論文

査読有り
2020年5月15日

Pore subnano-environment engineering of organosilica membranes for highly selective propylene/propane separation

Journal of Membrane Science
  • Meng Guo
  • ,
  • Masakoto Kanezashi
  • ,
  • Hiroki Nagasawa
  • ,
  • Liang Yu
  • ,
  • Kazuki Yamamoto
  • ,
  • Takahiro Gunji
  • ,
  • Joji Ohshita
  • ,
  • Toshinori Tsuru

603
記述言語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.memsci.2020.117999

© 2020 Elsevier B.V. Membrane-based separation techniques are responsible for great advances in the separation of propylene/propane mixtures. In this study, bis(triethoxysilyl)acetylene (BTESA) was selected as the precursor in the fabrication of organosilica membranes for use in propylene/propane separation. We proposed an effective strategy to finely engineer the pore subnano-environment of BTESA membranes for highly selective propylene/propane separation via controlling the calcination temperatures. Measurement of the surface energy, the 29Si-NMR spectra, and the gas sorption isotherms clearly indicated that low-temperature calcined BTESA materials with a greater number of silanol groups showed an enhanced affinity to propylene molecules. BTESA membranes calcined at 150 °C featured a promisingly high C3H6/C3H8 selectivity of 52 and a C3H6 permeance of 1.7 ✕ 10−8 mol m−2 s−1 Pa−1 at 50 °C. These values were approximate to those reported for ZIF-8 membranes and higher than the standards for commercialization. The high level of C3H6/C3H8 separation performance was believed to be accounted by the synergetic effects of both controlled pore size and enhanced affinity to propylene molecules. Moreover, compared with traditional organosilica membranes that were calcined at ~350 °C, low-temperature calcination (150 °C) for BTESA membranes efficiently reduced the energy consumption and fabrication cost.

リンク情報
DOI
https://doi.org/10.1016/j.memsci.2020.117999
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081659846&origin=inward
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85081659846&origin=inward
ID情報
  • DOI : 10.1016/j.memsci.2020.117999
  • ISSN : 0376-7388
  • eISSN : 1873-3123
  • SCOPUS ID : 85081659846

エクスポート
BibTeX RIS