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Abstract—Peer-to-Peer (P2P) based direct communication
among devices can enhance communication speed and reduce the
burden on cloud services in service models involving distributed
and cooperative processing. The authors have proposed and
developed CYber PHysical Overlay Network over Internet Com-
munication (CYPHONIC), which offers a secure communication
mechanism based on a P2P model. However, the performance of
conventional CYPHONIC clients is limited because they process
packets in a single-threaded manner, considering the simplicity of
sequential packet processing. This paper presents a redesigned
implementation of the CYPHONIC client that supports multi-
threaded packet processing. The new client design incorporates a
novel processing scheme that emphasizes sequencing mechanisms
and concurrency in packet processing, as the order of packet
processing is not guaranteed in multi-threaded processing. These
improvements have significantly increased end-node throughput
and enabled communication delay times to remain constant even
as the number of connections increases.

Index Terms—Internet of Things, Peer-to-Peer communication,
Overlay network protocol, CYPHONIC

I. INTRODUCTION

The rapid proliferation of mobile nodes, including Internet
of Things (IoT) devices and smartphones, and the widespread
adoption of various Internet services, have resulted in a
continuous increase in network traffic [1]. IoT device pro-
cessing capabilities have been improving year by year. New
value and services are expected to be created by leveraging
distributed computing and integrating with cloud services [2].
In services involving mutual communication and cooperation,
direct communication between devices provides the shortest
path, improving communication speed and reducing latency.
Therefore, Peer-to-Peer (P2P)-based communication is ideal
for such service models.

However, most practical services use a Client-to-Server
(C2S) model where communication goes through a central
server. In the C2S model, traffic passes through a central
server, leading to the issue of route redundancy and higher la-
tency. Additionally, managing the increased load and ensuring
scalability due to device proliferation becomes complex in the
operation of cloud services, potentially resulting in increased
personnel costs [3], [4]. Nevertheless, many services still use
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the C2S model because of the Internet Protocol (IP) used in
the Internet.

The current exhaustion of IPv4 addresses, the most widely
used ones, has resulted in the introduction of Network Address
Port Translation (NAPT) in each network, where multiple
nodes are assigned private IP addresses and share a single
global IP address. However, this mechanism hides the devices
behind it from the global network. As a result, nodes on
the global network cannot initiate communication with nodes
behind NAPT, making direct communication between devices
extremely difficult. This widely-known issue of connectivity
has led to the proposal of various NAPT traversal techniques
to achieve interconnection between applications beyond NAPT
[5].

Another solution is the global spread to IPv6, which ex-
panded the address space to 128 bits. Unfortunately, the in-
compatibility between conventional IPv4 and IPv6 has created
interoperability issues [6]. In addition to these issues, various
threats exist on the Internet, making it essential to realize
secure communication by introducing encryption and access
control technologies [7]. While individual solutions have been
provided for these challenges, discussions on solutions that
can address all of them simultaneously are still insufficient.

Against this background, the authors have proposed and
developed CYber PHysical Overlay Network over Internet
Communication (CYPHONIC), which provides a comprehen-
sive solution and secure communication mechanism based on
the P2P model [8]. CYPHONIC establishes optimal and secure
communication paths between nodes before communication,
providing end-to-end encrypted communication over the over-
lay network. The users can efficiently utilize our overlay
network by installing the client program of CYPHONIC on
their end devices.

The conventional prototyping of the client program was
implemented with basic packet processing functionality to
validate communication over our overlay network. However, a
single-threaded approach resulted in degraded communication
performance and inadequate performance due to the impact of
the processing load of one module on other modules operating
independently. Additionally, since an end device is expected
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Fig. 1. Packet encapsulation and decapsulation flow

to communicate with multiple other devices simultaneously,
faster and more efficient processing is necessary to provide
stress-free services.

In this paper, we redesign the client program and implement
a packet ordering mechanism and concurrency of functional
modules to achieve fast packet processing. The proposed
system eliminates dependencies by storing state information
in caches and enables concurrent packet processing by asyn-
chronously executing modules. We also introduce an ordering
mechanism to align the order of incoming and outgoing
packets, taking into account the different processing speeds
of each thread.

In this verification experiment, we assessed the performance
of standard protocols such as Transmission Control Protocol
(TCP), User Datagram Protocol (UDP), and Internet Control
Message Protocol (ICMP) based on the number of connections
with peer nodes. Additionally, we measured the resource usage
and trends of the enhanced client program. The evaluation
results show significant enhancements in processing perfor-
mance, ensuring stable communication delay time even with
an increased number of connections.

II. CYPHONIC

CYPHONIC extends the ability to establish direct commu-
nication in communication environments without relying on
cloud service relays by constructing a virtual IP-based overlay
network. We have added a proprietary overlay network layer
to the TCP/IP protocol stack. CYPHONIC allows peer nodes
to communicate via tunneling based on virtual IP addresses,
achieving NAPT traversal and IPv4 to IPv6 interconnection.
All devices are authenticated in advance using root certifi-
cates, and all communication traffic is encrypted. This mecha-
nism provides comprehensive communication connectivity and
zero-trust security.

CYPHONIC consists of CYPHONIC nodes, which are
devices equipped with the CYPHONIC client program, and
three types of cloud services: Authentication Service (AS),
Node Management Service (NMS), and Tunnel Relay Service
(TRS). AS handles the authentication processes to verify
the legitimacy of CYPHONIC nodes and manages virtual IP
addresses and Fully Qualified Domain Names (FQDNSs) to
identify the nodes on the overlay network uniquely. NMS

manages the network information of both nodes, selects appro-
priate routes, instructs CYPHONIC nodes to establish tunnel
communication, and manages the signaling process. TRS pro-
vides communication packet relaying services between devices
when they are connected to different IP version networks or
when they are behind Symmetric NAPT routers.

The CYPHONIC node is equipped with the CYPHONIC
daemon, the client program for CYPHONIC. The CYPHONIC
daemon operates as a background process, handling virtual in-
terfaces and packet processing for application communication.
By querying the NMS for the FQDN of the desired node, the
CYPHONIC node obtains the peer’s virtual IP address and
communication path. Then, an end-to-end tunnel is established
with the peer node, and all traffic is encrypted by directly
exchanging a shared encryption key.

Fig. 1 provides an overview of packet encapsulation and
communication in the overlay network. The CYPHONIC dae-
mon intercepts application data through the virtual interface
and encapsulates it into a virtual IP packet with the original
CYPHONIC header. The packet is then encrypted using the
shared encryption key. The encapsulated packet is sent to the
peer node after adding a UDP header to the virtual IP packet
and encapsulating it with the CYPHONIC node’s real IP ad-
dress. In reverse communication, the real IP and UDP headers
are decapsulated, and the virtual IP packet is decrypted. The
peer node extracts the data from the virtual IP packet and
transfers it to the application layer. As a result, CYPHONIC
establishes overlay network communication based on virtual
IP.

III. PROPOSED SYSTEM

In this paper, we propose a new processing scheme for
the CYPHONIC daemon by revising its system model and
incorporating concurrent execution of each module and a
packet ordering mechanism. The conventional CYPHONIC
daemon, executed as a single thread, encountered the problem
of degraded communication performance due to the processing
load of one module affecting other processes. Additionally,
some processes depended on the state of other processes,
making it challenging to achieve concurrency. It is assumed
that a single device communicates with multiple devices si-
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Socket

Worker 1
< o B
s ar assin;
Binding Thl‘:&llld p e Job Send
Set and Get state info.
B » Job Worker 2
T arent | passing Send
Binding Thread Job >
L
Set and Get state info.
Worker 3
Binding Lelent @
Thread
””””” > Internal
KVS
CYPHONIC node

Fig. 3. Transactions and Threads allocation per peer connections

multaneously. Therefore, each module must be multi-threaded
to speed up packet processing.

Fig. 2 illustrates the system model of the CYPHONIC dae-
mon implemented in the proposed scheme. The CYPHONIC
daemon provides four main functions: signaling processing
with cloud services, Domain Name System (DNS) packet
processing and overlay network establishment, encapsula-
tion/decapsulation and encryption/decryption of virtual IP
packets, and sending/receiving data on the actual network.
These functions are implemented as the Signaling Module,
CYPHONIC Resolver Module, Packet Handling Module, and
Sending/Receiving Module.

A. Threads handle and Transactions

In the proposed system, we address the need for multi-
threading by introducing communication states within the
communication data and implementing a caching mechanism.
This allows each module to run independently in its own
thread, enabling faster internal processing.

Fig. 3 provides an overview of the transactional process
for sending and receiving encapsulated messages in a multi-

threaded CYPHONIC node. When communicating with a peer
node, the parent thread that receives the encapsulated packet
assigns jobs to worker threads for each transaction, separating
the main thread that receives packets from the worker threads
that handle actual processing.

After sending a packet, the worker thread is released, al-
lowing another worker thread to handle response packets. The
proposed system introduces a Key-Value Store (KVS)-based
in-memory cache to temporarily store state information to
address the possibility of different worker threads processing
response packets. This cache is referenced and updated by
all processing modules. By utilizing the in-memory cache,
state information from the previous worker thread becomes
accessible to the new worker thread, enabling continuous
processing of transactions and facilitating multi-threading.
Additionally, state information stored in the in-memory cache
is promptly discarded if it remains unreferenced for a certain
period due to communication disruption with the peer node.

The proposed system adopts an event-driven architecture
with pre-generated worker threads to minimize the overhead
of releasing and recreating multiple threads. Upon start-
ing the CYPHONIC daemon, worker threads for encryp-
tion/decryption are generated based on the logical threads
of the CPU. Furthermore, separated threads for sending, re-
ceiving, and KeepAlive are created for each peer connection.
Worker threads continue to operate until the CYPHONIC
daemon is stopped. However, threads for individual peer
connections are promptly discarded if communication with the
peer node is interrupted for a certain period.

B. Concurrency and Sequential processing schemes

Once the CYPHONIC node completes establishing the
overlay network, it engages in data communication process-
ing to exchange capsule messages with its peer nodes. The
CYPHONIC daemon utilizes the Packet Hook Module to
retrieve application data from the virtual interface. Intercepted
virtual IP packets are sequentially stored in the receive buffer
of the Packet Staging Module for processing. The encryp-
tion/decryption process in the Packet Handling Module is
particularly resource-intensive. Consequently, worker threads
are generated and allocated specifically for this purpose.

The packets are then sequentially forwarded to each worker
thread for encryption, with the addition of CYPHONIC and
UDP headers. Due to the OS or runtime state dependency,
the processing order may differ from the order of received
packets. To address this issue, the Packet Sending Module
refers to the reception order stored in the Packet Staging
Module and reorders the processed packets according to their
arrival sequence. Finally, the packets are sent sequentially
through the actual interface, ensuring concurrent processing
while maintaining the order of incoming and outgoing packets.

IV. PERFORMANCE EVALUATION

The proposed system extends its functionality by leveraging
the Go language, which has been conventionally used for



TABLE I
SPECIFICATIONS OF THE MEASURING DEVICES

Virtual Machine (CYPHONIC cloud: AS, NMS, TRS)
oS 22.04 (Jammy Jellyfish)

CPU Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz
2 cores, 2 threads
Memory 2GB RAM

Virtual Machine (CYPHONIC node)
oS 22.04 (Jammy Jellyfish)

CPU Intel(R) Core(TM) i9-13900 CPU @ 5.60GHz
2 cores, 2 threads
Memory 1GB RAM
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Fig. 4. Evaluation model

implementing the CYPHONIC daemon. To achieve multi-
threading, lightweight threads called Goroutines generate
worker threads.

We measured communication throughput and latency in the
verification experiment using standard protocols such as TCP,
UDP, and ICMP. Additionally, we evaluated machine resource
utilization and Application Performance Management (APM)
metrics. The former involved capturing signals of machine
resources from the OS, such as CPU and memory usage.
The latter focused on collecting metrics from the CYPHONIC
daemon to comprehend its operational status on the application
side.

Table I presents the specifications of the validation device,
where virtual machines with 1GB of memory are used for
CYPHONIC nodes. Fig. 4 illustrates the evaluation model
where all instances are deployed within a closed network.
One instance functions as a responder node, awaiting commu-
nication, while the other ten instances act as initiator nodes
to initiate communication. Each node can establish tunnel
communication with up to 10 peers.
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A. Communication throughput and latency

The CYPHONIC node conducts measurements of the com-
munication speed for capsule message processing, facilitating
data exchange and internal processing time. We utilized net-
work measurement tools such as iperf3 to measure throughput,
and for round-trip time, we employed ping. In this validation
process, we conducted measurements three times, each lasting
15 minutes, for different numbers of tunnel connections with
peer nodes and repeated this process three times.

Fig. 5 compares communication throughput and latency
between the conventional and proposed systems. The perfor-
mance evaluation confirmed that adopting a multi-threaded
processing approach significantly enhances the performance
and throughput of CYPHONIC nodes. Moreover, while the
conventional scheme tends to experience an increase in round-
trip time with an increase in connections, the proposed method
can maintain a constant round-trip time.

B. Machine resources utilization and APM metrics

The CYPHONIC daemon measures the utilization of ma-
chine resources during capsule message processing. We intro-
duce NodeExporter to CYPHONIC nodes for metric output
and use Prometheus for data collection to achieve observabil-
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ity. GoMetrics, provided by Grafana Labs, is utilized for APM
metrics collection [9].

Fig. 6 illustrates the CPU utilization and memory usage of
CYPHONIC nodes while processing TCP and UDP traffic.
Overall, machine memory usage remains nearly equal for
both protocols. However, TCP tends to exhibit higher CPU
utilization than UDP due to the additional overhead associated
with implementing reliability features.

We perform memory monitoring focused solely on the CY-
PHONIC daemon to mitigate observer effects. Fig. 7 displays
the memory allocation trends in the CYPHONIC daemon. The
proposed system efficiently manages state information using
an internal cache, gradually increasing memory allocation per
connection. Conversely, the heap area, responsible for dynamic
data, is appropriately released upon connection termination,
resulting in more memory being released than allocated.

Additionally, we analyze the increasing trend in threads
due to parallel processing. Fig. 8 compares the trends of
Goroutines and machine threads during the measurement.
The CYPHONIC daemon generates processing routines per
peer, increasing thread count with the number of connections.
However, the number of threads observed from the OS remains
constant. Notably, the Go language can theoretically execute

hundreds of thousands of goroutines simultaneously, and by
decoupling from the OS scheduler, the overhead of context-
switch during thread switching is reduced [10], [11].

The evaluation demonstrates that the proposed multi-
threading scheme enables advanced concurrency and efficient
resource utilization. Given the recent improvements in device
processing performance, further enhancements in communica-
tion throughput can be anticipated.

V. CONCLUSIONS

In this paper, we have re-engineered the client program to
incorporate support for multithreading. The proposed approach
achieves concurrent execution of each function by leveraging
an event-driven architecture. Furthermore, we have introduced
an ordering mechanism to synchronize the order of received
and sent packets, considering variations in processing speeds
among threads. During the evaluation phase, we validated
that the communication performance of CYPHONIC nodes
improved significantly without a significant impact on pro-
cessing performance. The concurrent execution capability in
the proposed system enables rapid and efficient processing,
presenting substantial potential as a practical client service.
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