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Abstract 17 
While knowledge of early ontogeny in abyssal animals is highly limited in general, it was completely 18 
lacking for abyssal, free-living platyhelminths. We discovered flatworm egg-capsules (or "cocoons") on 19 
rocks collected at depths of 6176–6200 m on the abyssal slope of the Kuril-Kamchatka Trench, 20 
northwestern Pacific. The egg capsules were black and spherical, around 3 mm in diameter, and contained 21 
three to seven individuals (n = 4) at the same developmental stage, either the spherical (putative early 22 
embryo) or vermiform (putative late embryo) stages. A molecular phylogenetic analysis based on 18S and 23 
28S rRNA sequences revealed that the flatworms belong in suborder Maricola in Tricladida and suggested 24 
that they may have colonized from shallow to deep waters. This study provides the deepest record for free-25 
living flatworms and the first information on their early life stages in the abyssal zone, which were very 26 
similar to those in shallow-water forms. This similarity in development between the relatively benign 27 
shallow-water and the extreme abyssal environments suggests that triclads adapting to the latter faced 28 
primarily physiological and/or ecological adaptive challenges rather than developmental ones. 29 
 30 
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Introduction 33 
The life cycles of most abyssal animals are largely unknown, despite their importance in understanding 34 
how animals have successfully colonized and adapted to the extreme conditions of the abyssal zone (3500–35 
6500 m depth; [1]). This is especially true of early ontogeny, including embryonic and larval development. 36 
Only a few fragmentary studies have described the early life history of representatives of several animal 37 
groups at abyssal depths, including barnacles (e.g., [2]), molluscans (e.g., [3]), fishes (e.g., [4]), sponges 38 



(e.g., [5]), hydrozoans (e.g., [6]), and digeneans (e.g., [7]). 39 
 Almost nothing is known about abyssal free-living platyhelminths, for which a “potential 40 
platyhelminth” found on sunken wood at depths of 5257–5236 m [8] may be the sole currently available 41 
information; to date, the deepest certain record is the polyclad Oligocladus voightae from 3232 m [9]. Due 42 
to their fragility, platyhelminths are unlikely to be collected with coarse sampling gear such as dredges and 43 
trawls [9], and information on their development at depths is lacking. Free-living flatworms can vary 44 
markedly in ontogeny [10]. In sexual reproduction, they generally produce single or multiple embryos 45 
(along with extra-embryonic yolk cells in neoophorans) enclosed in an egg capsule (or "cocoon") attached 46 
to a substrate by a secretion from the uterine glands. Embryonic development differs among groups; while 47 
polyclads undergo spiral cleavage, triclads and other neoophorans undergo irregular, dispersed cleavage 48 
[10]. Most free-living flatworms show direct development, except for several specific groups in Catenulida 49 
and Polycladida, and little is known of the later stages of development. 50 
 During a deep-sea faunal survey by R/V Hakuho-maru (Japan Agency for Marine-Earth Science 51 
and Technology; JAMSTEC) along the Kuril-Kamchatka and Japan Trenches, northwestern Pacific, we 52 
found many black spherical bodies on rock fragments. Most of these bodies were torn and empty, but 53 
several intact ones contained flatworms, indicating they were the egg capsules of abyssal flatworms. In this 54 
study, we identified the flatworms to the limit of currently available data using a molecular phylogenetic 55 
approach based on partial sequences for the 18S rRNA (18S), 28S rRNA (28S), and cytochrome c oxidase 56 
subunit I (COI) genes. Here we present these results and briefly discuss insights into their early ontogeny. 57 
 58 
Materials and methods 59 
Egg capsules attached to two rock fragments were collected with a beam trawl on 21 September 2023 60 
during cruise KH-23-5 of R/V Hakuho-maru, at depths of 6176–6200 m at Station C5 (41°28.411′ N 61 
146°06.803′ E to 41°28.519′ N 146°07.632′ E). Four intact egg capsules were detached from the rocks, and 62 
their contents were extracted by pipet, forceps, and a needle. The flatworms thus obtained were fixed in 63 
70% ethanol, 99% ethanol, or Bouin’s fluid; some of them were photographed before fixation. The 64 
material studied was deposited in the Invertebrate Collection of the Hokkaido University Museum 65 
(ICHUM), Sapporo under catalog numbers ICHUM8616 and ICHUM8617. 66 
 One specimen (ICHUM8616) fixed in 70% ethanol was dehydrated in an ethanol series, cleared in 67 
xylene, embedded in paraffin, and serially sectioned sagittally at 7 µm. Sections were mounted on five 68 
glass slides, stained with hematoxylin and eosin (HE), and sealed in Entellan New (Merck, Germany) 69 
under coverslips. The serial sections were photographed under an Olympus BX51 compound microscope. 70 
 DNA was extracted from the whole body of two flatworms, one spherical and one vermiform (for 71 
details, see Results and Discussion) by using a NucleoSpin Tissue XS Kit (Macherey–Nagel, Germany). 72 
For the COI gene, newly designed primers COI_MarF (CAAATTGGACATCCTGARGTTTATA) and 73 
COI_MarR (AATTAATAACGRCGAGGCAT) were used for PCR amplification and cycle sequencing. For 74 
the 18S gene, primers SR1 and SR12 [11] were used for amplification, and primers SR3, 18S-b3F, 18S-75 
b4F, 18S-b4R, 18S-b5F, 18S-b6F, 18S-a6R, and 18S-b8F [11–15] for cycle sequencing. For the 28S gene, 76 



primers 28S_1F and 28S_6R [16] were used for amplification, and primers 300F, 300R, 900F, 28S_Rd4.2b 77 
[17, 18] and 28S_b5F (TATCCGGTAAAGCGAATGATTAGA, newly designed in this study) for cycle 78 
sequencing. PCR amplification conditions for COI with TaKaRa Ex Taq DNA polymerase (TaKaRa Bio, 79 
Japan) were 94 °C for 1 min; 35 cycles of 98 °C for 10 s, 42 °C for 30 s, and 72 °C for 50 s; and 72 °C for 80 
2 min. Conditions for 18S and 28S with KOD FX Neo (Toyobo, Japan) were 94 °C for 2 min; 45 cycles of 81 
98 °C for 10 s, 65 °C (18S) or 60 °C (28S) for 30 s, and 68 °C for 1 min; and 68 °C for 2 min. All 82 
nucleotide sequences were determined with a BigDye Terminator Kit ver. 3.1 and a 3730 DNA Analyzer 83 
(Life Technologies, USA). Fragments were concatenated by using MEGA7 [19]. The sequences we 84 
determined were deposited in the International Nucleotide Sequence Database (INSD) through the DNA 85 
Data Bank of Japan (DDBJ). 86 
 The results of a BLAST search [20] for our 18S sequence indicated that the flatworm belongs in 87 
Tricladida, and so a concatenated 18S+28S dataset that included both sequences for two of our flatworm 88 
specimens, 35 triclad species, and seven outgroup taxa (electronic supplementary material, table S1) was 89 
analyzed by maximum likelihood (ML) to infer the position of the abyssal flatworm within Tricladida. The 90 
18S and 28S data were aligned independently by using the “Q-INS-i” strategy [21] in MAFFT ver. 7 [22] 91 
(electronic supplementary material, files S1, S2) and then trimmed with MEGA7 to match the shortest 92 
length for each gene. Alignment-ambiguous sites were removed with Gblocks ver. 0.91b [23] in 93 
NGPhylogeny.fr [24] under the “relaxed” parameters described in [25]. The dataset contained 1458 aligned 94 
positions for 18S, 982 for 28S, and 2440 in total (electronic supplementary material, file S3). Methods for 95 
selecting the optimal substitution model (GTR+F+R4 for 18S; GTR+F+R5 for 28S), the ML analysis, and 96 
drawing the tree were as described by [26]. 97 
 98 
Results and Discussion 99 
One of the two rock fragments with attached black, spherical egg capsules is shown in figure 1a. Most egg 100 
capsules had been torn; among four intact egg capsules we observed, one (diameter 3.1 mm; figure 1b) 101 
contained three spherical-stage individuals (figure 1c), which may have been early embryos. The other 102 
three (one shown in figure 1d, e; two measured 3.3 mm in diameter, while the third was not measured) 103 
contained seven, four, and three vermiform-stage individuals (figure 1f). Serial sections of a vermiform 104 
individual (figure 1g) showed a posteriorly directed tubular pharynx, a mouth opening near the distal end 105 
of the pharynx, and a yolk-filled gut diverticulum, indicating vermiform individuals were late embryos. 106 
When we opened the egg capsules, a milky liquid (particulate emulsion?) that might have been yolk was 107 
observed along with the flatworms. 108 
 The 18S (1760 bp; LC783379 and LC783380) and 28S (1629 bp; LC783381 and LC783382) 109 
sequences we obtained were respectively identical between two individuals (one spherical, one 110 
vermiform). In the 18S+28S ML tree (figure 2), our flatworm lies in Maricola, a small triclad group 111 
containing about 80 described species [27]. Although exact depth information was unavailable for most of 112 
the representative maricolan individuals for which sequences were obtained from databases, all except our 113 
species in the Maricola clade are freshwater, brackish, or shallow-water taxa, suggesting that a habitat 114 



expansion from coastal regions to the abyssal zone may have occurred in the clade. 115 
 The two COI (581 bp, encoding 193 amino acids; LC783383 and LC783384) sequences differed 116 
by two nucleotide substitutions, corresponding to intraspecific variation (cf. [28]). This indicates that (1) 117 
the spherical and vermiform individuals represent different developmental stages of a single species, and 118 
(2) the aggregations of egg capsules on a single rock fragment were laid by at least two adults. In addition, 119 
the fact that some egg capsules contained early embryos and others contained late embryos suggests that 120 
the egg capsules were laid over a period of time. Video footage recorded during trawling at the sampling 121 
site showed a muddy bottom overlain with a lot of rocks and gravel (Takuya Yahagi, The University of 122 
Tokyo, personal communication on 18 October 2023), with the hard substrates probably providing a 123 
favorable spawning site for the abyssal flatworms. 124 
 The egg capsules and early development of maricolans have not been well investigated [29]. Two 125 
types of egg capsules are known in the group: a spherical type attaching directly to a substrate (e.g., 126 
Procerodes littoralis; [30]) and an ellipsoid type attaching to a substrate by a stalk (e.g., Ectoplana undata 127 
and Bdelloura candida; [31, 32]). While the egg capsules we observed were of the former type, they were 128 
also relatively large, as spherical egg capsules are generally 0.7–1.7 mm in diameter [33]. The number of 129 
worms per egg capsule was within the previously reported range, from one to nine [29, 33]. The spherical 130 
early embryos and vermiform late embryos we observed in the egg capsules showed no obvious 131 
differences from the early developmental stages known in other triclads. 132 
 This study represents the deepest known record of free-living platyhelminths and the first report of 133 
early developmental stages in an abyssal free-living flatworm, which, superficially at least, are 134 
indistinguishable those in shallow-water forms. It indicates that, in both cases, the shell of the egg capsule 135 
tears open during hatching (cf. figure 1d), and adult-like juveniles emerge to begin a benthic mode of life. 136 
This similarity of early ontogeny between the relatively benign shallow-water and the extreme abyssal 137 
environments suggests that in adapting to the latter, flatworms faced primarily physiological and/or 138 
ecological challenges rather than developmental ones.  139 
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Figure legends 259 
Figure 1. Freshly collected egg capsules (or "cocoons") and flatworms. (a) Egg capsules on rock fragment 260 
(arrowhead, one egg capsule). (b) Partly opened egg capsule containing three spherical-stage flatworms. 261 
(c) Spherical-stage flatworm extracted from egg capsule. (d) Cracked egg capsule containing seven 262 
vermiform-stage flatworms (arrow, empty egg capsule). (e) Same, half of egg-capsule shell removed. (f) 263 
Vermiform-stage flatworm (ICHUM8616) extracted from egg capsule, in ventral view; anterior to the left. 264 
(g) Sagittal section of individual ICHUM8616, HE stained; an, anterior; do, dorsal; gd, gut diverticulum; 265 
mo, mouth opening; ph, pharynx; po, posterior; ve, ventral. Scale bars: 10 mm (a); 1 mm (b–g). 266 



 267 
Figure 2. ML tree for triclad platyhelminths based on an 18S+28S dataset (2440 positions). Numbers near 268 
nodes are Shimodaira-Hasegawa-like approximate likelihood ratio test (SH-aLRT; left of slash) and 269 
ultrafast bootstrap (UFBoot; right of slash) values as percentages; only values of SH-aLRT ≥70% and 270 
UFBoot ≥80% are shown. Scale at bottom indicates branch length in substitutions per site. 271 
  272 



Electronic Supplementary Material legends 273 
Table S1 from Flatworm cocoons in the abyss: same plan under pressure 274 
Table S1. Information on the flatworms included in our phylogenetic analysis. 275 
 276 
File S1 from Flatworm cocoons in the abyss: same plan under pressure 277 
File S1. Aligned 18S sequences used for the maximum-likelihood analysis, trimmed in MEGA7 to the 278 
shortest length among the sequences. 279 
 280 
File S2 from Flatworm cocoons in the abyss: same plan under pressure 281 
File S2. Aligned 28S sequences used for the maximum-likelihood analysis, trimmed in MEGA7 to the 282 
shortest length among the sequences. 283 
 284 
File S3 from Flatworm cocoons in the abyss: same plan under pressure 285 
File S3. Concatenated 18S+28S sequences used for the maximum-likelihood analysis, reduced to 2440 286 
positions (1–1458 for 18S; 1459–2440 for 28S) by removing alignment-ambiguous sites with Gblocks under 287 
“relaxed” parameters. 288 
 289 






