MISC

2012年4月10日

Vortex counting from field theory

JHEP 1206:028,2012
  • Toshiaki Fujimori
  • ,
  • Taro Kimura
  • ,
  • Muneto Nitta
  • ,
  • Keisuke Ohashi

記述言語
掲載種別
機関テクニカルレポート,技術報告書,プレプリント等
DOI
10.1007/JHEP06(2012)028

The vortex partition function in 2d N = (2,2) U(N) gauge theory is derived<br />
from the field theoretical point of view by using the moduli matrix approach.<br />
The character for the tangent space at each moduli space fixed point is written<br />
in terms of the moduli matrix, and then the vortex partition function is<br />
obtained by applying the localization formula. We find that dealing with the<br />
fermionic zero modes is crucial to obtain the vortex partition function with<br />
the anti-fundamental and adjoint matters in addition to the fundamental chiral<br />
multiplets. The orbifold vortex partition function is also investigated from<br />
the field theoretical point of view.

リンク情報
DOI
https://doi.org/10.1007/JHEP06(2012)028
arXiv
http://arxiv.org/abs/arXiv:1204.1968
URL
http://arxiv.org/abs/1204.1968v1