論文

2007年9月

Molecular cloning of Brassica rapa nitrilases and their expression during clubroot development

MOLECULAR PLANT PATHOLOGY
  • Toshiki Ishikawa
  • ,
  • Keiichi Okazaki
  • ,
  • Haruka Kuroda
  • ,
  • Kimiko Itoh
  • ,
  • Toshiaki Mitsui
  • ,
  • Hidetaka Hori

8
5
開始ページ
623
終了ページ
637
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1111/J.1364-3703.2007.00414.X
出版者・発行元
WILEY-BLACKWELL PUBLISHING, INC

Three isoforms of nitrilase were cloned from turnip, Brassica rapa L., and their expression during clubroot development caused by Plasmodiophora brassicae was investigated. The isoforms were designated BrNIT-T1, BrNIT-T2 and BrNIT-T4 based on homology to known nitrilases. BrNIT-T1 and BrNIT-T2 have 80% homology to three nitrilases from Arabidopsis thaliana (AtNIT1, AtNIT2 and AtNIT3). BrNIT-T4 showed 90% homology to AtNIT4. To confirm their enzyme activity, the recombinant proteins were expressed in Escherichia coli. The recombinant BrNIT-T1 and BrNIT-T2 but not BrNIT-T4 converted indole-3-acetonitrile to indole-3-acetic acid, an endogenous plant auxin, although kinetic analysis showed that indole-3-acetonitrile is a poor substrate compared with various aliphatic and aromatic nitriles. By contrast, the recombinant BrNIT-T4 specifically converted beta-cyano-L-alanine to aspartic acid and asparagine and these findings agree with the idea that it is involved in the cyanide detoxification pathway. Real-time PCR analysis clearly showed that these isoforms were differentially expressed during clubroot development. BrNIT-T1 transcripts were very low in non-infected roots but were enhanced up to 100-fold in infected roots exhibiting club growth. By contrast, BrNIT-T2 transcripts remained at a very low level during clubroot formation. All these results clearly indicate the specific involvement of BrNIT-T1 in clubroot formation. The BrNIT-T4 transcripts were substantially reduced in the clubroot-growing phase, but thereafter they increased rapidly to a level found in non-infected roots as the clubroot growth reached a plateau. These findings suggest the specific involvement of BrNIT-T4 in clubroot maturation. In fully developed clubs, the BrNIT-T1 and BrNIT-T2 transcripts also increased. Free indole-3-acetic acid (IAA) content increased in the early and the latest phase of infected roots compared with noninfected roots, but decreased substantially at the middle phase. Thus, free IAA may play a role in the initiation and maturation of clubroot. Total IAA content was significantly higher in infected roots than in non-infected roots throughout clubroot development and IAA conjugation/conjugate hydrolysis system as well as BrNIT-Ts appear to be involved in clubroot development.

リンク情報
DOI
https://doi.org/10.1111/J.1364-3703.2007.00414.X
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000249160800007&DestApp=WOS_CPL
URL
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34548138972&origin=inward
ID情報
  • DOI : 10.1111/J.1364-3703.2007.00414.X
  • ISSN : 1464-6722
  • Web of Science ID : WOS:000249160800007

エクスポート
BibTeX RIS