論文

査読有り 筆頭著者
2013年4月

Optical magnetic imaging of living cells

NATURE
  • D. Le Sage
  • ,
  • K. Arai
  • ,
  • D. R. Glenn
  • ,
  • S. J. DeVience
  • ,
  • L. M. Pham
  • ,
  • L. Rahn-Lee
  • ,
  • M. D. Lukin
  • ,
  • A. Yacoby
  • ,
  • A. Komeili
  • ,
  • R. L. Walsworth

496
7446
開始ページ
486
終了ページ
U105
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1038/nature12072
出版者・発行元
NATURE PUBLISHING GROUP

Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (for example, magnetic resonance imaging(1)), or entail operating conditions that preclude application to living biological samples while providing submicrometre resolution (for example, scanning superconducting quantum interference device microscopy(2), electron holography(3) and magnetic resonance force microscopy(4)). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nanometres), using an optically detected magnetic field imaging array consisting of a nanometre-scale layer of nitrogen-vacancy colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the nitrogen-vacancy quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria. We also spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field microscopy allows parallel optical and magnetic imaging of multiple cells in a population with submicrometre resolution and a field of view in excess of 100 micrometres. Scanning electron microscope images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. Our results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks(5,6).

リンク情報
DOI
https://doi.org/10.1038/nature12072
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000317984400037&DestApp=WOS_CPL
ID情報
  • DOI : 10.1038/nature12072
  • ISSN : 0028-0836
  • Web of Science ID : WOS:000317984400037

エクスポート
BibTeX RIS