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Abstract—Interconnection network ideally transfers the maxi-
mum amount of communication dataset within the least amount
of time to fully exploit the parallelism of target applications on
parallel computer systems. To this goal, we propose a selective
data-compression interconnection network. Data compression
virtually increases the effective network bandwidth, while each
compute node introduces additional latency overhead to perform
(de-)compression operation to end-to-end communication latency.
To minimize the effect of the compression latency overhead on
the end-to-end communication latency, we selectively apply a
compression technique to a packet. The compression operation is
taken for long packets and is also taken when network congestion
is detected at a network interface. Evaluation results show that
simple lossless and lossy compression algorithms have up to
3.0 and 1.8 compression ratios for integer and floating-point
communication data in some parallel applications, respectively,
while the lossy compression algorithm successfully satisfies the
required quality of results. Through a cycle-network simulation,
the selective compression method using the above compression
algorithms improves by up to 46% the network throughput with
the moderate increase of the communication latency of short
packets.

I. INTRODUCTION

A way to virtually increasing the effective network band-
width is by reducing the redundancy of communication data
as possible. Some parallel scientific applications repeatedly
generate a similar communication dataset, e.g., consecutive
values of the array in a Fluid computation application [1].
For these communication patterns, each network interface of
a compute node has a chance to efficiently reduce a packet
length by compressing the data.

An essential design issue of a compressor is to minimize
the operation latency overhead at a network interface. Inter-
connection networks are latency-sensitive, i.e., time to across
the system, since their communication latency strongly affects
the application performance.

Assuming that a packet that consists of L flits is compressed
by C compression rate, and it is transferred through H inter-
mediate switches. The zero-load communication latency T is
calculated as follows.

T = Tlt × (H +1)+Tswitch ×H +L/C+D, (1)

where Tswitch, Tlt , and D are the latencies of switch, link
transfer, and the sum of compression and decompression
overhead at network interfaces, respectively.
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Fig. 1. Zero-load communication latency vs. packet length for data compres-
sion.

Figure 1 plots the relationship between a packet length ver-
sus zero-load communication latency according to Equation 1,
where H, Tswitch, Tlt , and D are set to 4, 60ns, 20ns, and 100ns,
respectively. The compression ratio is set to 2.0.

We observe that the data compression is advantageous as an
original packet length becomes longer. The data compression
shortens a packet length, and it reduces the injection time in
the zero-load communication latency at the expense of the
(de)compression latency overhead.

For even short packets, the compression is efficient for
improving the end-to-end communication latency when the
network is congested. Figures 2 (a) and (b) illustrate the de-
tailed simulation results of a cycle-accurate network simulation
corresponding to the short- and long-packet cases in Figure 1,
respectively. We assume random (uniform) traffic on 8×8 2-D
mesh. The (de)compression operational overhead at a network
interface is set to 100 cycles, and the compression ratio is
set to 2.0. The other simulation parameters are described in
Section IV.

The results are consistent with Figure 1, and the data
compression always reduces the end-to-end communication
latency when the network load is high. Compressed packets
mitigate the network congestion by reducing the total amount
of flits around the congestion. When the latency penalty
blocked by another packet becomes relatively small, it leads to
lower communication latency. Another finding is that the data
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Fig. 2. Accepted traffic vs. communication latency on a 64-switch network.

compression always improves the network throughput defined
by the maximum amount of the accepted traffic.

Through these observations, in this study, we exploit a
technique to selectively apply a compression technique to a
packet by taking into account the network congestion and
packet length to achieve lower communication latency and
higher throughput. To detect the network congestion, each
network interface counts the number of flits recently received
and monitors the utilization of the input packet queue. Each
source network interface then decides whether incoming pack-
ets would be compressed or not.

The contributions of this study are listed as follows.
• A simple lossless compression algorithm obtains up to 3.0

compression ratio for the communication data in integer
sort and ant colony optimization that treat mostly integer
data. A lossy compression algorithm truncating multiple
bits obtains up to 1.8 compression ratio for floating-point
communication data in CG and FT with the required
quality of results of NAS Parallel Benchmarks (MPI
version).

• We propose the selective packet compression method that
selectively compresses packets according to the network
load. Our network simulation results show that the selec-
tive compression method provides similar low communi-
cation latency to that of the counterpart original intercon-
nection network, and a similar high network throughput
to that of the ever-compression interconnection network.

The remainder of this paper is organized as follows. Sec-
tion II describes background information on the data com-
pression on interconnection networks. Section III presents a
technique to selectively apply a compression method to pack-
ets. Section IV presents simulation results of the selectively
compression method in terms of the compression ratio and
network performance. Section V concludes this study with a
summary of our findings.

II. BACKGROUND

A. Data Compression for Interconnection Networks

There are a large number of data compression algorithms for
various fields, including archiving and multimedia. The unique

requirement of interconnection networks is to perform a low-
latency compression operation. Interconnection networks are
latency-sensitive, i.e., one-microsecond communication across
the system is required. Thus, the compression operation la-
tency should be the order of nanoseconds.

The target communication data usually form a one-
dimensional array of floating-point numbers and integer num-
bers. In the context of the low compression latency overhead,
a compression technique considered for data in the cache of a
processor is attractive for interconnection networks as treated
in the FPC [2]. FPC is a lossless compression that only picks
up and compresses frequently appeared values. Reversely, the
remaining values are uncompressed and are transferred with
additional prefix bits.

By contrast, floating-point numbers are often not compress-
ible by a general-purpose lossless data compression algorithm.
A lossy compression is a way to efficiently compress them
at the expense of the accuracy. For example, SZ attempts to
approximate the communication data value by either a linear or
pseudo-approximate quadratic curve based on the values of the
previously transferred data [3]. A similar approach is taken in
the data compression on inter-FPGA networks [1]. It reported
that its custom design interestingly obtains an extremely high-
ratio lossless compression for floating-point numbers in fluid
dynamics applications.

Another example of a lossy compression is a bit cut of
a floating-point number. The values are simply compressed
by trimming its lower bits. It is reported that the energy
efficiency of an interconnection network can be improved,
although the quality of results is not assessed on MPI parallel
applications [4].

In this study, we apply FPC for integer numbers and the bit
cut for floating-point numbers, respectively.

B. Congestion Control

The increase in network load leads to its congestion. Once
the congestion occurs, it can cause a performance degradation.
There are two approaches to handle the congestion: end-to-end
and switch-to-switch. A typical way to end-to-end congestion
control is the use of injection limitation and throttling [5].
For example, each node judges whether the congestion oc-
curs or not independently using the utilization of queues.
When detecting the congestion, a node stops inserting packets
temporarily. A switch-to-switch congestion control relies on
adaptive routing.

To detour the congestion, a bypassing path should be taken
by an adaptive routing [6]. However, J. Won et al. pointed out
the difficulty in the congestion problem in large interconnec-
tion networks. It is difficult for a switch forwarding packets
to detect the congestion when the congested region is far [6].
A significant communication latency between routers and the
temporal congestion caused by the instability of the routes by
using the adaptive routing often introduce the confusing values
of the congestion indicators, such as queue length. To override
the problem, they proposed a history-window approach, which
uses the number of flits passed in the last fixed cycles as



a metric. With the approach, they improved the latency and
throughput of adaptive routing in the Dragonfly network.

All the above congestion controls result in the reduction
of the number of flits around the congestion. In this context,
the selectively compression method in this study can be
categorized as a congestion control, because the selectively
compression method decreases a packet length when the
network is congested.

III. SELECTIVE PACKET COMPRESSION METHOD

A. Compression Algorithm

We apply an existing lossless FPC compression for integer
values of communication data, and apply a lossy LSB-cut
compression for floating-point values in the selectively packet
compression method. Since there are various compression
algorithms, we tune them for interconnection networks based
on the method described in [7].

Compression is performed for the message payload at a
source network interface, and decompression is performed
at a destination network interface. We do not compress the
header information that is essentially needed for routing and
flow control. Since no changes are made to the information
necessary to control packets, intermediate network switches
can be used as existing ones.

1) FPC for Integer Communication Data: We used a com-
pression algorithm that adapts FPC for communication data
of MPI parallel applications. Assume that each application
controls compression and decompression through the type
information specified in MPI when sending data.

The compression target is 32-bit integer arrays. It is per-
formed when the Datatype is set to “MPI INT” for MPI
communication.

The array is divided into 32-bit integers and each value
is compared with the prepared patterns in Table I. We only
compress a sequence of zeros from MSB.

TABLE I
COMPRESSION PATTERN OF FPC

Priority Prefix Pattern Data size
encoded (prefix + data)

1 101 18-bit zero run 17bit
2 100 17-bit zero run 18bit
3 011 16-bit zero run 19bit
4 010 15-bit zero run 20bit
5 001 14-bit zero run 21bit
6 000 13-bit zero run 22bit
7 110 (unused)
8 111 (non-compress) 35bit

A 3-bit prefix identifies each pattern. We take the longest
zero matching to minimize the compressed data size by the
priority in Table I. The ”non-compress” pattern is a case in
which input value did not match any of the patterns. The
amount of data then increases from 32 bits to 35 bits.

2) LSB-Cut for Floating-Point Communication Data: Here,
the compression target is 64-bit IEEE 754 double-precision
floating-point arrays. We borrow a lossy compression tech-
nique called LSB-cut from [4]. It truncates multiple least-
significant bits.

In MPI communication, if “MPI DOUBLE” or “MPI
DOUBLE COMPLEX” is specified in Datatype, compression
is performed. The number of truncated bits is set by calling
the original API added to MPI at the time of initialization. On
the receiver side, the truncated bits are padded to the received
data by the pattern of 0b100. . .0. The value is close to the
median of the possible values by truncating.

B. Selective Packet Compression Algorithm
We introduce a selective compression algorithm for com-

pressing a part of packets considering the packet length and
network congestion. The goal is to maximize the network
throughput within the allowed communication latency. We
dynamically select the two lossless and lossy compression
algorithms described in the previous subsection.

Each network interface performs the selective compression
algorithm independently. The selective compression algorithm
for communication data is described in Algorithm 1.

Algorithm 1 Compression selection algorithm.
Require: Number of received flits in the latest time period (N),

number of packets in input queue without the target packet (Q),
and an incoming packet length (L),

Ensure: Selected compression algorithm.
1: procedure :
2: Pick up a packet from injection queue
3: if L ≥ Lth then
4: if data type = int then
5: FPC algorithm
6: else if data type = f loat then
7: LSB-cut algorithm
8: else
9: No compression

10: end if
11: else if (N > 0) or (Q > 0) then
12: if data type = int then
13: FPC algorithm
14: else if data type = f loat then
15: LSB-cut algorithm
16: else
17: No compression
18: end if
19: else
20: No compression
21: end if
22: end procedure

The compression selection algorithm compresses long pack-
ets unconditionally and selects short packets using a con-
ditional expression N > 0 or Q > 0. The threshold of the
packet length, Lth, is roughly computed by Equation 1. The
conditional expression dynamically identifies the network con-
gestion, and it should depend on the network implementation.

The hardware implementation of the selective compression
method at a network is not discussed in this paper. However,
it is not impractical, as reported in [8].



IV. EVALUATION

A. Compression Ratio

We modified MPI communication in each program to
compress the communication data at the transmission and
decompress at the reception. We ran the modified application
on the environment shown in Table II in two processes on
two PCs, and measured the compression ratio by tracing the
communication. The compression ratio is calculated as “total
size of the original data / total size of the compressed data”.
We also evaluated gzip 1.10 and SZ 2.1 [9] for the comparison.
SZ was applied only to data for floating point numbers, and
the precision constraint was set close to LSB-Cut. However, it
is not practical to use SZ for streaming compression because
it requires long buffering and complex computation, and the
latency is extended by an order of magnitude compared to
LSB-Cut. We evaluated it as the compression ratio of practical
lossless compression without time constraints.

The compressed data size was computed by excluding
metadata such as headers and CRC from the communication
data size to make the comparison fair.

TABLE II
ENVIRONMENT FOR EVALUATING COMPRESSION RATIO.

CPU Intel Core i7–3770
Memory 32GiB

NIC Mellanox ConnectX-5
Operating system Ubuntu 18.04 LTS

Linux kernel 5.0.0-36
MPI OpenMPI 2.1.1-8
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Fig. 3. Compression ratio of NPB IS (integer).

Figures 3 and 4 illustrate the compression ratio of the
FPC for communication data. We use integer sort (IS) of
NAS Parallel Benchmark (MPI version) [10] and ant colony
optimization (ACO) for the traveling sales problem (TSP)
with 105-city named “lin105” in TSPLIB [11]. In the ACO
program, each process exchanges an index value of an array
that stores a city identifier. Since the index value tends to
be small, FPC achieves 3.0 compression ratio. Both results
illustrate that FPC has a similar average compression ratio to
that in gzip.

Figures 5 and 6 illustrate the compression ratio of LSB-
Cut for communication data. We preliminarily investigate the
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Fig. 4. Compression ratio of ant colony optimization (integer).
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maximum number of truncating bits to meet the required
quality of results of two applications. We found that 28-bit
truncating from LSB for IEEE 754 double-prevision floating-
point number works well on both parallel applications. Thus,
the compression ratio becomes approximately 1.8.

However, the compression ratio of LSB-Cut is much lower
than that of SZ. The compression ratio of SZ is obtained
on a per-message basis at the application level, which is a
big advantage compared to the network level like LSB-Cut,
especially when exchanging long data. However, SZ has to
pay a large cost regarding latency.

B. Network Throughput and Latency

1) Environment: We use a cycle-accurate network simulator
written in C++. A switch model consisting of channel buffers,
a crossbar, a link controller and the control circuits is used
to simulate the switching fabric. On a conventional packet
switch, a header flit transfer requires four cycles that include
the routing, virtual-channel allocation, switch allocation, and
flit transfer from an input channel to an output channel through
a crossbar. We use dimension-order routing on 2-D meshes and
Up*/Down* routing on random topologies. The compression
ratio is set to 2.0 from the results of the compression ratio
in Section IV-A. The latency is set to 100 cycles, which
is constant regardless of the conditional branching in the
selection algorithm, assuming a simple implementation in
hardware.
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Unless particularly mentioned, the switch latency is as-
sumed to be four cycles. In Algorithm 1, we counted the
number of recently received flits at the interval of 1,000 cycles.

Notice that the compression selection algorithm compresses
all longer packets than Lth. We omit the evaluation when all
packets are longer than Lth. Based on Equation 1, Lth was set
to 200 in our simulation, and packets longer than 200 flits
are compressed unconditionally. In the evaluation, the packet
length is assumed to be uniformly distributed from 10 to 200.

Three synthetic traffic patterns, uniform (random), matrix
transpose, and bit reversal, are used [5]. Each compute node
generates a packet independently. Our results use two im-
portant metrics: latency and throughput. The latency is the
elapsed time between the generation of a packet at a source
compute node and its delivery at a destination compute node.
We measure latency in simulation cycles. The throughput is
defined as the maximum accepted traffic, that is, the maximum
flit delivery rate.

2) Simulation Results: We evaluate the selective compres-
sion method, ever-compression method, and the original non-
compression method.

Figures 7 illustrates the relationship between communica-
tion latency and accepted traffic rate of each method for each
traffic pattern. The network topology was 8×8 2-D mesh. The
selective compression method outperforms up to 38% network
throughput, and it has a similar low communication latency to
the non-compression method on all the traffic patterns. The
ever-compression method outperforms by up to 26% network
throughput to the original non-compression method. However,
it has 1.3-times larger communication latency at the low traffic
load. We thus conclude that the selective compression method
is advantageous.

Figure 8 illustrates the relationship between compressed
packets number percentage and accepted traffic rate. The
conditions are same as those in Figure 7. The ratio of com-
pressed packets is mostly proportional to the accepted traffic.
No packets are compressed at low load, while almost half
of the packets are compressed at high load. It can be seen
that the selective compression method successfully selects the
compression target packets depending on the traffic load.

We shift to investigate the impact of the network topol-
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Fig. 7. Accepted traffic vs. communication latency on compression selection
algorithms (8×8 Mesh).

ogy, network size, and the switch delay on the selective
compression method. Figure 9 illustrates the relationship be-
tween communication latency and the accepted traffic of each
compression method on mesh, torus, and random network
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Fig. 8. Accepted traffic vs. compressed packets number percentage on
compression selection algorithms (8×8 Mesh).

topologies with a degree of four. The uniform traffic is taken.
Our main finding is that the network topology hardly affects
the performance of the compression method. The selectively
compression method successfully achieves low latency and
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Fig. 9. Accepted traffic vs. communication latency on compression selection
algorithms (64 nodes).

high throughput on all the network topologies considered in
this evaluation.

Figure 10 illustrates the communication latency and ac-
cepted traffic of each method on 16 nodes. We used uniform
traffic. The selective packet compression achieves up to 46%
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Fig. 10. Accepted traffic vs. communication latency on compression selection
algorithms (16 nodes).

higher network throughput than the original non-compression
method. Their impact becomes higher than that in 64-node
interconnection networks. This is because the smaller network
has lower hop counts (H) in Equation 1, and the compression
influence (L/C) relatively becomes crucial in the communica-

tion latency.
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Fig. 11. Accepted traffic vs. compressed packets percentage on compression
selection algorithms (16 Nodes).

We illustrate the ratio of compression packets in Figure 11.
Just before the network is saturated, the selective packet
compression compresses 60% of packets resulting to the high
network throughput.
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Fig. 12. Accepted traffic vs. communication latency on different network
switch latency (8×8 Mesh).

Figure 12 illustrates the relationship between accepted traf-
fic and the communication latency on different network switch
latencies. We take different switch latencies, which leads to
different zero-load communication latency in Equation 1. That

is, Tswitch is varied in Equation 1. As the switch latency be-
comes large, the effect of the compression relatively decreases
in Equation 1. However, the simulation results interestingly
illustrate that its effect is limited in the selective compression
method.

V. CONCLUSIONS

We proposed a selective compression technique for an
incoming packet to achieve a low-latency, high-throughput in-
terconnection network of parallel computers. The compression
operation is taken for long incoming packets, and is also taken
when a network congestion is detected at a network interface
of a compute node.

Since an interconnection network is latency-sensitive, we
have to select a fast compression algorithm. Therefore, we
selected a compression algorithm according to the data type,
applying lossless compression for integers and lossy compres-
sion for floating-point value. A common lossless compression
algorithm, e.g., gzip, usually provides a low compression rate
for a floating-point value with a high operational overhead. We
aggressively apply a lossy compression truncating multiple bits
from LSBs, while maintaining the quality of results of parallel
applications.

Evaluation results show that simple lossless and lossy
compression algorithms have up to 3.0 and 1.8 compression
ratios for integer and floating-point communication data of
some parallel applications, respectively. Through a cycle-
network simulation, the selective compression method with
2.0 compression ratio improves by up to 46% the network
throughput with the moderate increase of the communication
latency of short packets.
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[4] B. Dickov, M. Pericàs, P. M. Carpenter, N. Navarro, and E. Ayguadé,
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