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Altered functional connectivity 
associated with time discounting in 
chronic pain
Kenta Wakaizumi   1,2,3,4, Rami Jabakhanji3,4,5, Naho Ihara1, Shizuko Kosugi1, Yuri Terasawa6, 
Hiroshi Morisaki1, Masao Ogaki2 & Marwan N. Baliki3,4

Chronic pain (CP) is a global problem extensively associated with an unhealthy lifestyle. Time 
discounting (TD), a tendency to assign less value to future gains than to present gains, is an indicator of 
the unhealthy behaviors. While, recent neuroimaging studies implied overlapping neuro mechanisms 
underlying CP and TD, little is known about the specific relationship between CP and TD in behavior 
or neuroscience. As such, we investigated the association of TD with behavioral measures in CP and 
resting-state brain functional network in both CP patients and healthy subjects. Behaviorally, TD 
showed a significant correlation with meaningfulness in healthy subjects, whereas TD in patients 
only correlated with pain intensity. We identified a specific network including medial and dorsolateral 
prefrontal cortex (PFC) in default mode network (DMN) associated with TD in healthy subjects that 
showed significant indirect mediation effect of meaningfulness on TD. In contrast, TD in patients was 
correlated with functional connectivity between dorsolateral PFC (DLPFC) and temporal lobe that 
mediated the effect of pain intensity on TD in patients. These results imply that TD is modulated by 
pain intensity in CP patients, and the brain function associated to TD is shifted from a medial to lateral 
representation within the frontal regions.

Chronic pain (CP), a persistent unpleasant sensory and emotional experience, is one of the biggest global bur-
dens. Prevalence rate of CP is at least 20 to 40% in each country1–10, and health care and lost productivity cost is 
estimated to be up to hundreds of billion dollars per year11–14. In the United States, the socio-economic cost of CP 
was larger than the ones of other costly major diagnoses including cardiovascular diseases, neoplasms, nutritional 
and metabolic diseases, and respiratory system diseases11.

CP is strongly associated with an unhealthy lifestyle15. CP and obesity adversely impact each other, and weight 
loss for obese pain patients is an important aspect of pain rehabilitation16,17. Smoking in subacute low back pain 
patients is a risk factor of persistent pain18, and smokers have a lower pain threshold and experience more pain 
than non-smokers and former smokers19,20. Inactivity and fear of movement is independently associated with 
low back pain, joint problems, and neck and shoulder pain21–24. In particular, sedentary behavior is an important 
therapeutic target and exercise is a main approach in CP management. Regular exercise programs including 
the cognitive behavioral approach can attenuate chronic pain and improve patients’ lifestyle25–27. Addressing the 
change of lifestyle including exercise behavior in CP patients is a first-line intervention to reduce the socioeco-
nomic burden related to chronic pain as well as other non-communicable diseases28,29.

Time discounting (TD), a tendency to assign less value to future gains than to present gains, is an indicator of 
unhealthy behavior. Higher TD is a significant risk factor for unhealthy diets, overweight and obesity, and lower 
TD was associated with greater weight reduction after a treatment30. Smokers also discounted the future more 
than non-smokers and, in longitudinal studies, higher TD predicted future smoking, as well as smokers with 
lower TD rates achieved higher quit rates31. Additionally, higher TD is a common feature of substance use includ-
ing opioids and other addictive disorders32,33. Opioid abuse and addiction is another problem on the treatment 
of chronic pain34. Exercise behavior, a goal of CP management, is associated with lower TD rate in older adults35. 
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While these findings show that CP and TD exhibit overlapping associations with various behavioral aspects of 
unhealthy lifestyles, the direct relationship between TD and chronic pain characteristics remain unexplored.

In accordance with the behavioral associations discussed above, brain imaging studies showed TD and CP 
map to similar brain regions. Subjective value of delayed monetary rewards is assessed in medial prefrontal cor-
tex (MPFC), ventral striatum, and posterior cingulate cortex (PCC). Activity in these brain regions increases as 
the objective amount of a reward increases, and decreases as the imposed delay to a reward increases36. Nucleus 
Accumbens (NAc), or ventral striatum, is a key component of the brain reward system, and mesocorticolimbic 
system including NAc and MPFC works for reward processing and decision making37. On the other hand, CP 
makes a significant change of functional network in NAc and MPFC of patients38. Furthermore, resting state 
functional connectivity (RSFC) between NAc and MPFC in back pain patients is involved in the development of 
persistent pain from the subacute condition39. Despite the similarities of unhealthy lifestyle and brain function 
associated with TD and CP, little is known about the relationship of them in behavior or neuroscience. This study 
investigated the association of TD with behavioral measures relating to CP and resting-state brain network both 
in CP patients and healthy subjects.

Results
Association of time discounting factor to pain intensity in chronic pain patients.  We compare 
and contrast TD in a group of CP patients and matched healthy subjects and its relationship to various behavioral 
and clinical parameters including pain, anxiety, depression, financial strain and several Sense of Coherence (SOC) 
questionnaire such as comprehensibility, manageability, meaningfulness. TD was assessed by fitting a hyperbolic 
discounting model (1), a well validated assumption of TD in time inconsistency36,40, to the data (Fig. 1a). We 
estimated a discount function of subjective values, SV(t), for each subject.

Figure 1.  Time discounting in healthy and patients. (a) Plots display individual time discounting functions 
for healthy subjects (left) and patients (right). Blue and red line represents mean for healthy and patients 
respectively. (b) Box plot shows log-transformed discounting factor ‘k’ for healthy (blue) and patients 
(red). There was no significant difference between healthy and patients (p = 0.74). (c) Scatter plots show the 
correlation between behavioral measures and time discounting. In healthy subjects (left), time discounting show 
significant correlation with meaningfulness. In contrast, time discounting only showed correlation with pain 
intensity in patients (right). R = correlation coefficient.
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where t is the delay in days from the reference time point, and k (>0) is the time discount factor. For large val-
ues of ‘k’, subjective value drops rapidly with time; whereas when ‘k’ is small, subjective value exhibits a slower 
response. In other words, subjects with small ‘k’ are more patient and less impulsive than subjects with larger ‘k’ 
values (Supplementary Fig. 1). Behavioral questionnaires of anxiety and depression, insomnia, and fear for move-
ment recorded significantly higher scores in CP patients compared to healthy subjects as previously reported24,41,42 
(Table 1). Estimated discount factor ‘k’ (Fig. 1b), 3 subscales of SOC questionnaire (comprehensibility, managea-
bility, meaningfulness), and financial strain had no significant differences between the 2 groups. However, gener-
alized regression analyses revealed that only meaningfulness significantly correlated with TD in healthy subjects, 
whereas, in patients, only pain intensity significantly correlated with TD (Fig. 1c, Supplementary Tables 1 and 2).

Brain functional differences between CP patients and healthy.  We assessed functional connectiv-
ity on the predetermined 333 cortical parcels derived from boundaries of resting-state functional connectivity 
(RSFC)43 and 10 subcortical regions extracted from the Harvard-Oxford Atlas44–47 (Fig. 2a). The 343 regions on 
interest (ROIs) had been assigned to 13 predetermined community networks; auditory (Au), cingulo opercular 
(CiO), cingulo parietal (CiP), default mode (DM), dorsal attention (DA), front parietal (FP), retrosplenial tempo-
ral (RT), salience (Sa), sensory motor (SM) of mouth, sensory motor (SM) of hand, ventral attention (VA), visual 
(Vi), and subcortical (SC). For the robustness of our brain functional data, standardized graph theoretical method 
was demonstrated in CP patients, in our healthy subjects, and in 95 age- and gender-matched off-site healthy 
subjects, taken from NITRC database as reported previously38 (Fig. 2b). Clustering coefficient, global efficiency, 
and small-world-ness showed similar trends in the 3 groups, but clustering coefficient significantly decreased and 
global efficiency increased in CP patients compared to healthy subjects according to each link density, which is a 
threshold based on percentage of links with higher correlation (Fig. 2c).

Involvement of the default mode network to time discounting in healthy.  ROI-based connectiv-
ity analysis identified 45 links involving 51 ROIs related to TD, in which each RSFC cluster met a criterion of at 
least 2 links connected with each other and every link showed less than 0.05 false discovery rate-adjusted p-value 
(pFDR) (Fig. 3a). When we categorized each link to the predetermined 13 communities, the greatest number 
of links (6 links of 8 ROIs) were categorized to the DMN. The average of the Fisher’s z-transformed correlation 
coefficients (zr value) of those 6 links are significantly correlated with log (k) (Fig. 3b, Supplementary Table 3). 
Number of links (degree), clustering coefficient, and efficiency were averaged in the identified 8 ROIs. Repeated 
measure ANOVA resulted in significant higher degree and efficiency, and lower clustering coefficient in patients 
compared to healthy (Fig. 3c). However, none of them were associated with log (k) nor meaningfulness across all 
link densities (Supplementary Table 4). Mediation analysis resulted in a significant indirect effect of meaningful-
ness on TD through the identified 6 links within the DMN (Fig. 3d, Supplementary Table 5). Averaged zr value 
was computed within each community and between any two communities. Increased log (k) was significantly 
associated with increased zr value within the whole DMN including 41 ROIs and decreased zr value between the 
VA network (23 ROIs) and the Vi network (39 ROIs) (Fig. 3e,f). The differences of graph metrics between healthy 
and patients are same in the whole DMN as in the TD-related DMN (Fig. 3g).

Involvement of the dorsolateral prefrontal cortex to time discounting in CP patients.  On the 
other hand, 10 links and 12 ROIs related to TD were identified in CP patients (pFDR < 0.05 and cluster criterion 

Healthy 
(n = 19)

Patients 
(n = 19)

p-value(mean, SEM) (mean, SEM)

log (k) −1.49, 0.19 −1.58, 0.18 0.74

Pain intensity (1–10) — 4.53, 0.40

K6 1.16, 0.41 6.05, 1.25 <0.01

AIS 2.79, 0.58 6.47, 0.84 <0.01

TSK 15.79, 1.33 27.00, 1.01 <0.01

Comprehensibility 22.84, 1.67 20.42, 1.55 0.29

Managebility 18.47, 0.76 16.00, 1.16 0.12

Meaningfulness 18.89, 0.95 17.53, 1.36 0.42

(n, %) (n, %)

High financial strain 7, 36.8 6, 31.6 0.74

Table 1.  Time discounting and clinical behavioral differences between in healthy subjects and CP patients. 
Time discounting factor ‘k’ showed no significant difference between patients and healthy. K6, AIS, and 
TSK were significantly high in patients compared to healthy. SEM = standard error of mean; K6 = Kessler 
Psychological Distress Scale; AIS = Athens Insomnia Scale; TSK = Tampa Scale for Kinesiophobia. Age and 
gender adjusted regression analyses were performed for continuous data, and age and gender adjusted logistic 
analysis was performed for categorical data.
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≥ 2 links), and no overlap was observed with the links in healthy subjects (Fig. 4a). We focused on the right 
dorsolateral prefrontal cortex (DLPFC) included in the CO network, because the greatest number of connec-
tions (7 links) were in the discovered network region. The DLPFC mainly connected to the temporal lobe (TL) 
negatively, which covered the bilateral Parahippocampal gyrus (Supplementary Table 6). The increased zr value 
and decreased degree significantly associated with increased log (k) (Fig. 4b, Supplementary Table 7). Moreover, 
patients showed significant higher degree and lower clustering coefficient compared to healthy (Fig. 4c). 
Mediation analysis resulted in significant indirect effect of the pain intensity on TD through the coupling of 
DLPFC to TL (Fig. 4d, Supplementary Table 8). Furthermore, pain intensity was associated with the degree of the 
whole DMN (Fig. 4e, Supplementary Table 7). Regarding involvement of anxiety and depression in the TD factor 
and brain functions associated with pain intensity, multiple regression analyses were performed including Kessler 
Psychological Distress Scale (K6), and model fitting values were compared to the model of pain intensity (pain 
model). Any models with K6 for log (k), zr value of DLPFC-TL, and degree of the whole DMN showed decreased 
F-value and adjusted R2, increased small-sample-size corrected version of Akaike information criterion (AICc) 
and Bayesian information criterion (BIC) compared to the pain model (Supplementary Table 9).

Finally, we hypothesized that DMN worked on a 3-step mediation model from pain intensity to TD and tested 
it. The model represents a series of mediation pathway composed of a few brain networks (Supplementary Fig. 3). 
The TD-related DMN identified in healthy and the whole connections within DMN were put into the box “A” and 

Figure 2.  Construction and characterization of functional brain networks in healthy subjects and patients. (a) 
Whole brain atlas for regions of interest (ROIs). Ten subcortical regions from Harvard-Oxford Atlas44–47 were 
added on the 333 validated parcels derived from boundaries of resting-state functional connectivity (RSFC)43. 
(b) Functional connectivity matrices of the validated ROIs and 13 communities. The color bar shows the 
intensity of correlation coefficient. (c) Global graph properties in healthy (n = 19), patients (n = 19), and off-site 
healthy subjects (n = 95). Clustering coefficient and global efficiency were significantly different between in 
healthy and patients, whereas small-world-ness was not different; repeated measure ANCOVA.

https://doi.org/10.1038/s41598-019-44497-5


5Scientific Reports |          (2019) 9:8154  | https://doi.org/10.1038/s41598-019-44497-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

“B” in the models respectively, as well as every connection within DMN were tested one by one. However, none of 
them showed significant fitting on these models (Supplementary Table 10).

Discussion
Our findings identified a significant correlation of pain intensity to TD in CP patients. Patients with severe pain 
showed high discount rate for future value. This finding implies that severe pain will indicate low expectancy for 
future condition. Eventually, patients with intractable chronic pain have unfavorable cognitions regarding the 
probability of future experiences, events, and behavior48. Therefore, pain intensity is supposed to increase TD and 
influence an individual’s decision making of inter-temporal choices, even if they do not directly relate to pain. In 
contrast, meaningfulness, a subscale of SOC, correlated with TD in healthy subjects, whereas it was not replicated 
in patients. This suggests that pain is a more powerful influencer of TD than meaningfulness in chronic pain state. 
Since CP state shows functional changes of brain neurons, neuro transmitters, receptors, and neural circuits, 
especially in the brain reward system49,50, this neural plasticity may contribute to the different mechanisms of the 
intertemporal decision-making between healthy and CP patients.

TD variability in patients might contribute to compliance of pain treatments. Higher TD patients will prefer 
standard pain treatments, such as drug administrations and injection therapy, which can provide their effects 
within from a few hours to a few days. On the other hand, advanced interdisciplinary pain programs like a cog-
nitive behavioral therapy (CBT) are probably not acceptable for them, because they will need at least a few weeks 

Figure 3.  Functional connectivity associated with time discounting in healthy subjects. (a) Significant positive 
networks associated with time discounting (TD) factor in whole brain analysis (pFDR < 0.05 and cluster 
criterion ≥2 links). Color and size of spheres represent community membership and the number of links 
(degrees), respectively. Color and width of links represent correlation value and intensity (negative correlations 
are green; positive correlations are orange). (b) Brain image show DMN specific connectivity significantly 
associated with TD. Scatter plot shows the relationship between TD and average functional connectivity within 
DMN connections. (c) Graph metrics of the DMN specific connectivity network. Patients showed significantly 
higher degree and efficiency, and lower correlation coefficient through 2% to 10% link densities. (d) Mediation 
analysis of the pathway from the meaningfulness to the log-transformed TD factor. Standardized regression 
coefficient ‘β’ was shown with 95% confidence interval (**p < 0.01). Indirect effect was computed in bootstrap 
method permuted 10000 times. (e) Schematic result of the community-based regression analysis for TD. 
Only the connection within DMN and between VA and Vi networks showed the significant correlation to the 
log-transformed TD factor. (f) Scatter plots show association of TD with the whole connection within DMN 
and the network between VA and Vi. (g) Graph metrics of the whole DMN. Patients showed significantly 
higher degree and efficiency, and lower correlation coefficient through 2% to 10% link densities. zr = Fisher’s 
z-transformed regression coefficient. All statistical analyses were controlled with age and gender.
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as a window period to recognize pain modulation. Since negative RSFC of the DLPFC-TL was associated with 
lower TD in the current study, the negative coupling of the DLPFC-TL may be a potential predictor of successful 
pain programs. Furthermore, amending higher TD may be an initial therapeutic target for interdisciplinary pain 
treatment and the DLPFC-TL may be helpful as a biomarker.

DMN including MPFC and PCC is a brain network shown to be active in resting-state51,52. In healthy subjects, 
community-based analysis revealed that TD correlated with RSFC of the whole DMN. MPFC and PCC were 
brain regions activated by assessment of subjective value36. Increased RSFC within a module including MPFC, 
DLPFC, and PCC was associated with high impulsivity53, which is a major personality shaping TD54,55. ROI-based 
analysis identified that TD-associated links in the DMN were composed of DLPFC and MPFC (Supplementary 
Table 3); that is consistent with previous findings56,57. In addition, the increased RSFC of the specific links within 
DMN represented a negative correlation to meaningfulness. According to a previous study, increased RSFC of the 
DMN is associated with lower levels of happiness58. Furthermore, our result of mediation analysis showed the 
specific DMN is a mediator on the effect of meaningfulness on TD.

Similar to the behavioral results of the TD-related measures in CP patients compared to healthy, we identi-
fied completely different connections associated with TD in patients. Both DLPFC and TL are common brain 
areas involved in decision making and reward processing37. The coupling of DLPFC-TL, however, has never 
been identified as a TD-related region in healthy. As many previous studies revealed, chronic pain dramatically 
alters the functional architecture of brain38,59–66. Indeed, graph theoretic analyses revealed significant differences 
of global and local brain function between patients and healthy in this study (Figs 2c, 3c,g, 4c). Furthermore, the 
mediation effect of the DLPFC-TL on the relationship between pain intensity and TD implies that the functional 
change of the brain precipitated by CP consequently makes the DLPFC-TL acquire the function related to TD. In 
other words, as degree of the whole DMN was associated with pain intensity, chronic painful condition makes the 
impulsive system involved in TD shift from DMN to the coupling of the DLPFC-TL.

Previous literatures identified higher TD in depressive people67,68. Since depression is also a confounding fac-
tor of pain69,70, it may involve to the association of pain to the increased TD and the TD-related brain functions. 
However, any multiple regression models including K6 did not show improvement of the models’ fitting in terms 
of TD factor and TD-associated brain functions (Supplementary Table 9). This means that anxiety and depression 
are less effective on TD than pain intensity in CP patients.

Small number of subjects may cause a selection bias for the current study. Unfortunately, this is the first study 
regarding TD in CP patients so that there is no brain study to discuss the reliability of our findings. However, it 
can be expected to be a stable result, as our findings in healthy were consisted with previous evidences.

Figure 4.  Functional connectivity associated with time discounting in chronic neck pain patients. (a) Significant 
positive networks associated with time discounting (TD) factor in whole brain analysis (pFDR < 0.05 and 
cluster criterion ≥2 links). Color and size of spheres represent community membership and the number of 
links (degrees), respectively. Color and width of links represent correlation value and intensity. (b) Association 
of the TD factor to brain functions of the identified network of right DLPFC to temporal lobe (TL). TD factor 
significantly associated with zr value and degree of the DLPFC-TL in the 5% link density. (c) Graph metrics 
of the DLPFC-TL network. Patients showed significantly higher degree and lower correlation. (d) Mediation 
analysis of the pathway from pain intensity to the log-transformed TD factor. Standardized regression coefficient 
‘β’ was shown with 95% confidence interval. Indirect effect was computed in bootstrap method permuted 10000 
times. (e) Association between pain intensity and degree of the whole DMN in the 5% link density. zr = Fisher’s 
z-transformed regression coefficient. All statistical analyses were controlled with age and gender.
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Since TD data in this study was gathered by a monetary questionnaire, magnitude effect, an amount-dependent 
discounting, was not controlled. Magnitude effect is a phenomenon that small rewards are discounted more than 
large ones, and the anomaly is commonly reported in literature71. Subjective differences in feeling about the 
amount of money offered might have influenced outcomes in this study. Financial strain is an objective indicator 
of socioeconomic status72 and significantly correlates with income73. In the present study, TD factor was indif-
ferent between high and low financial strain people both in healthy (mean, standard error = -1.4, 0.3 vs. -1.5, 0.2; 
in high vs. low strain) and in CP patients (−1.3, 0.3 vs. −1.7, 0.2). That suggests the magnitude effect has little 
influence on this study.

Pain intensity likely to make the TD-related brain network shift from the DMN to the DLPFC-TL in CP 
patients. Although we hypothesized the functional alteration of the DMN precipitated by CP affected the new 
construction of the TD-related network, the 3-step mediation analyses did not show any significant results 
(Supplementary Fig. 3 and Table 7). From the transition of subacute to chronic pain, RSFC between Hippocampus 
and MPFC dramatically decreases74, and Parahippocampal gyrus in TL mediates the relationship between 
Hippocampus and chronic pain60. These brain interactions may be hypothesized to induce the functional shift 
of the neuro mechanisms underlying TD, and a subsequent longitudinal study will be required to identify that.

In conclusion, CP patients have different resting state brain networks underlying TD compared to healthy 
subjects. Specifically, in CP patients, the functional coupling of the DLPFC-TL precipitated by chronic pain plays 
a significant role in TD.

Methods
Subjects.  We recruited 19 patients with chronic neck pain (6 males, and 13 females, mean age = 45 years, age 
range = 21–64 years) and 19 age- and gender-matched healthy volunteers. Specific inclusion criteria for chronic 
neck pain were (1) experiencing pain in the neck, (2) pain persisted for longer than the last 3 months, and (3) 
pain intensity of 4/10 or greater on the numerical rating scale (NRS). All participants were right-handed and 
underwent structural and resting-state functional magnetic resonance image (rs-fMRI) scanning. Subjects were 
excluded if they reported (1) history of head injury, (2) medication of epilepsy and/or depression, (3) to be unable 
to keep supine position, (4) contraindication of MRI, and (5) the score of 5/7 or greater on the Stanford Sleepiness 
Scale (SSS) performed soon after the scanning. All subjects passed radiological diagnosis for brain structural 
abnormality. In addition, 95 off-site healthy control subjects (30 males and 65 females, mean age = 45 years, 
age range = 21–65 years) were taken from NITRC 1000 functional connectomes project (http://fcon_1000.pro-
jects.nitrc.org/). The present study was approved by the Keio University Institutional Review Board committee 
(approval number: 20160002) and all participants accepted the written informed consent. All experiments were 
performed in accordance with Helsinki declaration and an ethical guideline for medical and health research 
involving human subjects issued by Japanese Ministry of Health, Labour and Welfare. This trial is registered with 
the University Hospital Medical Information Network (UMIN) clinical trials registry, number UMIN 000024475.

Clinical measures.  Participants completed self-report questionnaire including NRS for pain intensity, 
Kessler Psychological Distress Scale (K6), Athens Insomnia Scale (AIS), Tampa Scale for Kinesiophobia (TSK), 
Sense of Coherence (SOC), financial strain, and time discounting questionnaire. K6 is used for scaling anxiety 
and depression. TSK includes 11 items to measure fear for movement. SOC represents anti-stressful personality 
composed of 3 subscales, comprehensibility, manageability, and meaningfulness. Financial strain is rated on a 
5-point Likert scale ranging from 1 (very tight) to 5 (enough), and subjects who marked “very tight” of “tight” 
were categorized into the high-strain group. All questionnaires were administered on the day of brain scanning.

Time discounting factor acquisition.  Subjects were asked a set of ten questions in the following format75:
To me, ‘receiving $ X today’ is equally as good as ‘receiving $ Y in __days,’
where X < Y. Subjects needed to wait longer to get the larger amount of money, $Y, and they filled for the long-

est acceptable delay (t) that makes the two options the same. The actual amounts of X and Y are one of $5, $10, 
$15, $20 and $25; the ten combinations in total. Discount function of subjective values, SV(t), was estimated to fit 
the following Eq. (2) for each subject by the hyperbolic discounting model using non-linear least-square (NLS) 
method in R 3.4.0 software.

= ×X SV t Y$ ( ) $ (2)

We also tested another assumption using exponential model (3), a time consistent model71.

= −SV t e( ) (3)ct

where c (>0) is an exponential discount factor. However, it returned unacceptable model fitting (R square < 0) 
in two subjects. In the other 36 subjects, log-transformation of exponential factor c significantly correlated with 
hyperbolic factor k, and the R squares in both models significantly correlated each other as well (Supplementary 
Fig. 2). The hyperbolic model and the factor ‘k’ were therefore employed in the present study.

Brain scanning parameters.  Structural and functional MRI data were obtained with a 3.0-T Signa (GE 
Healthcare) and 8 channel phased array coil. The parameter setting of T1-weighted sagittal brain volume imag-
ing (BRAVO) with extended dynamic range (EDR) was following: voxel size = 1 × 1 × 1 mm; inversion time 
(TI) = 650 ms; flip angle (FA) = 80 degrees; in-plane matrix resolution = 256 × 256; field of view (FOV) = 256 mm. 
rs-fMRI images were acquired in ascending order on T2-weighted gradient echo planar imaging (EPI) using 
array coil spatial sensitivity encoding (ASSET) with following parameters: repetition time (TR) = 2.5 s; echo 
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time (ET) = 30 ms, FA = 80 degrees; number of slices = 40; slice thickness/gap = 3.2/0.8 mm; in-plane resolu-
tion = 64 × 64; FOV = 212 mm; number of volumes = 240.

Preprocessing.  The preprocessing of each subject’s time series of fMRI volumes was performed using the 
FMRIB Expert Analysis Tool (FEAT, www.fmrib.ox.ac.jk/fsl) and encompassed: Discarding the first four vol-
umes; skull extraction using BET; slice time correction; motion correction; and high-pass and low-pass tempo-
ral filtering (0.0075 and 0.1 Hz). These included the six parameters obtained by rigid body correction of head 
motion, the global BOLD signal averaged over all voxels of the brain, signal from a ventricular region of interest, 
and signal from a region centered in the white matter were removed from the data through linear regression as 
non-neuronal fluctuations. All preprocessed fMRI data were registered into standard MNI space, and subse-
quently registered to the 343 ROIs as mentioned in the main manuscript.

Functional connectivity analysis.  Functional correlation maps and connectivity networks were produced 
using a well-validated method76. We first extracted the BOLD time series from a predetermined functional region 
of interest (ROI) and then computed the correlation coefficient between its time course and the time variability 
of all other ROIs. Correlation coefficients were converted to a normal distribution using Fischer’s z-transform. 
General linear model (GLM) was computed repeatedly for all connections with a regressor of log-transformed 
discount factor ‘k’ under controlling age and gender, and then false discovery rate (FDR) was generated.

Graph theoretical analysis.  As we described previously38,77, subject dependent threshold was calculated 
according to the number of edges to compare the extracted graphs. The nodes of each extracted graph com-
prised with the ROIs and the edges corresponding to the absolute values of correlation coefficient greater than 
the threshold. We chose 9 values of threshold, from a conservative threshold corresponding to 2% connection 
density to a lenient threshold corresponding to 10% link density, where link density is the percentage of edges 
with respect to the maximum number of possible edges [N × (N − 1)/2]. We computed the ‘clustering coeffi-
cient - a measure of network segregation – and the ‘global efficiency’ - a measure of the network integration into 
a community structure of interconnected modules – for each link density using the brain connectivity toolbox 
(BCT)78. They were defined at the nodal level and then the global average was estimated over all nodes. We also 
computed the ‘small-world-ness’ based on the tradeoff between clustering and efficiency for each subject. It was 
computed as the multiplication of the clustering ratio and the efficiency ratio to the random network, which was 
generated across 100 repetitions in the same number of edges and nodes in each link density38. Differences in 
topological properties between groups were computed using a repeated measure ANCOVA, with age and gender 
as covariates of no interest.

Network visualization.  ROIs and functional connections were visualized on a surface rendering of a 
human brain atlas with the BrainNet Viewer (Xia et al., 2013, http://www.nitrc.org/projects/bnv/)79. The sizes 
of the spheres representing their ROI strength scaled by the degrees, and the number of edges. ROIs were 
color-coded according to the category of the 13 consensus communities. The width of each functional connec-
tion was weighted by correlation coefficient of the BOLD signals. Positive and negative correlations were colored 
orange and green respectively.

Mediation analysis.  Mediation analysis was performed with PROCESS 3.0 extension in SPSS 2480. Indirect 
effect was computed in bootstrap method permuted 10000 times. The significant fitting for the hypothetic model 
was defined as the significant non-zeros of the effects in all pathways including the mediators. Age and gender 
were controlled in all regression analyses.
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