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Abstract—The authors are currently engaged in researching
and developing CYber PHysical Overlay Network over In-
ternet Communication (CYPHONIC), a secure communication
technology to achieve communication connectivity and mobil-
ity transparency. The conventional version of CYPHONIC is
primarily developed for Linux terminals, and as of now, the
terminal functionality for other operating systems remains unim-
plemented. Considering the widespread adoption of Windows in
the market, implementing terminal functionality for Windows
is considered essential for future development. In this paper, we
focus on designing and implementing the terminal functionality of
CYPHONIC, specifically for Windows. In our approach, we use
a virtual interface using Windows-specific TUN/TAP and proceed
to design and implement the terminal functionality, which lever-
ages Windows network socket, thus enabling the utilization of
CYPHONIC nodes on Windows platform. Through performance
evaluations conducted using a prototype implementation, we
have confirmed that it is feasible to achieve communication
performance equivalent to the terminal functionality available
on Linux.

Index Terms—NAPT traversal, Mobility, Zero-trust network,
Overlay network, Windows

I. INTRODUCTION

Internet communication serves various purposes, and secu-
rity approaches continually evolve [1]. The castle and moat
model is a prevalent security solution that establishes network
boundaries. It treats the internal Local Area Networks (LAN)
as a secure area and ensures safety by blocking external
network access. However, the castle and moat model faces
challenges in dealing with attacks from devices infected with
malware within the LAN [2].

On the other hand, the cloud relay security model represents
a different security paradigm that eliminates the need for
internal network boundaries. This approach enables secure
communication through the cloud without requiring security
solutions at the network boundaries. Nevertheless, the cloud
relay-based security model carries the risk of information
leakage, as the cloud directly handles the client’s data [3].

On the other hand, Wide Area Networks (WAN), including
remote work utilizing Virtual Private Networks (VPN), have
been used to establish communication within LAN [4]. As
networks are used in various forms, it becomes crucial to
ensure the legitimacy of communication from all directions,

regardless of whether the network is internal or external. To ad-
dress this requirement, a security model called the Zero Trust
Model has been proposed as a new security solution [5]. The
Zero Trust Model authenticates the legitimacy of all devices,
enabling secure communication even in cases of attacks from
within the internal network [6]. Additionally, it ensures the
security of communication performed by distributed devices
on the Internet, such as in remote work or Internet of Things
(IoT) systems [7]. These characteristics set it apart from the
castle and moat or cloud relay-based model.

The Zero Trust security model necessitates secure connec-
tivity for all devices, even when they are situated in different
networks. Consequently, adopting the Zero Trust security
model entails addressing two critical issues: connectivity and
mobility.

Connectivity refers to establishing communication without
impediments from Network Address and Port Translation
(NAPT) or differences in IP versions [8], [9]. NAPT is a tech-
nology that enables bidirectional translation of IP addresses
and port numbers [10]. IP addresses are categorized into
global IP addresses and private IP addresses. NAPT conceals
devices within the internal network from the external network,
making it challenging for devices to initiate communication
from outside the NAPT.

IPv6 resolves the limitations of IPv4 concerning the number
of assignable IP addresses, which was confined to 232, by
enabling the allocation of 2128 addresses [11]. This allows
unique address assignment to all devices. However, IPv4 and
IPv6 have distinct packet structures, rendering them incompat-
ible and creating challenges in communication. Additionally,
since devices still use IPv4 addresses, mixed IPv4 and IPv6
environments are commonplace [12].

Mobility refers to the seamless provision of communication
even when the IP address changes. In today’s mobile devices,
multiple wireless interfaces allow devices to switch interfaces
depending on the accessed network [13] [14]. However, the IP
protocol does not inherently handle address changes during
communication, leading to interruptions in communication
when networks switch due to mobility.

The authors have been researching and developing CYber
PHysical Overlay Network over Internet Communication (CY-
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Fig. 1. Overview of CYPHONIC

PHONIC). This secure communication technology achieves
both connectivity and mobility based on the concept of zero
trust. CYPHONIC establishes an overlay network using virtual
IP addresses, enabling encrypted communication exclusively
among authenticated devices, ensuring secure communication
regardless of the underlying network environment [15], [16].
CYPHONIC consists of CYPHONIC Cloud and CYPHONIC
Nodes. Currently, the implementation of CYPHONIC Daemon
is limited to devices based on the Linux. However, to make
CYPHONIC a more versatile communication technology, it is
crucial to extend its support to various platforms.

In this research, the authors aim to achieve a broader
usage of CYPHONIC by implementing CYPHONIC Daemon
for a new platform, specifically targeting the widely used
Windows. Additionally, an installer is introduced to facilitate
users in utilizing CYPHONIC. This paper provides detailed
information on the installer’s design, implementation, and
introduction for CYPHONIC Daemon on Windows. Further-
more, the practicality of the proposed system is validated
by comparing its performance with the existing CYPHONIC
Node.

II. CYPHONIC

Fig. 1 provides an overview of CYPHONIC, which com-
prises CYPHONIC Cloud and CYPHONIC Nodes. CY-
PHONIC Cloud offers Authentication Service (AS) responsi-
ble for verifying the legitimacy of nodes, Node Management
Service (NMS) that handles network information associated
with CYPHONIC Nodes and provides opponent information to
devices seeking to establish tunnel communication with their
counterparts (responders). Additionally, CYPHONIC Cloud
includes Tunnel Relay Service (TRS) that facilitates data relay
between devices in NAPT routers or across networks with
different IP versions.

CYPHONIC Nodes designate responders using the Fully
Qualified Domain Names (FQDNs) within their proprietary
domain, the CYPHONIC Domain. Since CYPHONIC Nodes
use the assigned virtual IP addresses from AS, they achieve

communication within the overlay network without being
affected by the real network.

During communication, CYPHONIC Nodes establish secure
End-to-End (E2E) communication by directly exchanging en-
cryption keys between devices. Moreover, if a CYPHONIC
Node’s real IP address changes due to mobility, it updates
the network information on NMS. Throughout this process,
the virtual IP address assigned by AS remains unaffected and
unique, enabling seamless communication by specifying the
virtual IP address.

The device functionality is realized through an installed ter-
minal program called CYPHONIC Daemon. The CYPHONIC
Daemon handles IP datagrams using virtual IP addresses,
which applications on CYPHONIC Nodes employ for sending
and receiving data. It performs encryption/decryption and
encapsulation/decapsulation of datagrams through the virtual
interface, thus ensuring secure End-to-End (E2E) communica-
tion.

III. PROPOSED SYSTEM

A. Overview of proposed system

The CYPHONIC Node incorporates a terminal function
known as the CYPHONIC Daemon to facilitate communica-
tion within the overlay network. The CYPHONIC Daemon
comprises multiple modules that handle different roles, such
as interface operations, data encryption, and communication
signaling. This design segregates operations that involve ma-
nipulating the kernel space from those that only require
processes within the user space.

When developing the CYPHONIC Daemon for other operat-
ing systems, the focus would primarily be on the modules that
interact with the kernel space. In this section, we propose and
implement a CYPHONIC Daemon for Windows, specifically
targeting the modules that affect the kernel space. Additionally,
we introduce an installer to streamline the deployment of
CYPHONIC for users.

B. Introducing function

The existing CYPHONIC Node is primarily designed for
Linux, and due to the architectural differences between Linux
and Windows operating systems, a distinct approach is nec-
essary to handle the kernel space. The following provides a
detailed description of the introduced elements.

• Dynamic Link Library (DLL)
In Windows, a significant portion of the operating sys-
tem’s functionalities is provided through Dynamic Link
Libraries (DLLs). Utilizing DLLs offers advantages such
as modular coding, code reuse, improved memory usage,
and reduced disk space consumption. Furthermore, kernel
space operations are performed through DLLs in Win-
dows architecture. Since standard DLLs do not support
virtual interfaces, a new DLL must be added to handle
virtual interfaces.
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Fig. 2. Overview of CYPHONIC end-device functions on Windows

• Network Socket
The current implementation for Linux relies on BSD
sockets and assumes the usage of virtual interfaces spe-
cific to Linux. In this paper, we will design and imple-
ment terminal functionality that considers the availability
of virtual interfaces for Windows, utilizing Windows
network sockets.

• Domain Name System (DNS) Message Handler
The FQDN used for communication with CYPHONIC
includes the CYPHONIC domain. The resolution of
FQDNs containing the CYPHONIC domain is carried
out through communication with the CYPHONIC cloud.
Hence, it is necessary to implement functionality that
forwards DNS packets to the CYPHONIC Daemon to re-
solve DNS queries by collaborating with the CYPHONIC
cloud.

C. Overview of CYPHONIC end-device functions on Windows

Figure 2 depicts the proposed CYPHONIC Node system
model for Windows. The CYPHONIC Node enables com-
munication within the overlay network by implementing CY-
PHONIC Daemon and creating virtual interfaces. CYPHONIC
Daemon consists of the following modules:

• Configuration Module
It reads the configuration file required for CYPHONIC
communication. The configuration file contains infor-
mation such as authentication methods, virtual interface
settings, and port numbers for communication with CY-
PHONIC Cloud.

• Signaling Module
It performs signaling processes, including authentication
with the CYPHONIC cloud through AS, the establish-
ment of routes with NMS, and relay processes with TRS.

• CYPHONIC Resolver
Resolving the FQDN of the CYPHONIC domain through
an original DNS server is difficult. Since the resolution
from FQDN to a virtual IP address is conducted by
signaling with NMS, the CYPHONIC Resolver detects

DNS packets and passes them to the signaling module.
After completing the signaling process and obtaining
the virtual IP address of the responder, the CYPHONIC
Resolver generates a DNS response and notifies the
virtual IP address to the application.

• Packet Hook Module
The packets sent to the virtual interface are obtained by
the packet hook module. When receiving decapsulated
packets from the Packet Handling module, they are for-
warded to the application through the virtual interfaces.

• Packet Handling Module
CYPHONIC performs communication using the defined
packet structure. The Packet Handling module is respon-
sible for packet generation, encryption, and decryption.
After generating a CYPHONIC packet, a Hash-based
Message Authentication Code (HMAC) is attached. This
allows the responder to calculate the HMAC of the
received packet to ensure integrity.

• Mobility Management Module
Devices may change their real IP addresses when moving
to different network areas. The Mobility Management
module detects changes in the real IP address and regis-
ters the updated network information with the NMS. This
allows the establishment of a tunnel with the responder
again, even after the real IP address has changed, enabling
seamless communication.

D. Packet flow

1) DNS packet flow: To enable communication within the
overlay network, it is essential to respond to DNS queries
generated by the application with a response that includes
the virtual IP address. NMS maintains a mapping between
CYPHONIC’s unique FQDN and the corresponding virtual IP
address.

Therefore, NMS conducts the resolution of FQDN in CY-
PHONIC communication. The DNS Message Handler module
filters only DNS queries for the FQDN used in CYPHONIC
and passes them to the CYPHONIC Resolver module. The
CYPHONIC Resolver module initiates the route selection
process upon receiving a DNS query and generates a DNS
Request to be forwarded to the Signaling module.

The Signaling module sends a Direction Request message
to NMS to obtain the network information of the respon-
der. Subsequently, NMS sends a Route Direction to Initiator
message to retrieve the virtual IP address of the responder,
then passes it to the CYPHONIC Resolver module. Finally,
the CYPHONIC Resolver module generates a DNS Response
containing the virtual IP address of the responder and returns
it to the application.

2) Data packet flow: Packets destined for virtual IP ad-
dresses are routed to the virtual interface. When the application
sends application data to the responder, the CYPHONIC
Daemon captures it through the Packet Hook module and
passes it to the Packet Handling module. Then, the virtual
IP packet is encrypted, and the CYPHONIC header, which
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enables CYPHONIC communication, is added to the captured
virtual IP packet.

Subsequently, a UDP header is added, and the packet is
encapsulated with the real IP address. This process generates
a real IP packet, enabling communication through the real
interface, which communicates with the responder following
the established UDP tunnel.

Upon receiving the packet, the responder removes the real IP
header and UDP header, retrieves the CYPHONIC packet, and
passes it to the CYPHONIC Daemon. Then, the CYPHONIC
packet is decrypted and decapsulated by the Packet Handling
module, transforming it into a virtual IP packet. The virtual
IP packet is then routed to the virtual interface. Finally, the
virtual IP packet is forwarded to the application.

E. Installer

The CYPHONIC Daemon must be installed to enable
communication using CYPHONIC. To facilitate this process,
we have developed an installer that allows users to install the
CYPHONIC Daemon easily. The installer consists of three
main components: CYPHONIC EXE, Setup Package, and
CYPHONIC Starter Application.

The CYPHONIC EXE contains the binary of the CY-
PHONIC Daemon. The Setup Package includes modules con-
figured to support the CYPHONIC EXE, providing necessary
DLL files for TUN/TAP device operation and containing
settings for filter functions that identify domain names.

The CYPHONIC Starter Application prompts users to input
their device ID and password. Based on this information,
the CYPHONIC EXE is executed. It’s important to note that
using CYPHONIC requires kernel operations, such as creating
virtual interfaces, and can only be achieved with administrator
privileges.

IV. EVALUATION

We have devised a network configuration to perform op-
eration verification and performance evaluation, as depicted
in Fig. 3. Furthermore, Table I provides information about the
devices utilized for the performance evaluation. The evaluation
criteria for operation verification and performance evaluation
are based on the communication performance achieved using

TABLE I
DETAILS OF THE MEASURING DEVICES

CYPHONIC Cloud
OS Ubuntu 21.10
CPU 11th Gen Intel Core i9-11900K @ 3.50GHz 16cores
Memory 128GB

CYPHONIC Node(Windows)
OS Windows 10
CPU 11th Gen Initel Core i5-1135G7@2.40Ghz
Memory 8GB RAM

CYPHONIC Node(Linux)
OS Ubuntu 22.04.1 LTS
CPU 11th Gen Initel Core i5-1135G7@2.40Ghz
Memory 8GB RAM

TABLE II
RESULT OF ICMP EVALUATION

Windows Linux

RTT
min 2.0 ms 2.6 ms
max 8.0 ms 3.8 ms
avg 3.1 ms 3.1 ms

CYPHONIC with the existing device functionality designed
for Linux.

A. Functional Evaluation

The performance validation was carried out in two sce-
narios: communication using CYPHONIC with two Windows
devices and communication using CYPHONIC with two Linux
devices. Table II presents the Round Trip Time (RTT) obtained
through ping commands for each case.

The verification results confirmed that communication
within the overlay network is achievable, as observed from
the successful acquisition of virtual IP addresses based on
the Responder’s FQDN and the subsequent establishment of
connections using these IP addresses. Furthermore, the RTT
results confirmed no significant overhead in communication
when utilizing Windows devices.

B. Performance Evaluation

We measured throughput TCP and UDP communications
using iperf3 in the performance evaluation. The measurements
were performed in 10 sets, each measurement was 10 seconds,
and the average value of the acquired measurements was
computed.

Table III presents the measurement results of TCP perfor-
mance. The observations indicate comparable communication
performance for Windows and Linux devices when utilizing
CYPHONIC, confirming sufficient TCP communication per-
formance.

Table IV displays the measurement results of UDP per-
formance. Similar communication performance was observed
at 50 Mbps, 60 Mbps, 70 Mbps, and 80 Mbps for both
scenarios involving CYPHONIC with Windows devices and
CYPHONIC with Linux devices. Additionally, the measured



TABLE III
RESULTS OF TCP EVALUATION

Windows Linux
Transfer 0.99 GBytes 2.80 GBytes

Throughput 82.7 Mbps 240.0 Mbps

TABLE IV
RESULT OF UDP EVALUATION

Windows Linux
Traffic Throughput Jitter Throughput Jitter

50Mbps 49.9 Mbps 0.246 ms 50.0 Mbps 0.198 ms
60Mbps 59.9 Mbps 0.286 ms 60.0 Mbps 0.304 ms
70Mbps 69.9 Mbps 0.276 ms 70.0 Mbps 0.283 ms
80Mbps 79.9 Mbps 0.264 ms 80.0 Mbps 0.153 ms

jitter values did not significantly impact communication, af-
firming satisfactory communication performance for UDP.

C. Functional evaluation of installer

The proposed installer was executed on Windows device.
The screen image after executing the installer is depicted in
Fig. 4. Subsequently, verification was conducted, confirming
the successful installation of CYPHONIC EXE, Setup Pack-
age, and CYPHNIC Starter Application in the local directory
of Windows device. Furthermore, through the execution of the
CYPHNIC Starter Application and appropriate input, the suc-
cessful initiation of the CYPHONIC Daemon was confirmed.
Based on these observations, we have reached the conclusion
that communication using CYPHONIC is achievable on a
Windows device solely through the operation of the GUI
application.

V. CONCLUSIONS

This paper proposes a Windows device functionality to
enable a more versatile utilization of CYPHONIC. The im-
plementation involves the addition of DLLs that interface with
Windows kernel space, allowing for the creation of a virtual
interface. This terminal functionality for Windows is achieved
without requiring any modifications to the module operating
in the user space. Furthermore, an installer tool is provided to
facilitate easy adoption of CYPHONIC by users.

The verification and evaluation results demonstrate that
the performance of the device functionality for Windows
is comparable to that of its Linux counterpart, confirming
its practicality. Additionally, the successful operation of the
installer tool has been validated, ensuring the broader appli-
cability of CYPHONIC beyond the Linux environment.
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