Katsumasa Yoshikawa

J-GLOBAL         Last updated: May 23, 2018 at 16:09
 
Avatar
Name
Katsumasa Yoshikawa
E-mail
katsumasaygmail.com

Published Papers

 
Tatsuya Aoki,Katsumasa Yoshikawa,Tetsuya Nasukawa,Hiroya Takamura,Manabu Okumura
Computational Linguistics - 15th International Conference of the Pacific Association for Computational Linguistics, PACLING 2017, Yangon, Myanmar, August 16-18, 2017, Revised Selected Papers   3-14   2017   [Refereed]
Hiroshi Kanayama,Masayasu Muraoka,Katsumasa Yoshikawa
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, Vancouver, Canada, August 3-4, 2017   265-273   2017   [Refereed]
Yoichi Hatsutori,Katsumasa Yoshikawa,Haruki Imai
New Frontiers in Artificial Intelligence - JSAI-isAI 2016 Workshops, LENLS, HAT-MASH, AI-Biz, JURISIN and SKL, Kanagawa, Japan, November 14-16, 2016, Revised Selected Papers   270-283   2016   [Refereed]
Masaki Ohno,Yuta Tsuboi,Hiroshi Kanayama,Katsumasa Yoshikawa
Proceedings of the 10th NTCIR Conference on Evaluation of Information Access Technologies, NTCIR-10, National Center of Sciences, Tokyo, Japan, June 18-21, 2013      2013   [Refereed]
Katsumasa Yoshikawa,Masayuki Asahara,Ryu Iida
COLING 2012, 24th International Conference on Computational Linguistics, Proceedings of the Conference: Posters, 8-15 December 2012, Mumbai, India   1371-1380   2012   [Refereed]

Misc

 
那須川 哲哉, 吉川 克正, 鈴木 祥子
人工知能学会全国大会論文集   28 1-4   2014
YOSHIKAWA KATSUMASA, ASAHARA MASAYUKI, MATSUMOTO YUJI
Journal of Natural Language Processing   20(2) 251-271   Jun 2013
This paper describes a new Markov Logic approach for Japanese Predicate-Argument (PA) relation extraction. Most previous work built separated classifiers corresponding to each case role and independently identified the PA relations, neglecting dep...
Yoshikawa Katsumasa, Hirao Tsutomu, Riedel Sebastian, Asahara Masayuki, Matsumoto Yuji
Transactions of the Japanese Society for Artificial Intelligence   26(2) 318-323   2011
This paper presents a new approach that exploits coreference information to extract event-argument (E-A) relations from biomedical documents. This approach has two advantages: (1) it can extract a large number of valuable E-A relations for documen...
吉川 克正, 浅原 正幸, 松本 裕治
研究報告自然言語処理(NL)   2010(5) 1-7   Nov 2010
日本語の述語項構造解析は,文章内にある述語に対して,主格,目的格などの格情報を同定し,局所的な文書構造を捉えるタスクである.多くの先行研究では格の種類毎に個別の分類器を用意し,独立して解析を行う手法が行われてきた.しかしながら,ある述語が複数の項を持つ場合その項の間には依存関係がある.さらには他の述語との関係も項を同定する上で大きな手がかりになると考えられる.本研究ではこのような述語と項が持つ複雑な依存関係を考慮した解析を行うため,Markov Logic という統計的関係学習の枠組みをを...
吉川 克正, 平尾 努, リーデル セバスチャン
人工知能学会全国大会論文集   24 1-4   2010