論文

査読有り 本文へのリンクあり
2019年

Investigation of a gold quantum dot/plasmonic gold nanoparticle system for improvement of organic solar cells

Nanoscale Advances
  • Sopit Phetsang
  • ,
  • Apichat Phengdaam
  • ,
  • Chutiparn Lertvachirapaiboon
  • ,
  • Ryousuke Ishikawa
  • ,
  • Kazunari Shinbo
  • ,
  • Keizo Kato
  • ,
  • Pitchaya Mungkornasawakul
  • ,
  • Kontad Ounnunkad
  • ,
  • Akira Baba

1
2
開始ページ
792
終了ページ
798
記述言語
掲載種別
研究論文(学術雑誌)
DOI
10.1039/c8na00119g

© 2019 The Royal Society of Chemistry. Light management allows enhancement of light harvesting in organic solar cells (OSCs). In this paper, we describe the investigation of OSCs enhanced by the synergistic effect of gold quantum dots (AuQDs) and localized surface plasmons, obtained by blending a AuQD layer and plasmonic gold nanoparticles (AuNPs) in a hole-transport layer (HTL). Different AuQDs emitting blue, green, and red fluorescence were examined in this study. The OSCs were demonstrated to comprise an ITO-coated glass substrate/AuQDs/PEDOT:PSS:AuNPs/P3HT:PCBM/Al structure. The UV-visible spectra, current density versus voltage characteristics, impedance spectra, and incident photon-to-current efficiency of the fabricated devices were evaluated. The results showed an enhancement of photovoltaic efficiency achieved as a result of the increase in short-circuit current density (Jsc) and power conversion efficiency (PCE) in comparison with those of the reference OSCs. The best synergistic effect was found with OSCs consisting of a green-emitting AuQD layer and a HTL containing AuNPs, resulting in the highest improvement in PCE of 13.0%. This indicated that the increase in light harvesting in the developed devices was induced by extended light absorption in the UV region resulting from absorption by the AuQD layer and emission of visible fluorescence from the AuQD layer to the photoactive layers. Moreover, the localized surface plasmon effect of AuNPs, which also contributed to an increase in light trapping in the proposed OSCs, was enhanced by the effect of the AuQDs.

リンク情報
DOI
https://doi.org/10.1039/c8na00119g
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85072053837&origin=inward 本文へのリンクあり
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85072053837&origin=inward
ID情報
  • DOI : 10.1039/c8na00119g
  • eISSN : 2516-0230
  • SCOPUS ID : 85072053837

エクスポート
BibTeX RIS