according to the
number of background Wi-Fi users in Lankershim Blvd..: (a) distance error
and (b) IBRT and collision probability

both benchmarks, we use the ground-truth values of kinematic
data for training and prediction.

Evaluations using our testbed demonstrates that our scheme
is more accurate than ‘vanilla LSTM with GT trajectory’ even
if it exploits the accurate sensing data while our scheme relies
on data containing noise. For example, the average distance
errors of our scheme are 1.52m and 1.36m in Lankershim
and US101 traces while the errors of the variant are 2.22m
and 1.86m. It shows that our scheme improves the prediction
accuracy even with imperfect inputs caused by beacon delivery
failures and GPS errors. Also, the result presents that the
distance error of our scheme is comparable that of ‘interactive
LSTM with GT trajectory’. For example, the average distance
error of ‘interactive LSTM with GT trajectory’ are 1.12m
and 1.26m in Lankershim and US101 traces. The average
distance errors of [13] and [22] measured using lidar (i.e.,
GT trajectories are used) are around 0.9m and 0.8m, which are
smaller than the errors of our scheme. However, we emphasize
that our scheme is based on devices accessible or existing
only in a smartphone. This means that the implementation
cost is much lower than those of two benchmarks that require
expensive sensor such as lidar.

V. RELATED WORKS

There are a number of previous proposals for predicting the
maneuvers of a vehicle [23]–[27]. In [23], the intention for
changing lanes was estimated based on supervised learning
and periodic beaconing. The authors in [24] exploited a
recurrent neural network (RNN) to predict a driver’s intention
at an unsignalized intersection. In [25], the authors proposed
an interactive multiple model (IMM) to predict an intention for
lane change based on GPS data. The authors in [26] used a
Gaussian mixture and a Random Forest models for classifying
the braking intensity of an electrified vehicle into multiple
levels. In [27], the authors presented a scheme using vehicular
communications and radar to estimate the merging potential of
a side vehicle. However, the previous proposals have focused



on only mechanisms to predict maneuvers, which is much
simpler than predicting the neighbors’ trajectories.

Several researchers have proposed mechanisms to predict
trajectories of vehicles via machine learning [1], [22], [28]. In
[22], the authors proposed predicting a trajectory of a vehicle
using LSTM. In [1], LSTM consisting of an instant layer
and a category layer was used for predicting trajectories of
multiple agents in urban areas. In [28], the authors proposed
a safety-aware deep learning model to predict trajectories of
neighboring vehicles before collisions. However, the schemes
in [1], [22], [28] were based on the unrealistic assumption that
the sensing data was accurate; they did not consider interactive
behavior among vehicles when predicting their trajectories.

To address the limitations of [1], [22], [28], researchers have
proposed interactive prediction models whereby interactive
behaviors among agents were considered for predicting their
trajectory [12]–[14], [29], [30]. In [29], the authors proposed
a scheme for predicting trajectories of nearby agents using
a particle filter. The authors in [30] considered interactions
among vehicles in close proximity using a graph convolutional
model. In [12], Graph Neural Network (GNN) was used for
perceiving an interactive event among vehicles and LSTM was
exploited for predicting their trajectories. The authors in [13]
proposed a two-layer LSTM model for predicting trajectories
of vehicles with interactive behavior. In [14], a social LSTM
was presented to predict human movement by considering
interactions among people. However, the schemes in [12]–
[14], [29], [30] are based on the unrealistic assumption that
the sensing data is always accurate and no loss is incurred in
obtaining sensing data. Eliminating the unrealistic assumptions
distinguishes our work from previous work.

VI. CONCLUSION

In this paper, we proposed a scheme for predicting neigh-
bors’ trajectories accurately using periodic beaconing with
inaccurate GPS data, which is often used by a smartphone.
For enabling accurate prediction even with communication and
positioning errors, our scheme integrated an interactive LSTM
with two strategies: 1) TMTP for intelligent use of LTE and
Wi-Fi bands and 2) EAP for improving its own positioning.
Experimental results demonstrated that the proposed scheme
predicted neighbors’ trajectories accurately.
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