Analytical performance of the cobas EGFR mutation assay for Japanese non-small-cell lung cancer

Hideharu Kimura a, Tatsuo Ohira b, Osamu Uchida c, Jun Matsubayashi d, Shinichiro Shimizu e, Toshitaka Nagao d, Norihiko Ikeda b, Kazuto Nishio a,∗

a Department of Genome Biology, Kinki University Faculty of Medicine, 337-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511 Japan
b Department of Surgery, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
c Department of Respiratory Surgery, Funabashi Municipal Medical Center, 1-21-1 Kanasugi, Funabashi, Chiba 273-8588, Japan
d Department of Anatomic Pathology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
e Department of Pathology, Funabashi Municipal Medical Center, 1-21-1 Kanasugi, Funabashi, Chiba 273-8588, Japan

A R T I C L E   I N F O

Article history:
Received 27 October 2013
Received in revised form
11 December 2013
Accepted 20 December 2013

Keywords:
Non-small-cell lung cancer
EGFR mutation
EGFR-TKI treatment
cobas® EGFR Mutation Test
Companion diagnostics
Personalised healthcare

A B S T R A C T

Introduction: Clinical outcomes in non-small-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations have been reported to be correlated with the use of EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Therefore, it is essential to confirm the presence of EGFR mutations using highly sensitive testing methods. In this study, we compared the performance of the cobas® EGFR Mutation Test (cobas EGFR assay) and the therascreen® EGFR RGQ PCR Kit (therascreen EGFR assay) for use as an in vitro diagnostic (IVD) product.

Methods: We extracted DNA from 150 formalin-fixed, paraffin-embedded tissue samples from 150 patients diagnosed with NSCLC, and performed a comparative study of the cobas EGFR and therascreen EGFR assay methods. All discordant results were re-analyzed by direct sequencing.

Results: The concordance rate between the cobas EGFR assay and the therascreen EGFR assay was 98.0% (145/148). EGFR mutations were detected at a frequency of 40.9% (61/149) in NSCLC specimens using the cobas EGFR assay and 40.2% (60/149) using the therascreen EGFR assay. Three discrepant results were found in this study. Two double mutations were detected by the cobas EGFR assay but only one in the therascreen EGFR assay. No invalid results resulted from sample analysis by the cobas EGFR assay.

Conclusions: Our results show a high concordance rate (98.0%) of cobas EGFR assay with an existing IVD product, the therascreen EGFR assay. Since they are IVD diagnostic products, both assays proved to be simple, validated methods in detecting the most common, clinically significant EGFR mutations and proved to be helpful for appropriate treatment guidance for NSCLC patients.

© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Non-small-cell lung cancer (NSCLC) patients frequently have activating EGFR mutations and respond well to treatment with small molecule EGFR-tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib [1–4]. Both the American Society of Clinical Oncology and the Japan Lung Cancer Society recommend EGFR mutation testing in patients being considered for EGFR-TKI treatment as a first-line therapy [5]. Similar guidelines recommending testing for EGFR mutations were established by the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology [6]. Patients’ EGFR mutation status prior to the commencement of treatment impacts outcomes and, as a result, EGFR testing has been developed as a companion diagnostic; this relationship between therapeutic and diagnostic agents contributes to personalized healthcare. Recently, it was reported that about half of patients who are initially sensitive to EGFR-TKIs may acquire resistance to EGFR-TKIs [7] following a period of therapy, mainly as a result of the appearance of EGFR mutations associated with resistance to treatment, such as T790M. Indeed, a recent study suggested that the T790M mutation may be present in a small proportion of tumor cells prior to treatment, with the proportion of mutant alleles increasing gradually during treatment [8]. Similar findings were observed for exon 20 insertions; that they are usually associated with primary or de novo resistance to EGFR-TKI therapy [9]. Thus, it is important to re-assess EGFR mutation status during treatment to determine the most appropriate treatment regimens for patients.

A number of PCR-based techniques are used in the clinic for the assessment of EGFR mutations. In Japan, the “Scorpion-ARMS therascreen® EGFR Rotor-Gene Q (RGQ) PCR Kit (therascreen EGFR
Fig. 1. Assay flow for the cobas EGFR mutation assay. The assay is composed of four steps. Step 1: 5-μm sections are prepared from FFPE tissue. One section is used for H&E staining to assess tumor content and the other section is used for DNA isolation. Step 2: Genomic DNA is isolated using the cobas® DNA Sample Preparation Kit. Step 3: DNA is mixed with reagents after quantification. Step 4: DNA is amplified using the cobas 4800 system. Results are automatically reported.

assay (Qiagen, Hilden, Germany) is the only available in vitro diagnostic (IVD) test.

In this study, we compared the performance of the cobas EGFR assay and the therascreen EGFR assay using formalin-fixed, paraffin-embedded (FFPE) tissue specimens from NSCLC patients.

2. Materials and methods

2.1. Tissue samples

A series of archived 150 FFPE tissue samples which was surgically resected from 150 Japanese patients diagnosed with NSCLC, collected between March 2011 and December 2012, was obtained from Tokyo Medical University (Tokyo, Japan) and Funabashi Medical Hospital (Funabashi, Japan). All patients enrolled in the study provided informed consent for the use of resected tissue. The study was approved by the ethics committee of each participating institute and conducted according to Institutional Review Board guidelines.

2.2. cobas EGFR Mutation Test

The cobas EGFR assay is an allele-specific real-time PCR system (Figure, Supplemental Digital Content 1: Fig. 1) that qualitatively measures the amplification of DNA to identify 41 mutations in exons 18–21 of the EGFR gene from 50 ng of DNA derived from human FFPE NSCLC tissues (Table, Supplemental Digital Content 2). Within each reaction mixture, exon 28 was amplified as an internal control. DNA isolation, amplification/detection, and result reporting can be performed in less than 8 h with up to 30 specimens processed simultaneously. The cobas EGFR assay has fully automated results reporting.

2.3. Specimen preparation for cobas EGFR assay

Two FFPE tissue sections of 5 μm thickness were prepared for this assay. One was used for DNA extraction and the other was used to confirm the presence of tumor content by hematoxylin and eosin (H&E) staining, which was performed by a pathologist. Any specimen containing <10% tumor content by area was macrodissected.

2.4. DNA extraction

FFPE tissue specimens were deparaffinized and then DNA extraction was performed according to the standard procedure described in the cobas® DNA Sample Preparation Kit (Roche Molecular Systems, Inc., USA) package insert. Briefly, the sample was incubated for 1 h at 56 °C and then for additional one hour at 90 °C in the presence of a protease and chaotropic lysis/binding buffer that causes the release of nucleic acids but protects released genomic DNA from degradation by DNase. The amount of genomic DNA was spectrophotometrically determined and adjusted to a fixed concentration of 2 ng/μL.

2.5. PCR amplification and detection

A total of 150 ng of DNA is required for the cobas EGFR assay. Target DNA was amplified and detected using the cobas® z4800 analyzer (Roche Molecular Systems Inc.) according to the instructions for the cobas® EGFR Mutation Test, which measures the fluorescence generated by specific PCR products. All results were automatically performed by cobas® 4800 software.

2.6. therascreen® EGFR RQq PCR Kit

The therascreen assay is a real-time-PCR assay that combines the Amplification Refractory Mutation System (ARMS) and Scorpion® fluorescent primer/probe system. It can detect 29 somatic mutations in exons 18–21 of EGFR. A maximum of 7 results can be obtained from one run. The therascreen EGFR assay was performed according to the manufacturer’s guidelines (Qiagen). Briefly, DNA was isolated from FFPE tissue samples and the total sample DNA assessed by amplifying a region of exon 2 from EGFR by PCR. Next, the DNA samples were tested for the presence or absence of EGFR mutations by real-time PCR using a Scorpion probe and primers specific for wild type and mutant EGFR DNA. The difference


between the mutation assay cycle threshold ($C_t$) and control assay $C_t$ from the same sample was used to calculate sample $\Delta C_t$ values. Samples designated mutation positive if the $\Delta C_t$ was less than the cutoff $\Delta C_t$ value.

2.7. Sanger sequencing

DNA samples obtained from specimens that were discordant between cobas EGFR and therascreen EGFR assays were amplified using the following site-specific primers: Exon 18 Forward, 5'-TGACGTCTCCTACACCAGTAC-3'; Reverse, 5'-ACAGCTGAAGACTCTG-3'; Exon 19 Forward, 5'-TCTGGA-TCCGAGACTAGTAGAG-3'; Reverse, 5'-CAGCGGCAAGACATGAGAAG-3'; Exon 20 Forward, 5'-CCATGCTGTCCTACACCTG-3'; Reverse, 5'-GCTTTGTTCTCCGCCCAT-3'; Exon 21 Forward, 5'-GATGCTGCTCCTACACGAGGTC-3'; Reverse, 5'-GGCTGACTAAG-GCCACCTTC-3'. The fragments were subcloned into the Zero Blunt TOPO vector (Zero Blunt TOPO PCR Cloning Kit; Life Technologies, USA). Direct sequencing was performed with 100 colonies from one specimen by ABI3100 Genetic Analyzer (ABI) using the BigDye® Terminators v3.1 Cycle Sequencing Kit (Life Technologies). One mutation detected in 100 results was classed as “Mutation Detected” in this study. This assay required 1 μg of genomic DNA from specimens. Sanger sequencing was performed with the specimen that resulted double mutation (L858R and M790M) from cobas EGFR assay but single mutation (L858R) from therascreen EGFR assay at Mitsubishi Chemical Medicine Corporation followed by daily routine. The sequencing result was used as Golden standard.

3. Results

3.1. Study population

A series of 150 FFPE tissue samples from patients diagnosed with NSCLC was examined. One specimen was excluded owing to a lack of a completed consent form, leaving 149 samples available for analysis. The clinical and pathological characteristics of the patients providing the evaluable specimens are summarized in Table 1.

3.2. EGFR mutation types

EGFR mutations were identified in 63 NSCLC specimens (42.3%) using the cobas EGFR assay and 61 specimens (40.9%) using the therascreen EGFR assay (Table, Supplementary Digital Content 4). Exon 19 deletions (Ex19del) and a point mutation (L858R) accounted for 90.5% (57/63) and 93.4% (57/61) of all mutations identified using the cobas EGFR assay and therascreen EGFR assay, respectively (Table, Supplementary Digital Content 3). This confirms the findings of a previous study [10], which found that Ex19del and L858R mutations accounted for 90% of NSCLC EGFR activating mutations. The exon 20 insertion mutation (Ex20Ins) was not observed in any of the samples tested in this study. A T790M point mutation was detected by the cobas EGFR assay (0.68%) but not by the therascreen EGFR assay.

3.3. Invalid test rate

Mutation analysis of exons 18–21 of the EGFR gene was successfully performed in all 149 specimens (100%) using the cobas EGFR assay. In contrast, in experiments using the therascreen EGFR assay, two test specimens initially gave invalid test results. In those cases, DNA was extracted from new FFPE tissue samples. However, because one sample gave an invalid result again, this case was excluded from the analysis, resulting in an invalid rate of 0.68% (1/148) for the therascreen EGFR assay (Table 2). In addition, one invalid control occurred in the therascreen EGFR assay (data not shown).

3.4. Method correlation agreement analysis

The correlation rate between cobas EGFR assay and therascreen EGFR assay was 98.0%. Of the 149 evaluable samples tested, only three discordants between the two EGFR mutation assays were observed (Table 3).

3.5. Re-analysis of discordants by direct sequencing

Test specimens that gave discordant results between the cobas EGFR and therascreen EGFR assays were retested using direct sequencing from sub-cloned samples (Table 4). A discordant MND by therascreen EGFR assay was observed by direct sequencing to be an L858R point mutation, confirming the MND result assessed by cobas EGFR assay. In addition, an Ex19del mutation identified as MND by therascreen EGFR assay was shown to be MND by direct sequencing, again confirming the cobas EGFR assay result. The cobas EGFR assay identified one case with a double mutation, L858R and T790M.
Table 4  Re-analysis of discordants by direct sequencing.

<table>
<thead>
<tr>
<th>therascreen</th>
<th>Cobas</th>
<th>Sequencing (reanalysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>MND</td>
<td>MD L858R</td>
</tr>
<tr>
<td>Sample 2</td>
<td>MD</td>
<td>MD L858R</td>
</tr>
<tr>
<td>Sample 3</td>
<td>MND</td>
<td>MND</td>
</tr>
<tr>
<td>Sample 4</td>
<td>L858R</td>
<td>MD L858R, T790M</td>
</tr>
</tbody>
</table>

Del, deletion; Ins, insertion; MD, mutation detected; MND, mutation not detected.

Table 5  Re-analysis: combined therascreen EGFR assay and Sanger sequencing for resolution of discordant results.

<table>
<thead>
<tr>
<th>therascreen and/or Sanger sequencing</th>
<th>cobas</th>
<th>MD</th>
<th>MND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MD</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MND</td>
<td>0</td>
<td>87</td>
</tr>
</tbody>
</table>

MD, mutation detected; MND, mutation not detected.

(Table 4). However, only the L858R mutation was identified by the therascreen EGFR assay and only the T790M mutation was detected by direct sequencing. We then performed a re-analysis using a combination of the therascreen EGFR assay and Sanger sequencing for resolution of the discordant results (Table 5). This demonstrated an MD concordance rate of 100% (60/60), an MND concordance rate of 98.9% (87/88) and a total concordance rate of 99.3% (147/148) between the tests.

4. Discussion

The overall correlation results of the cobas EGFR assay, an existing EGFR mutation screening method (the therascreen EGFR assay) plus direct sequencing was 99.3% (147/148) (Table 5). It also indicated that the cobas assay is as least as robust method to detect the most commonly significant EGFR mutations as the existing therascreen EGFR assay.

Although we identified 3 discordant results among 149 (2.0%) specimens in this study, retesting by direct sanger sequencing confirmed that two of the three discordant results were in fact correctly called by the cobas EGFR assay. Although both assays share similar characteristics in terms of amplification methods and detection principles, the slight differences (e.g. probe and primer construction) between the two of them, influenced their sensitivities to the mutations. Also, the remaining discordant result analysis highlighted the importance of the purity of the extracted DNA for the PCR amplification. In fact, an Ex 20 S768I mutation identified as Mutation Detected (MD) by the cobas EGFR assay but not the therascreen EGFR assay, was not detected by direct sequencing, either. In this case, direct sequencing failed more than two times to detect the EGFR gene when using the extracted DNA from the QIAmp DNA FFPE Tissue extraction kit (Qiagen) suggesting that the quality of the DNA was not adequate for the testing (data not shown). This potential difference in DNA quality might be the reason why we have experienced discordant results in some cases.

One T790M mutation was detected together with L858R by the cobas EGFR assay in this study. As there is known heterogeneity with regard to the T790M mutation within tumor cells, it is difficult to mention that the extracted DNA was completely the same, even if we used serial sections. However the raw data from the cobas system showed high enough signals to robustly detect the mutation (data not shown). According to the package insert, cobas EGFR needs at least 3.13 ng DNA which includes 5% mutated DNA to detect the mutation. Therefore it appears that the cobas test might be more sensitive than the therascreen test because, according to the therascreen package insert, it needs 7.02% mutated DNA within the input DNA [11,12].

About half of the patients who are initially sensitive to EGFR-TKIs may acquire resistance to EGFR-TKIs [7] following a period of therapy, mainly because of the selection for the cells with the T790M mutation in EGFR. In addition, the correlation between the presence of intrinsic T790M mutations and patient outcomes has been shown [8], and is probably related to the slow growth of tumors bearing the T790M mutation. Thus, it is important to re-assess EGFR mutation status during treatment in order to determine the most appropriate treatment regimens for patients.

For IVD products, it is important to have rapid and simple testing. The cobas EGFR assay has two advantages over the therascreen assay in this regard. One is that the process consists of easily performed and stable methods. Additionally, it takes only 8h to go from tumor specimen to results using the semi-automated system. Thus, patients assessed using the cobas EGFR assay can begin the most appropriate treatment within a shorter time period. The other advantage is that only a very small amount of DNA (150 ng) is required to detect the tumor mutation status using the cobas EGFR assay. Moreover, it confirms the accuracy of the results by co-amplification of an internal control (i.e. exon 28). One of the issues associated with detecting EGFR mutations in advanced NSCLC patients is not obtaining a sufficient quantity of specimen to confirm the presence/absence of several biomarkers. It is important to be able to perform tests using just a small amount of DNA; thus, the cobas EGFR assay is suitable and reliable for the detection of targeted common EGFR mutations. In this study, we had high concordance with surgically resected specimens which had enough tumors. However, at clinical practice, minimal invisible samples such as pleural effusion or bronchial wash would be used from advanced NSCLC patients having difficulty of collecting tissue. To access this difficulty, even if the samples are small enough, at least confirming the amount of tumor cells by pathologist is required to have appropriate test result. Under the condition, it might be able to provide reliable result even if using either FFPE samples or cytology samples. It is important to accumulate the data with cytology samples which makes improvement of suitable testing for advanced NSCLC patients in the future.

5. Conclusion

In the near future, more mutations that can serve as predictive markers for molecular-targeted treatments will be discovered, and mutation detection tests will play an increasingly important role in the clinical setting. The benefits of treatment will be maximized only if used together with clinically validated and accurate companion diagnostics. The cobas system offers the possibility of detecting additional mutations, not only mutations of EGFR. The combination of the cobas system with molecular-targeted treatments represents an important tool for physicians, supporting their efforts to effectively treat tumors.

Conflict of interest

Hideharu Kimura, Tatsuo Ohira, Osamu Uchida, Jun Matsubayashi, Shinichirou Shimizu, Toshitaka Nagao, Kazuto Nishio, Norihiko Ikeda was funded by Roche Diagnostics K.K. (Tokyo, Japan). There was no other financial support for the investigators.

Acknowledgements

This study was sponsored by Roche Diagnostics K.K. This means that the publication of this study is written by investigators and has no relative value of the cobas EGFR test for the promotion.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.lungcan.2013.12.012.

References


