LOX-1-deficient mice are resistant to zymosan-induced arthritis: A mini review

Kazuhiko Hashimoto1*, Yutaka Oda1, Kotaro Yamagishi1, Ichiro Tsukamoto1, Masao Akagi1
Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka 589-8511, Japan

ABSTRACT

Background: Some reports have shown that metabolic syndrome, including hypertension, hyperlipidemia, and diabetes mellitus, contributes to osteoarthritis (OA) development. Further, lectin-like oxidized low-density lipoprotein (ox-LDL) and ox-LDL receptor-1 (LOX-1), which contributes to atherosclerosis, have also been considered factors contributing to OA development. Several studies have suggested that the LOX-1/ox-LDL system is involved in OA development in vitro. We have suggested the same and conducted in vitro and in vivo studies to validate this concept. However, the role of the LOX-1/ox-LDL system in OA development has not been clarified. This study aimed to identify the mechanism of the LOX-1/ox-LDL system to clarify OA development.

Methods: A zymosan-induced arthritis model was used to identify the mechanism of the LOX-1/ox-LDL system using LOX-1-knockout (KO) mice. Zymosan was administered via the intra-articular route to induce arthritis.

Results: From our experiment, we found that the LOX-1/ox-LDL system contributes to OA development through matrix metalloproteinase-3.

Conclusion: Our findings suggest that the treatment of abnormal lipid metabolism may contribute to the prevention and suppression of arthritis.

Introduction

Osteoarthritis (OA), which is characterized by wear and tear of the articular cartilage, was previously believed to be caused by mechanical stress1. However, recent studies have suggested the role of other systemic factors2. One of them is metabolic syndrome3,4, including hypertension, hyperlipidemia, and diabetes mellitus, all of which lead to atherosclerosis5. Hyperlipidemia is caused by various factors, such as low levels of high-density lipoprotein (HDL), high levels of low-density lipoprotein (LDL), and triglycerides6. In recent years, Sawamura et al. have reported that lectin-like, oxidized low-density lipoprotein (ox-LDL) and ox-LDL receptor-1 (LOX-1) contribute to atherosclerosis7. Moreover, recent studies revealed the epidemiological relationship between atherosclerosis and OA8,9. However, how atherosclerosis contributes to OA has not been clarified in detail. Interestingly, subsequent studies have shown that the LOX-1/ox-LDL system contributes to the development of rheumatoid arthritis10-12. Previously, we described that ox-LDL binding to LOX-1 induces stress-induced premature senescence of chondrocytes and results in suppression of telomerase activity by inactivating the PI3K/Akt pathway13. Recently, we also demonstrated that OA development is downregulated in LOX-1 knockout (KO)
Moreover, development of age-related OA was also found to be reduced in LOX-1 KO mice.

Generally, arthritis such as rheumatoid arthritis differs from OA, as OA is induced by mechanical stress16, 17 while arthritis is mainly induced by inflammation. Although some studies revealed the relationship between arthritis and LOX-1/ox-LDL12, 18, the roles of LOX-1/ox-LDL system in arthritis are still not clarified in detail. Therefore, this study aimed to clarify the role of the LOX-1/ox-LDL system in the development of arthritis. In other words, we tried to identify the role of LOX-1/ox-LDL in inflammatory changes such as synovitis. We also hypothesized that LOX-1 KO would inhibit arthritis-associated changes, which include synovitis and cartilage degeneration.

Summary of the current study

Material and methods

We induced arthritis by administering zymosan intra-articularly. Zymosan is an insoluble fraction of yeast cell walls, which are composed predominantly of polysaccharides. It induces arthritis, which is characterized by cartilage degeneration and synovitis in rodents when injected intraperitoneally or intra-articularly. Zymosan is often used to induce arthritis, especially to induce synovial inflammation19. Zymosan was used, as it is the most commonly used method. In addition, in this study, the model was used to evaluate the role of LOX-1/ox-LDL system on arthritis, especially synovitis.

Wild-type (WT) and LOX-1 KO mice (n=10, in each) were used, and we injected with zymosan to induce arthritis (180 µg/6 µL; Sigma-Aldrich, St. Louis, MO, USA). We observed at the time point of 24, 48 and 72 hours after zymosan injection. As a control group, we conducted saline injection to contralateral knee joint with observation at the same time point. Immunohistochemical analysis was performed to evaluate the expression of matrix metalloproteinase-1 and 3 (MMP-1 and 3) and to determine its role in arthritis development.

All data have been presented as mean ± standard deviation. The scores of each group (n= 10) were compared using Student’s t-test. P-values less than 0.05 were considered significant. All data were analyzed with Stat Mate (Atms, Tokyo, Japan) software for Windows, version 4.01.15,16. The correlation between the LOX-1 or ox-LDL positive cell rate and cartilage degeneration score was examined using Pearson’s correlation (Excel 2010, Microsoft, Tokyo, Japan).

Results

We compared zymosan-induced arthritis in wild-type (WT) and LOX-1 KO mice and found it to be more severe in the former (Figures 1, 2). Interestingly, both zymosan-induced cartilage degeneration and synovitis were significantly reduced in LOX-1 KO mice compared to WT mice (Figures 1, 2). In the saline-injected control groups, no difference was observed between WT and LOX-1 KO mice (data not shown). Immunohistochemical staining revealed LOX-1 and ox-LDL expression in the chondrocytes and inflammatory synovial cells in WT mice (Figures 3, 4) but not in LOX-1 KO mice (data not shown).
shown). These findings suggest that LOX-1/ox-LDL in the chondrocytes and inflammatory synovial cells are involved in the development of arthritis. In our evaluation of the expression of matrix metalloproteinase-1 and 3 (MMP-1 and 3) by immunohistochemical analysis, MMP-1 was not detected in both WT and LOX-1 KO mice (data not shown); however, MMP-3 expression was significantly higher in the chondrocytes and inflammatory synovial cells of WT mice than in those of LOX-1 KO mice (Figures 5, 6).

Discussion

The present study was conducted to clarify the role of the LOX-1/ox-LDL system in the development of arthritis, particularly on inflammatory changes such as synovitis. Our findings indicate that MMP-3 plays a role in the development of arthritis downstream of LOX-1/ox-LDL.

These results could provide new findings that LOX-1/ox-LDL system is involved in inflammation such as synovitis and cartilage degeneration induced by synovitis.

This study has limitations. First, in vitro methods were not employed, which need to be included in future studies. Second, we could not evaluate systemic inflammation. Zymosan could induce systemic inflammation as previously described20, 21. In the current study, systemic inflammation as well as the systemic effects of atherosclerosis was not investigated. Second, atherosclerosis was not evaluated. It
would be interesting to investigate the correlation between atherosclerosis and arthritis development. Further research will be necessary.

Conclusion

Our findings indicate that treatment of abnormal lipid metabolism may contribute to the prevention and suppression of arthritis. Hence, we believe that the LOX-1/ox-LDL system is involved in the development of arthritis via MMP-3.

Figure 4: Representative tibial cartilage immunostaining of ox-LDL receptor-1 (LOX-1) and oxidized low-density lipoprotein (ox-LDL) (a-f) at 400× magnification. LOX-1 expression in the cartilage of WT mice at days 1, 3, and 7 after zymosan injection (a-c). Ox-LDL expression in the cartilage of WT mice at days 1, 3 and 7 after zymosan injection (d-f). LOX-1 expression in the cartilage of LOX-1 KO mice at days 1, 3 and 7 after zymosan injection (g-i). Ox-LDL expression in the cartilage of LOX-1 KO mice at days 1, 3 and 7 after zymosan injection (j-l). Although LOX-1 and ox-LDL positive cells are observed in WT mice (a-f), no positive cells are observed in LOX-1 KO mice (g-l) during all experiments. The graphs show the correlation between the positive cell rate for LOX-1 (m) and the cartilage degeneration score in WT mice. The positive correlation is observed between positive cell rate for LOX-1 or ox-LDL in chondrocytes and the cartilage degeneration score. Arrows show the LOX-1- or ox-LDL-positive chondrocytes. Rabbit anti-mouse LOX-1 polyclonal and rabbit anti-mouse ox-LDL polyclonal antibodies were used. Scale bars = 100 μm.

Figure 5: Representative synovial tissues with immunostaining of matrix metalloproteinase-3 (MMP-3) (a-f). MMP-3 expression in the synovial cells of wild-type (WT) mice at days 1, 3 and 7 after zymosan injection (a-c) at 200× magnification. MMP-3 expression in the synovial cells of ox-LDL receptor-1 (LOX-1) knockout (KO) mice at days 1, 3 and 7 after zymosan injection (d-f). MMP-3 positive cells are observed both in synovial cells of WT (a-c) and LOX-1 KO mice (d-f) in all experiments. At day 7, MMP-3 in the synovium of LOX-1 KO mice (f) is stained weaker than that in WT mice (c). The graphs show the positive cell score of MMP-3 expression in the synovium of WT and LOX-1 KO mice after zymosan injection at each experiment (g). Rabbit anti-mouse MMP-3 polyclonal antibodies were used. Data are presented as mean ± standard deviation (n= 10, in each group). P<0.05 was regarded as a significant difference (Student’s t-test). N.S, not significant. Scale bars = 100 μm.

Declarations

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

None.
Figure 6: Representative tibial chondrocyte immunostaining of matrix metalloproteinase-3 (MMP-3) (a-f). MMP-3 expression in the chondrocyte of wild-type (WT) mice at days 1, 3, and 7 after zymosan injection (a-c) at 400× magnification. MMP-3 expression in the chondrocyte of ox-LDL receptor-1 (LOX-1) knockout (KO) mice at days 1, 3 and 7 after zymosan injection (d-f). MMP-3 positive cells are observed in chondrocytes of both WT (a-c) and LOX-1 KO mice (d-f) in all experiments. MMP-3 in chondrocytes of LOX-1 KO mice (d-f) in all experiments. MMP-3 in chondrocytes of WT (a-c) and LOX-1 KO mice (d-f) is stained weaker than that in WT mice (a-c) in all experiments. The graphs show the positive cell score of MMP-3 expression in the chondrocytes of WT and LOX-1 KO mice after zymosan injection at each experiment (g). Arrows show the MMP-3-positive chondrocytes. Rabbit anti-mouse MMP-3 polyclonal antibodies were used. Scale bars = 100 m.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Acknowledgements

We would like to thank Editage (www.editage.jp) for English language editing.

References

20. Nakagawa T, Akagi M, Hoshikawa H, et al. Lectin-like oxidized low-
density lipoprotein receptor 1 mediates leukocyte infiltration and articular cartilage destruction in rat zymosan-induced arthritis. Arthritis Rheum. 2002 Sep; 46(9): 2486-2494.