This is an Accepted Manuscript of an article published by Canadian Science Publishing in *Canadian Journal of Zoology*, available online: https://doi.org/10.1139/cjz-2022-0033.

1	Protogynous hermaphroditism in Crustacea: a new example from Tanaidacea
2	
3	Keiichi Kakui and Chizue Hiruta
4	
5	Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo,
6	Hokkaido, Japan
7	
8	Corresponding author. Keiichi Kakui. E-mail: kakui@eis.hokudai.ac.jp
9	
10	ORCID iD
11	Keiichi Kakui: 0000-0003-4630-9065
12	Chizue Hiruta: 0000-0002-0194-6573
13	
14	Competing interests: The authors declare there are no competing interests.
15	Funding: This research was supported in part by KAKENHI grants (JP19K06800 and
16	JP20J40122) from the Japan Society for the Promotion of Science (JSPS) and by funding
17	from the Fujiwara Natural History Public Interest Incorporated Foundation (FY2015).

18	Data availability: The following information was supplied regarding data availability: The
19	raw data (sampling locality; sampling date) are included in the "Materials and methods"
20	section in the manuscript.
21	

22	Abstract: Hermaphroditism has been widely reported in the Crustacea, but protogyny, in
23	which females change to males, is apparently rare and restricted to the peracarid orders
24	Isopoda and Tanaidacea. In the latter, protogyny has been demonstrated in only seven species
25	representing six genera by rearing experiments and indicated for several other genera and
26	species through morphology. Here we show, through rearing experiment and histological
27	observations, protogynous hermaphroditism in the tanaidacean species Nesotanais sp. aff.
28	ryukyuensis Kakui et al., 2010. Our rearing experiment and size distribution data for wild
29	individuals showed that females can change sex at various sizes (= ages). We found one
30	individual identified externally as a female containing both ovaries and testes, indicating that
31	overt female individuals undergo a short transitional phase as simultaneous hermaphrodites
32	before the sex-change molt. We discuss the relationship among the wide size distribution of
33	sex-changing females, the short life span of males, and the tube-dwelling mode of life.
34	
35	Key words: Malacostraca, Nesotanais sp. aff. ryukyuensis, Pancrustacea, Peracarida,
36	sequential hermaphroditism, sex change, tanaids

38 Introduction

39	The Crustacea is an extremely diverse group not only in terms of size (more than
40	67,000 extant species; cf. Ahyong et al. 2011) but also in the diversity of sexual systems,
41	which include gonochoristic, hermaphroditic, asexual, and mixed systems (Benvenuto and
42	Weeks 2020). There are many hermaphroditic crustaceans, among which the least common
43	are protogynous hermaphrodites, which change sex from female to male (Vogt 2020).
44	Currently, protogyny has been suspected or documented in only about 20 crustacean species,
45	all of which belong to the peracarid orders Isopoda and Tanaidacea (Benvenuto and Weeks
46	2020).
47	Protogyny in the Tanaidacea, a group of small benthic crustaceans with around 1500
48	described species (Anderson 2020), has previously been demonstrated through rearing
49	experiments for six species in Leptocheliidae and one species in Nototanaidae (Table 1); in
50	two of these species, Heterotanais oerstedii (Krøyer, 1842) and Nototanais dimorphus
51	(Beddard, 1886) (Bückle-Ramírez 1965; Marinovic 1987), the internal morphology was also
52	examined. Sinelobus stanfordi (Richardson, 1901) (Tanaididae) and Neotanais micromopher
53	Gardiner, 1975 (Neotanaidae) were judged to be protogynous on the basis of external and
54	internal morphology and the size distribution of developmental stages (Lang 1958; Gardiner
55	1975). Monokalliapseudes (Kalliapseudidae) and Nototanoides (Nototanaidae) may also
56	contain protogynous members, because male polymorphism and/or a female-skewed sex ratio

57	was observed in some species (Pennafirme and Soares-Gomes 2009; Kakui and Yamasaki
58	2013; cf. Bückle-Ramírez 1965).
59	Bückle-Ramírez (1965) showed that all males in <i>H. oerstedii</i> have (1) degenerate
60	mouthparts and (2) pronounced sexual dimorphism in the chelipeds. These features are also
61	evident in males of the other protogynous species listed in Table 1. This combination of
62	characters has been observed in many genera for which the sexual system has not been
63	studied, suggesting that additional protogynous tanaidacean species remain to be discovered.
64	In this study, we investigated the sexual system in one such species in Nesotanais
65	(Nototanaidae), through a rearing experiment and histological observations.
66	
67	
68	Materials and methods
69	Field sampling
70	Samples were collected from the brackish downstream region of the Oura River
71	(26°33'36.7"N 128°02'36.0"E) on Okinawa Island, Japan on 9 March 2014, 29 July 2014, and
72	12 January 2016. Mud sediment containing tanaidaceans was collected along a mangrove
73	forest and filtered through 0.42 mm mesh; tanaidaceans were picked from the residue. Except
74	for those used in a rearing experiment, individuals were fixed in Bouin's fluid or 70%
75	ethanol.

77 Taxonomy

78	Our study species (Figure 1) morphologically resembled Nesotanais ryukyuensis
79	Kakui et al., 2010 described from Noha River on Okinawa Island (cf. Kakui et al. 2010), but
80	showed a large genetic distance from N. ryukyuensis topotypes (ca. 11% Kimura (1980) 2-
81	parameter distance between their 18S rRNA sequences; KK unpublished data); we thus refer
82	to our study species as Nesotanais sp. aff. ryukyuensis Kakui et al., 2010.
83	
84	Staging, sexing, and measurements
85	We categorized specimens into one of two developmental stages: (1) "manca," sex-
86	indeterminate, post-embryonic juveniles in which percopods 6 and pleopods were lacking or
87	incompletely developed; and (2) "post-manca," individuals with fully developed percopods 6
88	and pleopods. Post-mancae with paired genital cones on the ventral surface of pereonite 6
89	were regarded as males, and those lacking the cones as females (see Supplementary Figure
90	S1 ¹). We measured the carapace length (CL; mm) as an index of body size for 38 males
91	(including eight reared individuals), 66 females (including two reared individuals), six
92	exuviae shed by females when they changed sex, and two mancae. CL was correlated with
93	body length (BL; mm) (for males, $BL = 2.96CL + 0.29$, $R^2 = 0.66$, $n = 17$; for females, $BL =$
94	4.45CL – 0.13, R ² = 0.85, $n = 38$; cf. Supplementary Figure S2 ¹).

96 Rearing experiment

97	Nineteen females lacking a marsupium (= brood pouch) and five males were isolated
98	in brackish water (3‰ salinity), each in one well of a 6-well cell-culture plate, at 20°C in the
99	dark, fed every 2-4 days with porphyrized dry feed for crayfish (JAN code 4971618829092;
100	Kyorin), and observed every 1-4 days (but see the Results section). The experimental periods
101	were 46-65 days. Exuviae successfully recovered were preserved in 70% ethanol. Individuals
102	were fixed in Bouin's fluid.
103	
104	Histology
105	Whole body (except cephalothorax and cephalothoracic appendages) of four females
106	and five males fixed in Bouin's fluid was used for histology (Table 2). Paraffin sections 5 μ m
107	thick were prepared, stained with Mayer's hematoxylin and eosin (HE) using standard
108	techniques, and observed with an Olympus BX53 light microscope.
109	
110	
111	Results
112	Rearing experiment
113	The results of rearing experiment are summarized in Table 3. Seven of 19 females

114	changed sex. They changed sex by 36 days subsequent to isolation. Prior to the sex-changing
115	molt, up to two molts were observed. One female survived as female for more than 65 days
116	subsequent to isolation.
117	No molts by males (including seven sex-changed ones) were observed. One male
118	survived for more than 44 days after sex change.
119	
120	Size distribution
121	The ranges in CL were 0.17–0.19 mm for mancae $(n = 2)$, 0.23–0.43 mm for females
122	(n = 66), and 0.28–0.49 mm for males $(n = 38)$; that for females with a marsupium $(n = 15)$
123	was 0.32–0.43 mm (Figure 2). During the rearing experiment, six exuviae that females shed
124	when they changed sex were recovered. The CLs for the six exuviae and the corresponding
125	sex-changed male for each were as follows (in mm): 0.23 and 0.28; 0.33 and 0.38; 0.35 and
126	0.42; 0.36 and 0.41; 0.37 and 0.41; and 0.38 and 0.44 (connected by lines in Figure 2).
127	
128	Histology
129	Three females (Specimens F1, F2, and F4; Figure 3A, D) had paired ovaries, with
130	dense yolk granules in the oocytes. One female (Specimen F3; Figure 3B, E) had paired
131	ovaries and testes. Male gonopores were not observed. Yolk granules in the oocytes were
132	sparse.

133	Five males, including one sex-changed individual (Specimens M1–4 and FM1; Figure
134	3C, F) had paired testes. Male gonopores were observed on the ventral surface of pereonite 6.
135	The digestive organs (gut and paired hepatopancreases) were shrunken, and the gut was
136	blackened (Figures 1B, 3F).
137	
138	
139	Discussion
140	Sexual system in Nesotanais sp. aff. ryukyuensis and other protogynous tanaidaceans
141	Our rearing experiment showed that females (although maybe not all females; see
142	below) of Nesotanais sp. aff. ryukyuensis can change sex at various sizes. Seven females that
143	changed sex ranged from 0.23 mm to 0.38 mm in CL; their CL increased by an average of
144	0.06 mm (range 0.04–0.07 mm) after sex change (Figure 2). In males, the digestive system
145	(e.g., mouthparts, gut, and hepatopancreases) had degenerated and no molts were observed,
146	suggesting that in this species, males must be terminal, devoted to reproduction without
147	feeding or molting. Wild males showed large variation (0.29–0.49 mm) in CL, indicating that
148	females of N. sp. aff. ryukyuensis change sex at various sizes, even in the wild.
149	Twelve females, one of which survived for more than two months, did not change sex
150	during our experimental period. This indicates that, as suggested for H. oerstedii (Bückle-
151	Ramírez 1965), N. sp. aff. ryukyuensis likely contains females that can change sex

152 ("hermaphrodites") as well as those that cannot ("gonochoristic females").

153	We found one female bearing paired ovaries and testes (Specimen F3; Figure 3E). Its
154	ovary may have been degenerating, as yolk granules were sparse in the oocytes. An
155	individual bearing both ovaries and testes has also been reported in the confamilial
156	protogynous species Nototanais dimorphus, but its overt sex was not stated (Marinovic
157	1987). Bückle-Ramírez (1965) observed nearly all females of <i>H. oerstedii</i> to change body
158	color from yellowish brown to bluish at about two days (on average) before the sex-change
159	molt, and that the bluish females bore paired gonads containing sperm. Although it is
160	unknown whether our Specimen F3 eventually molted and changed sex, our and previous
161	observations suggest that females of protogynous leptocheliid and nototanaid species may,
162	after a short simultaneously hermaphroditic, transitional phase in which degenerating ovaries
163	and developing testes coexist (the condition in Specimen F3), enter a phase bearing only
164	testes (the condition in bluish females of <i>H. oerstedii</i>), and then molt to complete the sex
165	change. It should be noted that although Lang (1958) reported individuals bearing both
166	ovaries and testes in Sinelobus stanfordi, the structure he identified (Lang 1958: plate II,
167	figure 2) as an ovary was instead thoracic gland 1 sensu Kaji et al. (2016), because it had a
168	thick duct.

169 It is not known what factors induce the sex change in *N*. sp. aff. *ryukyuensis*, but the 170 social structure (presence or absence of males) is a possible factor. In the protogynous

171	leptocheliid species H. oerstedii and Chondrochelia dubia (Krøyer, 1842), the frequency of
172	sex change was higher in aquaria containing only females than in aquaria containing both
173	sexes, indicating that the social structure affects whether females change sex (Bückle-
174	Ramírez 1965; Highsmith 1983). Having observed that a female in an aquarium where
175	freshly ground males were added every two days had not changed sex, Bückle-Ramírez
176	(1965) speculated that the sex-change inhibiting substance may be a male pheromone. After
177	observing strong seasonality in reproduction in Antarctic N. dimorphus, Marinovic (1987)
178	suggested that photoperiod may also affect whether females change sex.
179	Bückle-Ramírez (1965) classified males of <i>H. oerstedii</i> into two types: (1) "primary
180	males," which emerge from a "neuter" individual, that is, a female-like post-manca lacking
181	internal sexual features; (2) "secondary males," which develop by sex change from a female.
182	Other researchers have followed his classification. Given that males in gonochoristic species
183	already bear genital cones at the first post-manca instar (cf. Messing 1983; Toniollo and
184	Masunari 2007), however, female-like neuter individuals sensu Bückle-Ramírez (1965) might
185	be females, which indicates that the difference between primary and secondary males merely
186	corresponds to a difference in the female ontogenetic stage at sex change (i.e., all males
187	develop by sex change from a female). In summary, protogynous tanaidacean species, or at
188	least <i>H. oerstedii</i> and <i>N.</i> sp. aff. <i>ryukyuensis</i> , may consist of (1) gonochoristic females, (2)
189	hermaphrodites before sex-change, and (3) sex-changed hermaphrodites (= males).

191	Why does sex change occur at various sizes in protogynous tanaidaceans?
192	That females can change sex at various sizes seems to be a general phenomenon in
193	protogynous tanaidacean species. As with N. sp. aff. ryukyuensis, captive individuals of H.
194	oerstedii can change sex from female to male at various sizes (Bückle-Ramírez 1965), and a
195	wide size range in wild males has been observed in all protogynous species (Table 1) except
196	for Chondrochelia neapolitana (Sars, 1882), for which this information is lacking
197	(Jażdżewski 1969; Highsmith 1983; Ishimaru 1984, 1985; Stoner 1986; Marinovic 1987;
198	Modlin and Harris 1989).
199	Larger males of protogynous species may be superior to smaller males in
200	reproduction. All protogynous tanaidaceans are tube-dwellers (Stoner 1986; Kakui 2021).
201	While limited data are available on male-male interactions, Highsmith (1983) showed that
202	larger males of C. dubia are superior to smaller males in male-male fighting. In Nesotanais
203	males, the large, shield-like chelae (Figure 1C, D) bearing a presumptive stridulatory organ
204	(Figure 1E; Kakui et al. 2010) may function to block intruders during precopulatory guarding
205	in the tube; larger chelae may be more effective in guarding.
206	Males in protogynous tanaidaceans probably have a short life span. As Highsmith
207	(1983) pointed out, a marked difference between protogynous tanaidaceans and other
208	protogynous animals (e.g., fishes and isopods) is that the digestive system in males of the

209	former is not functional, meaning that males live only for a short period in a population. In
210	addition, possibly because males leave their tube and search the bottom for tube-dwelling
211	females for copulation, males of tube-dwelling tanaidacean species have a higher predation
212	risk than females (Mendoza 1982; Marinovic 1987; Kakui 2015). Furthermore, Kakui (2015)
213	suggested that large males may have higher predation risk than small males.
214	Male tanaidaceans can copulate with multiple females during their short life span;
215	they visit the tube of a preparatory female (= female with developing oostegites), engage in
216	copulation after a short precopulatory-guarding period, and then leave the tube to find another
217	female (Bückle-Ramírez 1965; Johnson and Attramadal 1982). Female tanaidaceans can
218	produce up to two or three broods of eggs if they spend whole their life as females (cf.
219	Bückle-Ramírez 1965); between broods, they lose the brood pouch and form a new one via
220	several molts.
221	Since protogynous tanaidacans are tube dwelling and have narrow home ranges
222	(females narrower than males), this would make it advantageous for females to sex change to
223	males whenever there were not males around to fertilize them. This system would work best
224	if females could change sex at any size. A single female changing sex in a local area would
225	negate the necessity for other females to do so, since a male can fertilize multiple females, so
226	the system is flexible, sort of a "supply upon demand" system. Overall reproductive success
227	of the population would be maximized if only as many females as absolutely necessary

228	changed sex, and if females were able to put off changing sex as long as possible, because the
229	overall reproductive output of small females laying only a single brood is less than that of
230	females that can grow larger and produce multiple broods.

In protogynous tanaidaceans, males have shorter life spans than females as a direct 231consequence of their not being able to feed, although this begs the question why they lose the 232233digestive tract upon sex change. This could be an ontogenetic consequence of the sex change itself---if, for example, the sex change evolved in such a way that it could be accomplished 234developmentally only with loss of the digestive system. However, since males must disperse 235relatively widely from their tubes to find females, their life span will be shorter than that of 236females as a simple consequence of greater mortality through predation. In terms of 237238reproduction, it may thus have been evolutionarily advantageous for males to devote all their 239effort to seeking females rather than partly to seeking food, given that they might not survive very long anyway due to predation. If this were the case, the digestive would have been lost 240because it was no longer needed, rather than as an unavoidable developmental correlate of the 241242sex change.

243

244

245 **Conclusions**

246	This study revealed that Nesotanais sp. aff. ryukyuensis is a protogynous species.
247	Future research involving rearing experiments will discover further examples of protogynous
248	tanaidaceans, especially in groups whose males bear degenerate mouthparts. Reports of
249	protogyny are still few in Crustacea and our knowledge on the sexual system is not sufficient.
250	More studies on protogynous crustaceans will be necessary to understand how greatly diverse
251	crustacean sexual systems have evolved.
252	
253	
254	Acknowledgments
255	We thank Hiroshi Yamasaki for help in field sampling; Shinri Tomioka for help in
256	rearing tanaidaceans; and Matthew H Dick for reviewing the manuscript and editing the
257	English. This study was supported in part by KAKENHI grants (JP19K06800 and
258	JP20J40122) from the Japan Society for the Promotion of Science (JSPS) and by funding
259	from the Fujiwara Natural History Public Interest Incorporated Foundation (FY2015).
260	
261	
262	References
263	Ahyong, S.T., Lowry, J.K., Alonso, M., Bamber, R.N., Boxshall, G.A., Castro, P., Gerken S.,
264	Karaman, G.S., Goy, J.W., Jones, D.S., Meland, K., Rogers, D.C., and Svavarsson, J.

- 265 2011. Subphylum Crustacea Brünnich, 1772. In Animal biodiversity: An outline of
- higher-level classification and survey of taxonomic richness. Zootaxa 3148. *Edited by*
- 267 Z.Q. Zhang. Magnolia Press, Auckland. pp. 165–191.
- Anderson, G. 2020. Tanaidacea—Forty years of scholarship, Version 3.0. Available from
 http://aquila.usm.edu/tanaids30/5/
- 270 Benvenuto, C., and Weeks, S. 2020. Hermaphroditism and gonochorism. *In* The natural
- history of the Crustacea, Vol. 6: Reproductive biology. *Edited by* R. Cothran and M.
- Thiel. Oxford University Press, Oxford. pp. 197–241.
- 273 Bückle-Ramírez, L.F. 1965. Untersuchungen über die Biologie von Heterotanais oerstedi
- 274 Kröyer (Crustacea, Tanaidacea). Z. Morphol. Ökol. Tiere **55**: 714–782.
- Forsman B. 1956. Notes on the invertebrate fauna of the Baltic. Ark. Zool. 9(17): 389–419.
- 276 Gardiner, L.F. 1975. The systematics, postmarsupial development, and ecology of the deep-
- sea family Neotanaidae (Crustacea: Tanaidacea). Sm. C. Zool. **170**: iv+1–265.
- doi:10.5479/si.00810282.170
- Highsmith, R.C. 1983. Sex reversal and fighting behavior: coevolved phenomena in a tanaid
- 280 crustacean. Ecology **64**(4): 719–726. doi:10.2307/1937194
- 281 Ishimaru, S. 1984. Sexual dimorphism and protogynous hermaphroditism in Leptochelia
- 282 *neapolitana* (Tanaidacea, Paratanaidae). Zool. Sci. 1(6): 997.
- 283 Ishimaru, S. 1985. A new species of Leptochelia (Crustacea, Tanaidacea) from Japan, with a

- redescription of *L. savignyi* (Krøyer, 1842). Publ. Seto Mar. Biol. Lab. **30**(4): 241–267.
- 285 Jażdżewski, K. 1969. Biology of two hermaphroditic Crustacea, Cyathura carinata (Kröyer)
- 286 (Isopoda) and *Heterotanais oerstedi* (Kröyer) (Tanaidacea) in waters of the Polish Baltic
- 287 Sea. Zool. Pol. **19**: 5–25.

- 288 Johnson, S.B., and Attramadal, Y.G. 1982. Reproductive behaviour and larval development of
- 289 *Tanais cavolinii* (Crustacea: Tanaidacea). Mar. Biol. **71**: 11–16.
- 290 doi:10.1007/BF00396987
- 291 Kakui, K. 2015. First report of Zeuxo sp. (Crustacea: Tanaidacea) as prey for the forktongue
- 292 goby, *Chaenogobius annularis* Gill, 1859. Rishiri Stud. **34**: 1–6. [in Japanese with
- 293 English abstract and caption]
- 294 Kakui, K. 2021. Tube-constructing paratanaoidean tanaidaceans (Crustacea: Peracarida): a
- brief review. Aquat. Anim. AA2021: AA2021-4.
- 296 doi:10.34394/aquaticanimals.AA2021.0_AA2021-4_4
- 297 Kakui, K., Kajihara, H., and Mawatari, S.F. 2010. A new species of Nesotanais Shiino, 1968
- 298 (Crustacea: Tanaidacea) from Japan, with a key to species and a note on male chelipeds.
- 299 ZooKeys **33**: 1–17. doi:10.3897/zookeys.33.296
- 300 Kakui, K., and Yamasaki, H. 2013. Nototanaids (Crustacea: Tanaidacea) from Japan, with the
- 301 description of a new species of *Nototanoides*. Species Div. **18**(2): 245–254.
- 302 doi:10.12782/sd.18.2.245

303	Kaji, T., Kakui, K., Miyazaki, N., Murata, K., and Palmer, A.R. 2016. Mesoscale morphology
304	at nanoscale resolution: serial block-face scanning electron microscopy reveals fine 3D
305	detail of a novel silk spinneret system in a tube-building tanaid crustacean. Front. Zool,
306	13 : 14. doi:10.1186/s12983-016-0146-0
307	Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions
308	through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.
309	Lang, K. 1958. Protogynie bei zwei Tanaidaceen-Arten. Ark. Zool. 11: 535–540+2 pls.
310	Marinovic, B.B. 1987. The reproductive biology of the protogynous hermaphrodite
311	Nototanais dimorphus (Beddard), an Antarctic tanaid. Master's thesis, University of
312	California Santa Cruz, USA.
313	Mendoza, J.A. 1982. Some aspects of the autecology of Leptochelia dubia (Krøyer, 1842)
314	(Tanaidacea). Crustaceana 43 (3): 225–240. doi:10.1163/156854082X00164
315	Messing, C.G. 1983. Postmarsupial development and growth of Pagurapseudes largoensis
316	McSweeny (Crustacea, Tanaidacea). J. Crustacean Biol. 3(3): 380-408.
317	Modlin, R.F., and Harris, P.A. 1989. Observations on the natural history and experiments on
318	the reproductive strategy of Hargeria rapax (Tanaidacea). J. Crustacean Biol. 9(4): 578-
319	586. doi:10.1163/193724089X00593
320	Pennafirme, S., and Soares-Gomes, A. 2009. Population biology and reproduction of
321	Kalliapseudes schubartii Mañé-Garzón, 1949 (Peracarida, Tanaidacea) in a tropical

- 323 doi:10.1163/001121609X12487811051589
- 324 Stoner, A.W. 1986. Cohabitation on algal habitat islands by two hermaphroditic Tanaidacea
- 325 (Crustacea: Peracarida). J Crustacean Biol. 6(4): 719–728.
- 326 https://doi.org/10.1163/193724086X00523
- 327 Toniollo, V., and Masunari, S. 2007. Postmarsupial development of Sinelobus stanfordi
- 328 (Richardson, 1901) (Tanaidacea: Tanaidae). Nauplius **15**(1): 15–41.
- 329 Vogt, G. 2020. An overview of sexual systems. In The natural history of the Crustacea, Vol. 6:
- 330 Reproductive biology. *Edited by* R. Cothran and M. Thiel. Oxford University Press,
- 331 Oxford. pp. 145–176.

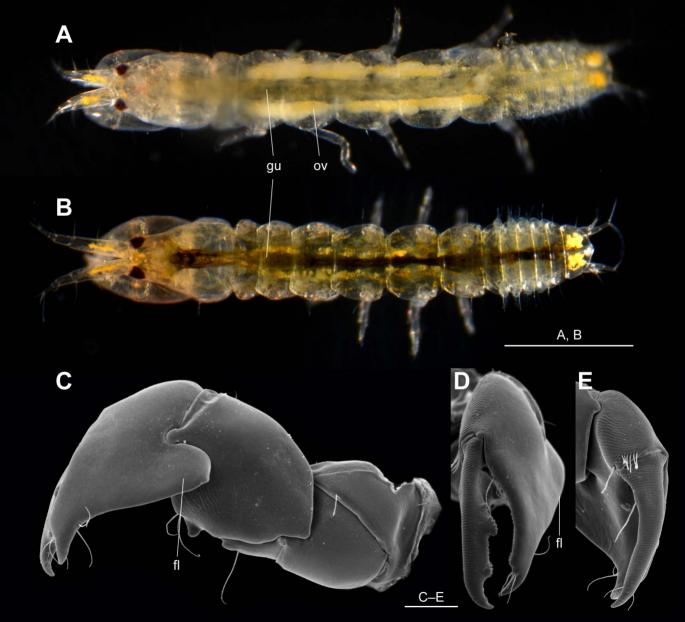
333	Figure	legends
-----	--------	---------

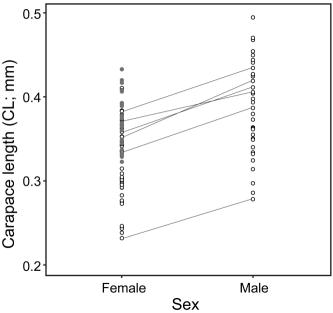
334	Figure 1. Nesotanais sp. aff. ryukyuensis. (A, B) Live animals, dorsal view; (A) female; (B)
335	male. (C–E) SEM images of left male cheliped; C, outer view; D, anterior view of chela; E,
336	inner view of chela. Abbreviations: fl, flange; gu, gut; ov, ovary. Scale bars: A, B, 0.5 mm;
337	C–E, 0.1 mm.
338	
339	Figure 2. Size distribution of female and male individuals of <i>Nesotanais</i> sp. aff. <i>ryukyuensis</i> .
340	Gray-filled circles, females with marsupium; open circles, individuals lacking marsupium.
341	Circles derived from same individual (i.e., a sex-changed individual and the exuvia that the
342	individual shed when it changed sex) are connected with a line.
343	
344	Figure 3. Nesotanais sp. aff. ryukyuensis, fixed individuals. (A–C) Habitus, lateral view. (D–
345	F) Cross-sections stained with HE. (A, D) Specimen F1. (B, E) Specimen F3. (C, F)
346	Specimen FM1. Abbreviations: d, dorsal; gu, gut; hp, hepatopancreas; ov, ovary; te, testis; v,

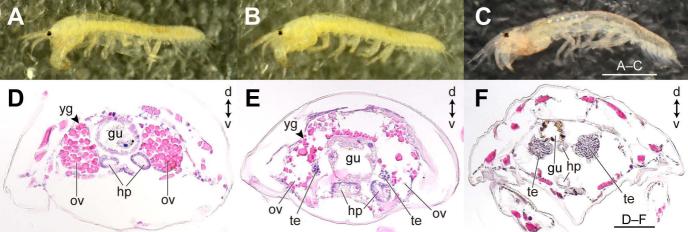
ventral; yg, yolk granule. Scale bars: A–C, 0.5 mm; D–F, 0.05 mm.

- **Table 1.** Tanaidacean species in which protogyny has been demonstrated by rearing
- 2 experiments.

Family	Species	Selected sources	
Leptocheliidae	Chondrochelia dubia	Highsmith (1983); Stoner (1986)	
	Chondrochelia neapolitana	Ishimaru (1984)	
	Hargeria rapax	Modlin and Harris (1989)	
	Heterotanais oerstedii	Forsman (1956); Bückle-Ramírez (1965);	
		Jażdżewski (1969)	
	Leptochelia forresti	Stoner (1986)	
	Makassaritanais itoi	Ishimaru (1985)	
Nototanaidae	Nototanais dimorphus	Marinovic (1987)	
	Nesotanais sp. aff. ryukyuensis	This study	

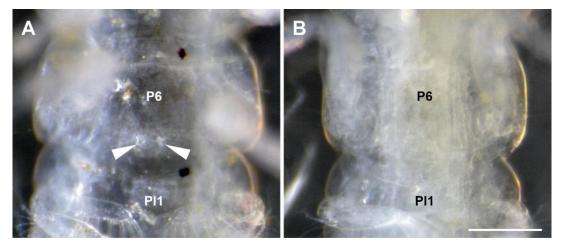

	1	0.	
Specimens	Sex in appearance	CL (mm)	Sampling date and remarks
F1	Female	0.34	9 Mar 2014; bearing empty
			marsupium
F2	Female	0.34	9 Mar 2014
F3	Female	0.35	9 Mar 2014
F4	Female	0.38	9 Mar 2014; used in rearing
			experiment
M1	Male	0.29	29 Jul 2014
M2	Male	0.30	29 Jul 2014
M3	Male	0.34	29 Jul 2014
M4	Male	0.38	29 Jul 2014
FM1	Male (sex changed)	0.43	9 Mar 2014; used in rearing
		(0.38*)	experiment; sex-changed from
			female to male during experiment

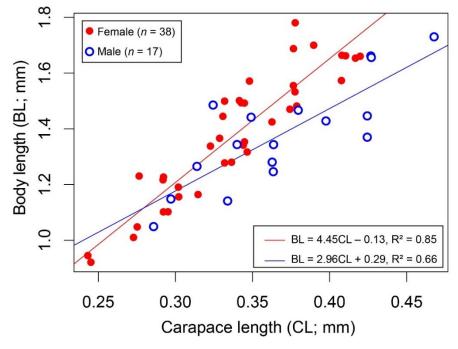

Table 2. Details of specimens used for histology. * carapace length (CL) of exuvia.


 $\mathbf{5}$

- 8 **Table 3.** Summary of rearing experiment. Abbreviations: das, days after sex change; dsi, days subsequent to isolation; +, sex changed; -, sex not
- 9 changed

Sampling date	Isolation date	Individual	Sex change	Death date	Remarks
9.iii.2014	11.iii.2014	3 females	_	before 16 dsi	First observation at 16 dsi
		1 female	+; date unknown	before 16 dsi	First observation at 16 dsi
			(before 16 dsi)		
		1 female	+; date unknown	60 dsi, >44 das	First observation at 16 dsi
			(before 16 dsi)		
		1 female	+; 34 dsi	(fixed at 65 dsi, 31 das)	2 molts observed prior to sex-changing molt;
					Specimen FM1
		1 female	_	(fixed at 65 dsi)	2 molts observed prior to fixation; Specimen F
		2 males	_	before 16 dsi	First observation at 16 dsi
	30.iii.2014	1 female	+; date unknown	(fixed at 46 dsi, >19 das)	
			(before 27 dsi)		
		1 female	+; 32 dsi	(fixed at 46 dsi, 14 das)	1 molt observed prior to sex-changing molt
		1 female	_	(fixed at 46 dis)	1 molt observed prior to fixation
		2 males	_	7–25 dsi	
12.i.2016	15.i.2016	1 female	+; 3 dsi	42 dsi, 39 das	No molt observed prior to sex-changing molt
		1 female	+; 36 dsi	(fixed at 36 dsi, 0 das)	2 molts observed prior to sex-changing molt
		7 females	_	10–51 dsi	0-3 molts observed prior to death
		1 male	_	26 dsi	




Journal name: Canadian Journal of Zoology Article title: Protogynous hermaphroditism in Crustacea: a new example from Tanaidacea Author(s): Keiichi Kakui and Chizue Hiruta

Corresponding author: Keiichi Kakui. E-mail: kakui@eis.hokudai.ac.jp. Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan

Supplementary Figure S1. Ventral view of pereonite 6 and pleonite 1 of *Nesotanais* sp. aff. *ryukyuensis.* (A) Male with a pair of genital cones (arrowheads). (B) Female without genital cones. Abbreviations: P6, pereonite 6; Pl1, pleonite 1. Scale bar: 0.1 mm.

Supplementary Figure S2. Relationship between body length (BL) and carapace length (CL) in *Nesotanais* sp. aff. *ryukyuensis*.

