
Accelerating MPI Communication Using
Floating-point Compression on Lossy

Interconnection Networks
Yao Hu, Michihiro Koibuchi

National Institute of Informatics
2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430

{huyao, koibuchi}@nii.ac.jp

Abstract—Approximate communication has arisen as a
new opportunity for improving the efficiency of commu-
nication in parallel computer systems, which can signif-
icantly reduce the communication time by transmitting
partial or imprecise messages. In this study, we explore
application-level approximate communication techniques on
lossy high-performance interconnection networks that leave
bit flips. Although existing compression techniques do not
assume lossy interconnection networks, our approximate-
communication challenge is to co-design a lossy floating-
point compression algorithm and a critical bit-flip recovery
scheme optimized to a given bit error rate (BER) on a
target lossy interconnection network. Our objective is to
transfer the maximum amount of approximate data over the
least amount of compression overhead and bit-flip recovery
time. Our scheme is implemented into several representative
communication-intensive MPI (Message Passing Interface)
applications, and it is shown that our approximate com-
munication scheme effectively speeds up the total execution
time without much loss in the quality of the result.

Index Terms—Interconnection network, parallel comput-
ing, approximate computing, lossy compression, error check

I. INTRODUCTION

A way to virtually increase the network bandwidth
is the reduction of redundancy of communication data
themselves on lossy interconnection networks. In this
context, approximate computing [1] is gaining traction
as a computing paradigm to introduce a new trade-off
between the quality and the speed. The parallel applica-
tions can improve the system efficiency while retaining an
acceptable level of accuracy. In these parallel applications,
a large amount of floating-point datasets are frequently
exchanged between compute nodes via an interconnection
network.

A large fraction of applications running on super-
computing systems primarily use MPI (Message Passing
Interface) parallelism to explore execution efficiency. It
is reported that a reasonably high number of applications
spend more than half their time in MPI [2]. Moreover,

the fraction of time spent on communication increases
significantly with the number of processes [3]. This large
communication overhead limits the scalability of parallel
applications. Hence, speeding up the MPI communica-
tion improves the performance of applications. To this
end, data compression brings shorter MPI communication
time. For compression of floating-point datasets, a simple
lossless algorithm generally brings a low compression
ratio, while a complicated lossy algorithm usually intro-
duces a large latency overhead to obtain a high compres-
sion ratio. Because interconnection networks are latency-
sensitive, e.g., less than one microsecond for inter-process
communication in parallel computer systems [4], it is
harmful to append heavy load of data compression on
MPI communication.

In this study, we co-design an application-level fast
lossy compression algorithm and a critical bit-flip recov-
ery scheme optimized to a given bit error rate (BER) on
lossy interconnection networks.

II. BIT-WISE LOSSY FLOATING-POINT COMPRESSION

A. Lossy Bit-zip Compression

1) Bit Rounding: We employ a lossy prediction-based
compression algorithm [5] to exploit the continuity of
numerical floating-point data. If the prediction fails, we
round the floating-point value di. Since the LSBs in the
mantissa have less impact on the value of a floating-point
number, we discard the LSBs while maintaining the error
bound. In other words, we only retain the necessary b
bits in the mantissa to maintain the error bound. Through
Equations 1 - 3, we figure out the value of b for the
floating-point value di according to the error bound E.

2−x ≤ E < 2−x+1 (x > 0) (1)

2y ≤ di < 2y+1 (2)

b = x+ y (b = 0 if x+ y < 0) (3)



Thus, the least necessary number of bits for the lossy
error-bounded compression is 1 + 11 + b = 12 + b for
a double-precision floating-point value, and the compres-
sion ratio is 64/(12 + b) for that value.

2) Encoding and Decoding: All the encoded data bits
are concatenated to a continuous output bit-stream in
accordance with their original order in the input dataset.
In other words, our lossy bit-zip compression scheme
does not require any displacement information and thus
reduces the communication overhead. For the bit-zip de-
compression, we can easily reconstruct the data extracted
from the received bit-stream.

B. Lossless Bit-mask Compression

1) Mask Selection: We use a bit-mask pattern to
further improve the compression ratio by creating a
matching sequence. This is to improve the compression
ratio without adding significant cost (extra bits) or in-
troducing much decompression penalty. In other words,
this bit-mask compression technique provides both good
compression ratio and fast decompression. The basic idea
is similar to the works [6] [7], and it takes advantage of
commonly occurring bit sequences and creates matches
by remembering a few bit positions. The efficiency of
the bit-mask compression is limited by the number of bit
changes when compared to the matching bit sequence.
Obviously, if more bit changes are allowed, more match-
ing sequences will be generated. Considering the balance
of cost and benefit, we use the middle value in the dataset
to create a matching sequence, which is employed as the
bit-mask to replace a few bit strings by several predefined
shorter bit-string symbols.

Compression Type
1

Prediction Type
(2 bits)

Compression Type
0

Exponent
(11 bits)

Mantissa
(b bits)

Compression Type
0

Bit-mask Flag
1…1 (f bits)

Bit-mask Type
0

Compression Type
0

Bit-mask Flag
1…1 (f bits)

Bit-mask Type
1

Bit-mask Position
(2 bits)

Encoding 1: Linear Prediction

Encoding 2: Bit-rounding

Encoding 3: Bit-mask (All Bits Match)

Encoding 4: Bit-mask (Initial Bits Match)
Leftover Mantissa

(b-x bits)

Fig. 1. The generic encoding scheme in our compression algorithm.

2) Encoding and Decoding: Figure 1 shows the
generic encoding scheme used by our compression al-
gorithm. Notice that, the bit-mask compression technique
is an extension of the lossy bit-zip compression scheme
(Section II-A), thus the encoding scheme applies to both
the bit-zip compression and the bit-mask compression.

The initial bit of the generic encoding refers to the com-
pression type: ‘0’ indicates the bit-rounding compression
or the bit-mask compression, and ‘1’ indicates the linear-
prediction compression. Besides, the generic encoding
requires one flag bit ‘1’ or more to identify the bit-mask
encoding. The number of bit-mask flag bits (f ) depends
on the maximum value dmax of the dataset d. This is to
ensure that the leading exponent bit(s) of each value in
the dataset d are not all ‘1’ such that they do not conflict
with the all-‘1’ bit-mask flag bits. Concretely, we get the
value of f as follows.

f =


1 dmax < 22

10−1023

2 22
10−1023 ≤ dmax < 22

10+29−1023

3 22
10+29−1023 ≤ dmax < 22

10+29+28−1023

Obviously, using up to three bit-mask flag bits (f ≤ 3) is
sufficient in most cases (dmax < 2769). In addition, we
use one bit-mask type bit to represent two types of the bit-
mask compression: ‘0’ indicates that no mismatch occurs
for all bits after XORing the value and the bit-mask,
and ‘1’ indicates that no mismatch occurs for initial bits
before the bit location where mismatch (i.e., ‘1’) occurs.
The following two bit-mask position bits determine the
bit location: ‘00’ indicates that no mismatch occurs for
the initial 12 bits, ‘01’ indicates the initial 12 + 21 = 14
bits, ‘10’ indicates the initial 12 + 22 = 16 bits and ‘11’
indicates the initial 12+23 = 20 bits. In this study, the bit-
mask compression apparently benefits a dataset that has
many data around the middle value so that their MSBs
have more identical occurring bits to be compressed.

1 01
0 10 110…011
0 11 0
0 11 1 10

0: Not linear prediction
1: Linear prediction

01: Linear prediction (n = 1) 
10: Bit-rounding
11: Bit-mask

0: All bits match
1: First partial bits match

10: Mask position = 12+22 = 16

Fig. 2. An example of the encoded bits by our compression approach
(the number of bit-mask flag bits f = 2).

Figure 2 shows an example of the encoded bits by our
approach (the number of bit-mask flag bits f = 2). All the
encoded bits are concatenated to form a bit-stream to be
transferred at the sender side. For different compression
types, they employ differential prefix bit(s) in the bit-
stream, which are identified for smooth decompression at
the receiver side.



III. BIT-FLIP CHECK AND CORRECTION

A. Co-design with Lossy Compression
We use CRC-32 to provide effective and high level of

protection for communication data on lossy interconnec-
tion networks, which detects bit-flip errors in the received
data. In addition, Hamming code is used conditionally
to correct single bit errors if any. Because a larger bit-
stream suffers a higher possibility of bit flipping during
transmission on lossy interconnection networks, we adap-
tively cut the whole bit-stream into multiple data blocks
(DBs) and apply Hamming code to each DB accordingly
if it is estimated that multiple bit flips would occur in the
bit-stream. The data block size depends on the bit error
rate (BER) on the target lossy interconnection network.
Especially, the data block size should be small enough to
tolerate high BER. For instance, if BER = 10−5, we set
the data block size to 105 bits and apply Hamming code
to each DB. In this case, if a single bit flip is detected in a
DB, the error can be directly corrected on the receiver side
without requiring retransmission from the sender side.
However, if there are multiple bit flips, e.g., burst errors
with the burst length ≤ 31 bits, detected in a DB, the DB
will be required to be resent from the sender side.

1st 100K bits 2nd 100K bits 3nd 100K bits 4th 100K bits

CRC 32 bits
Ham

m
ing 20

bits
Ham

m
ing 20

bits

Ham
m

ing 20
bits

Ham
m

ing 20
bits

Overhead = (32+20*4)/(100K*4+32+20*4) = 0.02%

Fig. 3. Bit-flip check and correction of 400K-bit compressed data.

A 400K-bit communication stream using a Hamming
code scheme in addition to CRC-32 looks like Fig. 3.
Assuming BER = 10−5, CRC-32 requires 32 overhead
bits for bit-flip check in the whole communication data.
Besides, Hamming code requires 20 overhead bits per
100K-bit DB for bit-flip correction, and it requires 80
overhead bits in total for bit-flip correction of the whole
400K-bit communication data. In this example, the bit-flip
check and correction overhead is 32+20× 4 = 112 bits,
occupying only about 0.02% of the whole communication
bit-stream. As the BER becomes lower, i.e., smaller than
10−5, the data block size can be enlarged accordingly and
the overhead rate turns out to be even smaller.

B. MPI Implementation
The bit-wise lossy floating-point compression uses ba-

sic MPI functions and basic MPI data types for high

portability to various MPI implementations.
First, the sender only needs to send the size of the

compressed data (constructed with a single MPI INT)
before transferring the compressed data (constructed with
MPI UNSIGNED CHAR). Afterwards, the sender trans-
fers the difference information (constructed with a single
MPI DOUBLE) generated at the difference preprocess-
ing phase. For point-to-point communication, we use
MPI Isend, MPI Irecv and MPI Waitall between the
corresponding processes; for collective communication
such as broadcast, we use MPI Bcast among the involved
processes. Notice that, all the compressed data bits are
concatenated seamlessly at the sender side and the prefix
bits guide smooth decompression at the receiver side, thus
there is no additional overhead for any bit displacement
information.

As a co-design of the bit-wise lossy floating-point data
compression on lossy interconnection networks, CRC
verification is conducted at the receiver side. The com-
pressed data is decompressed if the verification is passed.
Hamming code is conditionally applied to correct single
bit errors at the receiver side. The compressed data can be
still successfully decompressed after the correction proce-
dure. The sender is required to resend the compressed data
if multiple bit flips in a DB are detected at the receiver
side.

IV. EVALUATION

A. Time Cost

0

0.2

0.4

0.6

0.8

0 1 2 3 4

Ti
m

e 
(s

)

Dataset Size (64KB × 2^n)

CRC Hamming Compression

Fig. 4. Time cost for different dataset sizes.

In Section III-A, we analyzed the overhead bits ap-
pended to the compressed data for bit-flip check and
correction on lossy interconnection networks. In this
section, we evaluate the time cost of the bit-flip check and
correction techniques, i.e., CRC and Hamming code. As
shown in Fig. 4, for different dataset sizes CRC keeps a
lower time cost than the bit-wise lossy compression algo-
rithm. Comparatively, it takes a longer time for Hamming



code to perform the bit-flip correction especially for a
larger dataset size. Such time cost is not allowable for
time-sensitive communication on lossy interconnection
networks. We thus recommend using only CRC for bit-
flip check if the dataset size is large. In this case, if any
bit flip is detected on the receiver side, it will require the
retransmission of the errorous data block (DB) from the
sender side.

B. Benchmark Performance

0.3
0.4
0.5
0.6
0.7

1
1.5

2
2.5

3
3.5

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

Error Bound = 1e-6 Error Bound = 1e-5 Error Bound = 1e-4 Error Bound = 1e-3 Error Bound = 1e-2

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Co
m

pr
es

sio
n 

Ra
tio Compression Ratio Execution Time

(a) MM

6
7
8
9
10

1
1.5

2
2.5

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

Error Bound = 1e-6 Error Bound = 1e-5 Error Bound = 1e-4 Error Bound = 1e-3 Error Bound = 1e-2

Ex
ec

ut
io

n
Ti

m
e

(s
)

Co
m

pr
es

sio
n

Ra
tio Compression Ratio Execution Time

(b) LU

600
620
640
660
680
700

1
1.5

2
2.5

3
3.5

4

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

BE
R 

= 
0

1.
00

E-
10

1.
00

E-
09

1.
00

E-
08

1.
00

E-
07

1.
00

E-
06

Error Bound = 1e-6 Error Bound = 1e-5 Error Bound = 1e-4 Error Bound = 1e-3 Error Bound = 1e-2

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Co
m

pr
es

sio
n 

Ra
tio Compression Ratio Execution Time

(c) K-means

Fig. 5. Execution time of the MPI applications with bit-flip recovery.

We integrate the bit-flip recovery schemes with the bit-
wise lossy compression algorithm in the MPI applica-
tions: MM, LU and K-means. Because the datasets used
in these applications are large, we rely on only CRC
and retransmission for bit-flip check on the target lossy
interconnection network. Figure 5 shows the execution
times of the MPI applications including bit-flip recovery.
Overall, the speedup by the bit-wise lossy compression
algorithm is incrementally obtained as the error bound
becomes relaxed, which is consistent with our previous
observation. On the other hand, although a large BER usu-
ally sacrifices the speedup, the time overhead is marginal
when compared to a lossless interconnection network
(BER = 0).

V. CONCLUSION

Data compression increases the effective network band-
width on an interconnection network of parallel comput-
ers. Instead of hardware compression at network inter-

faces, we introduce an application-level bit-wise error-
bounded lossy compression algorithm for floating-point
data communication to improve the performance of paral-
lel applications. The compressed floating-point values are
concatenated in a bit-stream encapsulated in a byte array,
corresponding to an MPI unsigned char type for providing
high portability. For the purpose of recovering bit flips
on lossy interconnection networks, we co-design with a
simple bit-flip recovery scheme for the compressed bit-
stream. We propose using CRC for bit-flip detection and
using Hamming code for single bit-flip correction without
sacrificing the merit of the bit-wise lossy compression
algorithm.

Evaluation results demonstrated that our bit-wise lossy
compression algorithm successfully improves the applica-
tion performance. Rather than an application-level bit-flip
correction technique such as Hamming code, CRC with
retransmission is more effective and efficient for a large
dataset size to recover bit flips on lossy interconnection
networks.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant
Number 19H01106, and JST PRESTO JPMJPR19M1.

REFERENCES

[1] A. Agrawal, J. Choi, K. Gopalakrishnan, S. Gupta, R. Nair, J. Oh,
D. A. Prener, S. Shukla, V. Srinivasan, and Z. Sura, “Approximate
computing: Challenges and opportunities,” in 2016 IEEE Interna-
tional Conference on Rebooting Computing (ICRC), 2016, pp. 1–8.

[2] S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran,
“Characterization of mpi usage on a production supercomputer,” in
SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2018, pp. 386–400.

[3] Q. Fan, D. J. Lilja, and S. S. Sapatnekar, “Using dct-based ap-
proximate communication to improve mpi performance in parallel
clusters,” in 2019 IEEE 38th International Performance Computing
and Communications Conference (IPCCC), 2019, pp. 1–10.

[4] J. Tomkins, “Interconnects: A Buyers Point of View,” ACS Work-
shop, 2007.

[5] Y. Hu and M. Koibuchi, “The case for error-bounded lossy floating-
point data compression on interconnection networks,” in 10th
International Conference on Parallel, Distributed Computing Tech-
nologies and Applications (PDCTA-2021), 2021, pp. 55–76.

[6] S. Seong and P. Mishra, “Bitmask-based code compression for
embedded systems,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 27, no. 4, pp. 673–685,
2008.

[7] L. A. B. Gomez and F. Cappello, “Improving floating point
compression through binary masks,” in 2013 IEEE International
Conference on Big Data, 2013, pp. 326–331.


