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Abstract—Internet of Things (IoT) devices are installed in vari-
ous locations to realize smart cities, smart factories, smart homes,
etc., and are connected to the Internet for data communication.
Most current IoT systems are built on a client-server model using
servers built on the cloud. On the other hand, edge computing
services are increasing and there are still demands to manage
sensitive data in a local environment, and a local edge computing
is emerging as a new concept to address these demands. Next-
generation IoT services are expected to increase the importance of
interoperability between different IoT systems, and connectivity
to the local edge computing environment will be required. The au-
thors have proposed QUIC-based CYPHONIC (CYber PHysical
Overlay Network over Internet Communication) as a communi-
cation architecture that simultaneously achieves communication
connectivity and mobility transparency in a mixed IPv4/IPv6
environment. This paper shows that QUIC-based CYPHONIC
can be used to realize end-to-end encrypted communication
between local edge devices located in different local networks
over the actual Internet environment with practically acceptable
performance.

Index Terms—Overlay Network, QUIC, End-to-End Connec-
tivity, Local Edge Computing

I. INTRODUCTION

Cyber Physical Systems (CPS) have attracted attention as
an approach to solving various problems in the real world
(physical space) in which we humans live [1]. CPS collects a
variety of data in physical space using sensing and computing
technologies and stores it in server space. This big data is
then analyzed and converted into knowledge using large-scale
data processing technologies, etc., and the information and
value created through this process is feedbacked to the physical
space, which is expected to revitalize industry and solve social
problems.

In order to realize CPS, elemental technologies such as
Internet of Things (IoT), network technology, database, and

artificial intelligence are necessary. In particular, the use of the
cloud is indispensable as a platform that constitutes the infras-
tructure in cyberspace where big data is stored and processed
by AI. IoT devices installed in physical space send sensing
data and so on to servers built on the cloud via the Internet.
In addition, the servers on the cloud feedback notifications
and device control commands to the IoT devices that exist in
the physical space. In today’s Internet environment, however,
IPv4 and IPv6 are mixed, and IoT devices connected to a
network environment where IPv4 must be used are located in
a private LAN. On the communication path between such IoT
devices and the cloud, there is always a router with Network
Address Translation (NAT) [2] functionality. Although NAT
is widely used as a life-extending technology for IPv4, the
end-to-end connectivity that is the principle of the Internet
is lost due to the NAT traversal problem. Therefore, it is not
possible to initiate communication from cyberspace to physical
space. However, many IoT systems today address this issue by
implementing an arbitrary NAT traversal solution [3]–[7] in
their services, or by initiating communication from the IoT
device to the cloud, i.e., uplink communication, and using
the connections established during the uplink communication
to achieve downlink communication. This is a well-known
software architecture based on the client-server model.

On the other hand, there are some IoT systems in which
complete dependence on the cloud would be inconvenient.
When using the cloud, there will be a delay of several
seconds in exchanging data between the IoT device and the
cloud server. For example, this delay can be fatal to services
and systems such as autonomous vehicles, which need to
immediately respond to their surroundings in order to drive
safely. In addition, since the cloud operates on a pay-as-you-
go business model, the number of IoT devices, the size of



the data generated from them, and the amount of computing
resources used by the cloud will increase due to the expansion
of services, thereby increasing the running cost of services
enormously. Therefore, edge computing [8], [9], which utilizes
computing resources distributed at the edge of IoT devices and
networks, is becoming increasingly important. However, in IoT
systems based on edge computing, it must be considered that
the server functions do not necessarily reside in the public
network, but in a private network, i.e., under a NAT router.

The authors have proposed CYber PHysical Overlay Net-
work over Internet Communication (CYPHONIC) that pro-
vides both end-to-end encrypted communication between IoT
devices and the capability to continue communication even
when the IP address changes due to the movement of IoT
devices [10]–[12]. QUIC-based CYPHONIC is a new method
that solves the problem of conventional CYPHONIC, which is
the inability to communicate with IoT devices under corporate
networks. In this paper, we show that the proposed overlay
network construction technique with QUIC [13]–[16] can
be used to achieve end-to-end interconnection between edge
computing devices located in different local networks, and that
the communication performance can be achieved without any
practical problems.

II. RELATED WORKS

A. Peer-to-Peer Secure Update Framework

Herry et al. have proposed a Peer-to-Peer (P2P) type secure
update framework for the purpose of managing IoT devices
and securely distributing software updates [17]. To address
situations where IoT devices are located behind NATs or
firewalls, or connected to mobile networks with partial or
intermittent network connectivity, the framework performs
UDP hole punching using Session traversal utilities for NAT
(STUN) [3]. This allows a STUN server located on the Internet
to obtain address information bound to a NAT router on the
communication path to the IoT device, i.e., the NAT’s global
IP address and opened UDP port number. The STUN server
notifies the IoT device of the binding address and port number
information. The IoT device uses this information to deliver
messages to peers under the NAT using the gossip proto-
col [18], thus constructing a peer-to-peer overlay network.

This framework is intended to deliver update files to IoT
devices, but it can be applied to other purposes as well.
However, the scheme uses BitTorrent [19] for file distribution,
which makes it difficult to apply to IoT applications that are
not suited for this scheme. Also, there is no mention of whether
the framework works in mixed IPv4 and IPv6 environments.

B. CYPHONIC

Yoshikawa et al. have proposed CYPHONIC that provides
end-to-end encrypted communication on an overlay network
to applications by assigning a fixed virtual IP address to each
node [10], [11]. Fig. 1 shows an overview of CYPHONIC.
CYPHONIC consists of a cloud service and CYPHONIC
nodes that implement CYPHONIC. The CYPHONIC cloud
service consists of the following three types of services.

Fig. 1. Overview of CYPHONIC

• Authentication Service (AS)
The AS authenticates the CYPHONIC node. It generates
and distributes a Fully Qualified Domain Name (FQDN),
which is the identifier of the CYPHONIC node, a public
key certificate, and a shared key used for encrypted
communication with the NMS. It also manages the de-
vice information of CYPHONIC nodes and works as an
intermediate certification authority.

• Node Management Service (NMS)
NMS manages network information such as IP addresses
of CYPHONIC nodes and controls a tunnel construction
process based on their information to establish optimal
communication paths among CYPHONIC nodes. It also
generates and distributes virtual IP addresses and encryp-
tion keys to CYPHONIC nodes.

• Tunnel Relay Service (TRS)
The TRS relays communications between CYPHONIC
nodes when they cannot directly communicate with each
other. Specifically, when CYPHONIC nodes use different
IP address versions, or when CYPHONIC nodes are
under different NATs and those NATs are a combination
of specific NAT types as shown in RFC 5780 [20], the
communication is relayed through TRS.

The AS, NMS, and TRS are deployed in a dual-stack
network so that they can be used from either IPv4 or IPv6
networks. By migrating a set of CYPHONIC cloud services to
a local edge server, sensitive data can also be managed locally.
When a CYPHONIC node moves and its IP address changes,
the encrypted UDP tunnel is reestablished, however, the
source/destination virtual IP addresses in the virtual IP packets
remain unchanged, so the communication flow is maintained
and mobility transparency can be achieved. Furthermore, it
solves the compatibility problem between IPv4 and IPv6, and
can establish end-to-end encrypted communication regardless
of whether NAT is used or not.

We have implemented a packet processing mechanism to
improve the throughput performance of CYPHONIC [21]
and a route optimization function to switch communication
between nodes in different private networks from via TRS to
end-to-end [22]. We have also changed the tunneling specifi-
cation from UDP to QUIC [13]–[16], a next-generation HTTP
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Fig. 2. System configuration

protocol, to allow CYPHONIC tunneling communications to
pass through firewalls [12], and are reaching a level where it
can be used in the current Internet environment.

III. PROPOSED METHOD

A. Overview

In this section, we present an interconnection method be-
tween local edge devices located in different LANs using a
QUIC-based CYPHONIC. Fig. 2 shows the system configura-
tion assumed in this study. Edge devices (EDevs) include IoT
devices that are endpoints in edge computing, and fog nodes
and servers or gateways installed in LANs in fog computing.
QUIC-based CYPHONIC has been introduced in these edge
devices. It is assumed that edge devices are connected to
a private LAN behind a NAT or firewall and have only a
private IPv4 address or a combination of both a private and a
public IPv6 address. The CYPHONIC Cloud is assumed to be
deployed in a public dual-stack network, such as on a cloud
environment.

B. Authentication and Registration processes

Fig. 3 shows a sequence diagram of the authentication and
registration process using QUIC-based CYPHONIC.

1) QUIC Signaling: First, QUIC signaling is executed to
the AS when EDev is launched. In QUIC signaling, the EDev
and the AS perform mutual authentication using the public key
certificate distributed by the AS and the public key certificate
issued by the Root CA, respectively, and share the key for
encrypting the communication between the EDev and the AS.
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Fig. 3. CYPHONIC authentication and registration Process

2) Authentication Process: In the authentication process,
EDev sends a Login Request message to the AS to show its
authenticity, and performs login authentication using a public
key certificate. After successful authentication, the AS sends
a Login Response message with the EDev’s FQDN and NMS
address information.

3) Registration Process: Next, the EDev sends the same
QUIC signaling to the NMS, and shares the key to encrypt
the communication between the EDev and the NMS. In
the registration process (Registration Request/Response), the
EDev’s network information is registered with the NMS, and
the NMS assigns a virtual IP address to the EDev.

C. Route Selection and Tunnel Establishment Processes

After completing the authentication and registration process
described above, the EDev dynamically establishes a QUIC
tunnel using CYPHONIC when it starts communicating with
other devices. While three signaling patterns are shown in
Reference [12] depending on the network location of the CY-
PHONIC node, this paper describes cases where both EDevs
are under different NATs or cannot communicate directly, such
as between an IPv4-only network and an IPv6-only network.

Hereafter, the initiating and corresponding local edge de-
vices are denoted as EDevA and EDevB, respectively. When
EDevA initiates communication with EDevB, it usually per-
forms a name resolution process using the Domain Name
System (DNS) in order to find the IP address from the
FQDN of EDevB in the application. In CYPHONIC, the
route establishment process between EDevs is triggered by
the transmission of DNS query messages.

Fig. 4 shows the route selection and QUIC tunnel establish-
ment process using QUIC-based CYPHONIC.

1) Route Selection Process: EDevA sends a Direction
Request message to NMS to request the establishment of a
tunnel route. This message includes the FQDN of EDevB,
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Fig. 4. CYPHONIC route selection and tunnel establishment processes

which is the communication partner, and NMS receives this
message and obtains the network information of EDevA and
EDevB, which are the communication pair. NMS calculates the
optimal communication path based on the network locations
of both EDevs. In this case, since the pattern is via the TRS,
NMS sends a Route Direction message to EDevB, instructing
it to construct a QUIC tunnel between the EDevB and the
TRS. Since the EDev and the NMS have already performed
QUIC signaling during the registration phase, the NMS can
send a message over the NAT to the EDev.

After receiving the Route Direction, EDevB performs TRS
and QUIC signaling, and then sends back a Route Con-
firmation message to NMS with information on the QUIC
connection ID. The NMS includes the information of the
connection ID notified by the EDevB in the Route Direction
message and instructs the EDevA to construct a QUIC tunnel
between the EDevB and the TRS.

2) Tunnel Establishment Process: Next, EDevA starts the
tunnel establishment process in accordance with the instruc-
tions from the NMS. In this case, to establish a tunnel to
the TRS, the EDevA sends a Tunnel Request message after
QUIC signaling with the TRS. This message contains the ID
of the QUIC connection between EDevB and the TRS, which
was obtained from the Route Direction message. The TRS can
then identify the QUIC connection on the EDevB side from
the received connection ID and bind the QUIC connections
between EDevA and the TRS and between the TRS and
EDevB. The TRS then forwards a Tunnel Request message
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to EDevB, informing it of the ID of the QUIC connection on
the EDevA side.

Finally, a Tunnel Response message is sent back from
EDevB to EDevA via TRS to complete the tunnel establish-
ment process.

3) QUIC Tunneling Communication: After the signaling
process of CYPHONIC is completed, EDevA writes the virtual
IPv6 address of EDevB obtained by the Route Direction
message into the response message of the DNS query and
passes it to the application.

Thereafter, when the EDevA application communicates with
EDevB, the destination IP address is the virtual IPv6 address
of EDevB, so the EDevA encapsulates this IP packet with
QUIC to the real IP address of the TRS, which is the end point
of the tunnel established by the tunnel establishment process,
and sends it via tunnel communication. Since the EDevB
connection ID is attached to this tunnel communication, the
TRS can relay the received communication from EDevA to
EDevB by re-entering the QUIC tunnel on the EDevB side.

In this way, end-to-end encrypted communication between
EDevA and EDevB applications can be performed over the
CYPHONIC overlay network.

IV. EVALUATION

A. Verification Environment

In order to verify the interconnection of local edge com-
puting devices by the proposed method, we constructed the
environment shown in Fig. 5. EDev was built by installing
QUIC-based CYPHONIC on a Raspberry Pi and deployed on
the private and public IPv4 networks in our university labora-
tory and the author’s home network (a dual stack network of
private IPv4 and public IPv6), respectively. The CYPHONIC
cloud services were built using AWS (Amazon Web Services)
EC2, and were operated on a public IPv4/IPv6 stack network.
The device and instance specifications of each device are as
shown in TABLE I.

As a result of the operation verification in this environment,
the following was confirmed.



TABLE I
EQUIPMENT SPECIFICATIONS FOR MEASUREMENT

CYPHONIC Cloud (AS, NMS)

AWS Service Amazon EC2

Instance Type t2.micro

vCPU 1

Memory 1 GB

Network Link Speed 1 Gbps

Amazon Machine Image Ubuntu Server 22.04 LTS

Region Tokyo (ap-northeast-1)

CYPHONIC Nodes

Machine Raspberry Pi 4 Model B

CPU Quad Core 1.5 GHz Broadcom BCM2711

Memory 4 GB

OS Ubuntu 22.04 LTS

NIC IEEE 802.3ab (1000BASE-T)

WAN (Lab) SINET (Science Information NETwork)

WAN (Home) Commufa (1 Gbps FTTH service)

• End-to-end encrypted tunnel communication between
EDevB and other EDevs was successful.

• Encrypted tunnel communication between EDevA and
EDevC was established via TRS.

B. Communication Delays

Using the validation environment shown in Fig. 5, we
evaluate the signaling process and the communication delay in
the application when using the proposed method for two pat-
terns i.e., end-to-end encrypted communication and encrypted
communication via TRS. The former end-to-end communica-
tion path is the case where EDevB and EDevC communicate
through the IPv4 Internet. The latter communication path via
TRS is the case where EDevB and TRS communicate through
IPv4 Internet, and TRS and EDevC communicate through
IPv6 Internet. EDevC executed the command textttping6 to
EDevB 100 times, and the CYPHONIC signaling processing
time and the Round-Trip Time (RTT) required for the ICMPv6
Echo Request/Reply transmitted through the QUIC tunnel
were measured.

TABLE II shows the results of RTT measurements. For
reference, the RTT (E2E) between EDevB and EDevC and
the total RTT (via TRS) between EDevB and TRS and
between TRS and EDevC in the general case (General) where
CYPHONIC is not applied are also shown. In the case where
end-to-end communication is possible, the application commu-
nication delay increased by using the proposed method is only
2.2 milliseconds on average, and 4.8 milliseconds on average
for the case where the communication is via TRS. Considering
the additional processing time for encrypting ICMPv6 packets,
this increase in communication delay is acceptable.

Note that the route optimization function [22] allows EDevA
and EDevC to switch to end-to-end communication when com-
municating via TRS through the IPv4 Internet, thus reducing
the incremental communication delay.

TABLE II
RTT MEASUREMENT RESULTS FOR REAL NETWORK AND CYPHONIC

OVERLAY NETWORK

General [ms] Proposed [ms]
(E2E) (via TRS) (E2E) (via TRS)

min 14.783 23.505 17.135 27.836

avg 15.656 24.479 17.867 29.285

max 19.234 30.115 20.109 33.001

mdev 0.673 1.070 0.456 0.947

 0

 50

 100

 150

 200

 250

 300

At device startup At the start of communication
(E2E)

At the start of communication
(via TRS)

P
ro

ce
ss

in
g 

tim
e 

[m
s]

CYPHONIC Registration

QUIC Signaling (EDev-NMS)

CYPHONIC Authentication

QUIC Signaling (EDev-AS)

CYPHONIC Tunnel Establishment

QUIC Signaling (EDevA-EDevB)

QUIC Signaling (EDevB-TRS)

QUIC Signaling (EDevA-TRS)

CYPHONIC Route Selection

124.4

22.3

111.1

28.7

33.4

159.9

23.7

31.8

111.3

110.4

29.2

Fig. 6. CYPHONIC signaling time

Fig. 6 shows the signaling processing time of the proposed
method. The authentication and registration process shown in
Fig. 3 occurs only once at EDev startup, and the processing
time was 286.85 milliseconds. Therefore, this processing time
does not affect the actual application communication at all.

Next, the processing time of Fig. 4, which occurs at the start
of application communication, was 217 milliseconds for end-
to-end communication between EDevs and 282.7 milliseconds
for communication via the TRS. This processing occurs only
the first time an application communicates, however, since
the QUIC encrypted tunnel between EDevs has already been
constructed if the communicating EDevs are the same, this
overhead is not incurred even if different applications are used.
In addition, when communicating via the TRS, once QUIC
signaling is performed with the TRS, only the connection IDs
need to be mapped, thus reducing the time required for QUIC
signaling. In this case, the overhead would be reduced to 61
milliseconds. Therefore, the signaling process of the proposed
method has a limited impact on the application, and is not
considered to be a problem in practical use.

C. Throughput Characteristics

We evaluate the throughput characteristics of the proposed
method in the same environment and under the same condi-
tions as shown in Subsection IV-B. A packet of 1,360 bytes
was sent from EDevC to EDevB using the command iperf3



TABLE III
THROUGHPUT AND JITTER MEASUREMENT RESULTS BY IPERF3 (UDP)

Proposed (E2E) Proposed (via TRS)
Throughput [Mbps] Jitter [ms] Throughput [Mbps] Jitter [ms]

min 29.5 0.138 29.8 0.179

avg 29.9 0.181 29.9 0.309

max 30.0 0.244 30.0 0.574

mdev 0.206 0.039 0.087 0.157

in UDP mode with a bandwidth limit of 30 Mbps per minute.
TABLE III shows the measured throughput of the encrypted
tunnel communication of the proposed method. The average
throughput of 29.9 Mbps is maintained for both end-to-end and
via TRS. The Jitter was not found to be significant enough to
affect the performance of the tunneling communication.

V. CONCLUSION

This paper described a method for interconnecting local
edge devices using QUIC-based CYPHONIC, which can build
a virtual overlay network between nodes and provide end-
to-end encrypted communication to applications. We imple-
mented a hypothetical system using AWS and Raspberry Pi
in a real environment and evaluated its performance. As a
result, it was confirmed that the application communication
was not affected by the increase in signaling processing
time due to CYPHONIC, and that there was no significant
change in throughput or RTT performance due to QUIC tunnel
communication. Additionally, it has been verified that end-to-
end encrypted communication over the overlay network via
TRS is possible even when both EDevs are installed in private
IPv4.

CYPHONIC provides mobility transparency, allowing com-
munication to continue even if a node moves. Previously, edge
devices such as cars and drones were assumed to be mobile,
but the server side can also be mobile. If the migration of
virtual server instances and processes between the cloud and
edge environments can be realized using our method, it could
be applied to dynamic switching between cloud computing
and edge/fog computing.
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