Papers

Peer-reviewed
Jun, 2019

Spiral Trajectory Modulation of Rheotaxic Motile Human Sperm in Cylindrical Microfluidic Channels of Different Inner Diameters.

Acta medica Okayama
  • Nishina S
  • ,
  • Matsuura K
  • ,
  • Naruse K

Volume
73
Number
3
First page
213
Last page
221
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.18926/AMO/56863

We investigated the relationship between human sperm rheotaxis and motile sperm trajectories by using poly-(dimethylsiloxane) (PDMS)-based cylindrical microfluidic channels with inner diameters of 100 μm, 50 μm, and 70 μm, which corresponded to the inner diameter of the human isthmus, the length of a sperm and a diameter intermediate between the two, respectively. We counted the number of rheotaxic sperm and sperm with spiral motion. We also analyzed motile sperm trajectories. As the cylindrical channel diameter was decreased, the percentage of sperm cells exhibiting rheotaxis, the percentage of sperm cells exhibiting spiral motion, the frequency-to-diameter ratio of the sperm cells' spiral trajectories, and the surface area of the microfluidic channel increased, while the flagellar motion at the channel wall decreased. The percentage of sperm exhibiting a spiral trajectory and the frequency-to-diameter ratio of the sperm cells' spiral trajectories were thus affected by the channel diameter. Our findings suggest that the oviduct structure affects the swimming properties of sperm cells, guiding them from the uterus to the ampulla for egg fertilization. These results could contribute to the development of motile sperm-sorting microfluidic devices for assisted reproductive technologies.

Link information
DOI
https://doi.org/10.18926/AMO/56863
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/31235968
ID information
  • DOI : 10.18926/AMO/56863
  • ISSN : 0386-300X
  • Pubmed ID : 31235968

Export
BibTeX RIS