論文

査読有り 本文へのリンクあり
2020年2月5日

Theory of analytical energy derivatives for the variational quantum eigensolver

Physical Review Research
  • Kosuke Mitarai
  • ,
  • Yuya O. Nakagawa
  • ,
  • Wataru Mizukami

2
013129
開始ページ
013129
終了ページ
DOI
10.1103/PhysRevResearch.2.013129

The variational quantum eigensolver (VQE) and its variants, which is a method
for finding eigenstates and eigenenergies of a given Hamiltonian, are appealing
applications of near-term quantum computers. Although the eigenenergies are
certainly important quantities which determines properties of a given system,
their derivatives with respect to parameters of the system, such as positions
of nuclei if we target a quantum chemistry problem, are also crucial to analyze
the system. Here, we describe methods to evaluate analytical derivatives of the
eigenenergy of a given Hamiltonian, including the excited state energy as well
as the ground state energy, with respect to the system parameters in the
framework of the VQE. We give explicit, low-depth quantum circuits which can
measure essential quantities to evaluate energy derivatives, incorporating with
proof-of-principle numerical simulations. This work extends the theory of the
variational quantum eigensolver, by enabling it to measure more physical
properties of a quantum system than before and to explore chemical reactions.

リンク情報
DOI
https://doi.org/10.1103/PhysRevResearch.2.013129
arXiv
http://arxiv.org/abs/arXiv:1905.04054
共同研究・競争的資金等の研究課題
古典 - 量子ハイブリッドアルゴリズムの実験実証とその核スピン超偏極への応用
Arxiv Url
http://arxiv.org/abs/1905.04054v2
Arxiv Url
http://arxiv.org/pdf/1905.04054v2 本文へのリンクあり