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What is Chebyshev’s Bias?

The phenomenon that most of the time, there are more primes of the form 4k + 3 than
of the form 4k + 1, up to the same bound. (Chebyshev (1853))

Put 7(z; ¢, a) :=#{p <z | p=a (mod ¢)}.

e For all z < 26861, it holds 7(x; 4, 3) > 7(z; 4, 1). Team 3 is in the lead.
o For x = 26861, the inequality “<" holds. Team 1 leads for an instant.
o For x = 26863, the equation “"=" holds. Team 3 catches up.
o For x = 26879, the inequality “>" holds again. Team 3 gets ahead.
@ For 26879 < x < 616841, the inequality “>" holds. Team 3 maintains a lead.

It seems that 7(x; 4, 3) > 7(z; 4, 1) more often than not.

i a bias towards primes of the form 4k + 3.
Apparently there exists
a bias against primes of the form 4k + 1. 2



Chebyshev’s Bias

x| w(x; 4,3) w(x; 4, 1)
100 13 11 Team 3 leads by 2 points.
1,000 87 80 Team 3 leads by 7 points.
10,000 619 609 Team 3 leads by 10 points.
100, 000 4808 4783 Team 3 leads by 25 points.
1,000,000 39322 39175 Team 3 leads by 147 points.
2,000,000 74516 74416 Team 3 leads by 100 points.
3,000,000 | 108532 108283 | Team 3 leads by 249 points.




History on Chebyshev’s Bias

Littlewood (1914)

m(x; 4, 3) — w(w; 4, 1) changes its sign infinitely many times.

Knapowski-Turan Conjecture (1962)
The natural density of the set A(X) = {z < X | w(x; 4, 3) — 7(x; 4, 1) > 0} is 1.

lim vol(A(X))

= 1.
X—o00 X

—  This is false under GRH. The limit does not exist. (Kaczorowski 1995)
Rubinstein-Sarnak’s Theorem (1994)
The logarithmic density of the set A(X) exists under “"GRH-+LI".

! d = 0.9959....

lim
X—o00 lOg X te A(X)



Two exterme cases where 7(x; 4, 3) > m(x; 4, 1) holds (V2 < p1og = (100t prime)).

1.Everyone from Team 3 comes first. Team 1 comes up later.

Even if we know {z |0 < = < p1g0} C A(X), we cannot distinguish Cases 1 and 2.
The length of the interval A(X) does not lead us to the truth.

We need a method of estimating the “difference”. 5



The key idea for attacking Chebyshev’s bias

Prime number theorem in arithmetic progressions

Team 3 is as big as Team 1.

Reinterpretation of Chebyshev’s bias

We regard Chebyshev’s bias as follows:

There seem to be more members in Team 3 = Members in Team 3 appear earlier

The main idea (zeta parametrization)

In order to regard smaller primes as heavier elements,

1
we adopt a weighted counting function  75(z; ¢, a) = Z —  (s>0),

p<z:prime
p=a (mod q)

which is a generalization of the counting function 7(z; q, a) = mo(z; q, a).



The Deep Riemann Hypothesis (DRH)

K: a (1-dimensional) global field
p: an n-dimensional irreducible representation of Gal(K /K) (p#1)

Li(s.p) =[] = det(1—pFroby)N(v)~*)""  (R(s) > 1)
v: finite place
(N(v): the norm, Frob, € Gal(K/K): the Frobenius element)
Deep Riemann Hypothesis (DRH)
Put m =m, = ordSZ%LK(s,p) and let v be the Euler constant. If p # 1, then
) _ V24,0

em™'m)

)

lim ((1oga;)m I det (1— p(Frobv)N(v)—%)_l

Z—00
N(v)<z

where v(p) = mult(1,sym?p) — mult(1, A%p).

DRH = CC= [EP of Li(s, p) converges at s = £|. (The limit may be 0.) 7



Euler's L-function L(s,x) = H (1—x(p~*)"

p: odd
Since L(3,x) # 0 (i.e. m = 0), DRH is equivalent to
—1
Z log (1 - X(p)pfé) =L+o(l) (r—o0) with L=Ilog (\/iL(%,X))

p<x:odd

Taylor expansion Zlog (1 = x(p)) Z il "’ Z 2 + Z Xk 2
p<z k=3 RD?

1
p<x b2 p<x p<z
o Ist term = 771/2(:5 4 1) — m1/2(; 4, 3)
@ 2nd term = Z x(p

1 1
2p ZQ_:§loglog:r+c+o(l) (x = 00) (JceR)
p<lzx p<
x()*

o
@ 3rd term is absolutely convergent from 5 > [XE2-
kp2

p<zx k=3

<3 L=

Under DRH, we have 7y 5(x; 4, 3) — 7y jo(x; 4, 1) = § loglogz + C + o(1) (z — o0).



Formulations of Chebyshev Biases (in a global field K)

#{p | a(p)>0, N(p)<z} _ 1

a(p) € R: a sequence over prime ideals p of K s.t. xh_)rrolo o T a(p)<0. N(p)<a} —

We say a(p) has a Chebyshev bias to being positive, if there exists C' > 0 such that

Z alp) ~ Cloglogz (z— o).
N(p)<=z N(p)

Assume that {p | N(p) < 2} = Pi(x) U Py(x) (disjoint) and that § = hm }?ggl

We say there exists a Chebyshev bias toward P; (or Chebyshev bias agamst P,), if

~ Cloglogz (z — oo, 3C > 0).

pE%: v pé;) \



DRH over function fields

Theorem (DRH in char> 0) [Kaneko-Koyama-Kurokawa (2021)]

When K is an algebraic function field (of one variable) with char(K) > 0,
DRH holds for any automorphic L-function over GL,,.

In what follows, whenever we say “Under DRH", it means the following:

o In case of char(K) = 0, the theorem holds under the assumption of DRH.

o In case of char(K) > 0, the theorem holds unconditionally.



Overview of the preceding results

1

m(wi g, a)= > = (520), A;={z>0|m(x;4,3)-m(z; 4, 1) > 0}
p<x:prime p
p=a(mod q) The density of Ay does not exist.

Preceding Results (under DRH for char 0, and unconditionally for char > 0)

o The density of A;/, is equal to 1. More precisely,

sloglogz +O(1) (z —o00) (s=3)
O(1) (z— o0) (s > %)

— A formulation of the Chebyshev bias towards Team 3 (against Team 1).

ms(x; 4, 3) — me(z; 4, 1) =

@ The Chebyshev bias against splitting ideals in an extension of global fields.
o The Chebyshev bias against principal ideals in a global field of class number 2.

@ Ramanujan’s 7(p) has a Chebyshev bias to being positive.

11



Preceding results on abelian extensions

L/K: a finite abelian extension of (one-dimensional) global fields

G :=Gal(L/K) >0, pcCK: aprime ideal

o= X e (o= (25 =)

N(p)<z

Theorem 1 (Aoki-Koyama, JNT 2022)(Bias against squares in Gal(L/K))

Under DRH, it holds for any o € G? and 7 € G \ G? that as * — o

1 |G/G?|
[L: K] < 2

™

+m(o) — m(r)) loglog z + O(1),

1(@;7) —mi(w50) =

where m(o) = Z R(x(o) 1 )ord,_
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The case of cyclotomic fields (K =Q, L = Q({,) (¢ > 3))

For ¢q€Z, wehave G =Gal(L/Q)> (%) el (Z/qZ)*.

0€G? & R, :={a € (Z/q2)*|a € (Z/qZ)**} : quadratic residues
7€ G* & Ny i={a € (Z/qZ)* |a € (Z/qZ)* \ (Z/qZ)**} : quadratic nonresidues

Corollary 1 (Bias against quadratic residues)
Assume DRH for L(s, x) with x a nontrivial Dirichlet character mod q.
Assume that L(%, X) # 0 (Chowla’s Conjecture).

IG/G?| _ 1

o If (a,b) € Ry x Ny, (g, a, b) = (4, 1, 3), 50() — 2. Chebyshev's case

(z; q, b) — w%(x; q, a) = |G/&7] loglogx + O(1) (x — o).

& 2¢(q)

1
2

o If either (a,b) € Ry x Ry or (a,b) € Ny x N,
m1(%; ¢, b) =1 (w; ¢, a) = O(1)  (z — 00), 13



Examples (under DRH)

Example 1 (Bias mod 8)
(Z/8Z)* = {1, 3, 5, 7 (mod 8)}. Rg={1}, Ng={3,5, 7}
For j = 3, 5, 7, it holds that
™y (@58, ) —my (258, 1) = %loglogaz +0(1) (2 — ).
For all pairs of j, k € {3, 5, 7}, it holds that
w1(z; 8, j) — F%({L’; 8, k) =0(1) (x — 00).

1
2



Bias in the polynomial ring I, [T]

Let f € Fy[T] and put Fy =F,[T]/(f).  N(f):=qde/

Assume that fo is a cyclic group of even order.
Rp={geF/|ge (FX)*}  (quadratic residues)
Ny={geF;|g¢d (FX)?} (quadratic nonresidues)

Corollary 2 (Bias in irreducible polynomials over F,)

1 1
ICr >0 Z - Z ~ Crlogn (n— o0)

h€Ny: irreducible h€Ry: irreducible
deg h<n deg h<n

Example 2 (¢ =2, f =T7%) F; = (F[T)/(T?)* ={1, T +1}

The bias is towards 7'+ 1 € Ny (against 1 € Ry). If h(T) = Y a;T7 (a; € F3) is
=0

irreducible, then polynomials with a; = 1 appear “earlier” than those with a; = 0. =



Bias against splitting primes

L/K: a finite abelian extension, Sp := {p € S | splitting in L}, Sy := S \ Sp.

1 1
ms(x; L)p := Z Ny ms(x; L)y = Z NG

PESD pPESN
N(p)<e N(p)<z
IfptDr/x, psplitsin L <:>(L{,K) =1.  .ws(x; L)p = ms(w; 1).

Let L/K be a quadratic extension (for simplicity).
Under DRH, it holds as # — oo that

w%(az;L)N—ﬂ (z;L)p = (5 + my) loglog z + O(1).

(In the paper we prove for general abelian extensions.)

There exists a bias towards nonsplitting (i.e. against splitting) primes. 16



Bias against principal prime ideals

Ix: the ideal group of K,
Py the principal ideal group
ClK = IK/PKZ ]’LK = ’ClK’

K: the Hilbert class field of K (i.e. Clyc 3 [a] & 0q := (@TK) € Gal(K/K))

Theorem 3 (Aoki-Koyama, JNT 2022) (Bias against principal prime ideals)

Assume hg = 2 (for simplicity). Put Gal(K/KY= {1, x}.
Under DRH, it holds as  — oo that

1 1 o (1 ool N '
peZPK N () peZPK VN® (3 +m(x)) loglogz  (z — o0)
N(p)<z N(p)<z

(In the paper we prove for general class numbers.)

There exists a bias towards nonprincipal (i.e. against principal) prime ideals. 17



Bias of Ramanujan’s 7(p)

ed)=D, A= oJI0- =3 ron (2% <) <)

Theorem 4 (Koyama-Kurokawa, PJA 2022) (Bias to 0 < 7(p) < 2p%)

Under DRH of L(s + 4, A), it holds that

Tp) 1
~ —1 1 .
E G 5 loglogz (x = 00)

p<z

In other words, the sequence Tl(lp)Q has a Chebyshev bias to being positive.
ptt/

@ The distribution of 6, is “uniform” in the sense of the Sato-Tate Conjecture

(proved), which corresponds to the PNT in arithmetic progressions.
18



Bias of 7(p?)

Theorem 5 (Koyama-Kurokawa, 2022) (Bias of 7(p?) to being negative)

Under DRH for L(s + &, sym?A) = Hdet (1 — (sym®M(p)) p_s)_l
P

. 9 e*% 0 0 .
with sym*M(p) = o 0 ], itholdsasz — oo that
0 e “"p

1
0
11

(p2 (p)—p2 )(7(P)+p2 cos O0p— cos
>y (O )0nT) o petnoone il

p<z P2 p<z P2 p<z

2
In other words, the sequence Tlgﬁ’l) has a Chebyshev bias to being negative.

o It also suggests a bias of the Satake parameters 6, € [0, 7]
towards —% < cosB), < % (ie. £ <6, < %77) which is compared to
the bias towards 0 < cosf, < 1 (i.e. 0 <6, < T) in Theorem 4
@ Other types of biases may be discovered by higher symmetric powers. 9



Bias of a, for elliptic curves

K: a function field, wv: a finite place, k,: the residue field, ¢, = |ky|.
For an elliptic curve E/K, put a, := q, + 1 — #E,(ky).

L(s,B)= J] (1 -20q,°+a;7>)" J] (1 = avg,®)™"
v: good v: bad

Theorem 6 (Kaneko-Koyama, 2023) (Bias of a,)

Assume E/K is not isotrivial (< pg is reducible containing the identity rep).

It holds under the BSD conjecture that

qu<:x % = <% - rk(E)> loglogz + O(1) (z — o0).

Then \%—v has a bias to being positive if tk(E) = 0, and negative if rk(E) > 0.

20
The red part holds unconditionally (without BSD).



Main Theorem (Bias of a, for algebraic curves)

K: a global field, wv: a place, k,: the residue field, g, = |ky|.
C/K: an algebraic curve with the Galois representation p = p¢
Put a, = g + 1 — #C(ky) = /qutr(p(Froby)).

Theorem 7 (Bias of a,)
Assume DRH for the Hasse-Weil L-function L(s,C') and put m = ord,_; ;5 L(s,C).

§(C) = [the order of the pole of L®)(s,C) at s = 1] with
L®)(s,C) = the second moment L-function.

Then the following holds

P _ _ <@ +m> loglogz + O(1) (z — o0).

qQv<z T e

21



Proof of Main Theorem

Putting p(Frob,) = M (v), the normalized L-functions is given as

L(s,M) = L(s,M¢) = H det (I — M(v)g~*®) " ' x (bad factors).

v: good
1 =il
log(logas Hdet <1— ) )I(;r)—l—ll(;r)—l—lll(;v)O(l) (x = 00)
M W) I r(M@)?) I (MW"
l(x):qu 77 II($):§qUZ<:1 P ”I(IE):;;,EQ;U T

22



Proof of Main Theorem

The generalization of Mertens theorem (Kaneko-Koyama-Kurokawa, 2022) gives

H(x) ~ 5(20)10g log x (x — 00).

On the other hand it is easily seen that Ill(z) = O(1) (z — o0).

Therefore

23



Example (Fermat curves of prime degree)

Theorem 8 (Okumura 2023)

C/Q: the Fermat curve X* +Y* = Z*  / an odd prime,
ap(C) :=p+1—#C(Fp)

Put Cp = C xq F with F' = Q(u¢), f1¢ a primitive {-th root of 1
Assume DRH for the Hasse-Weil L-function L(s,Cp).

Then the following holds

E I _ g_mloglogaj+0(1) (x — o0),
D -1
p<z

where g = ({ —1)(£ —2)/2.

Under DRH, \f has a bias to being positive, if g —m > 0.

24



Example (the case ¢ = 4)

C:zt+yt =24

We can calculte #C(FF,) by the Davenport-Hasse theorem:

x 100 200 300 400 500 600 700
#{pla, >0} | 6 9 13 19 24 27 29
#{pla, <0} | 5 12 16 18 20 24 30
Sy = §<j % | 0.5567 3.3412 —0.1160 0.2871 59287 6.0637 6.0438

qusT

@ The numbers of primes with a, > 0 and a;,, < 0 are almost equal.
o But S, is positive and increasing.

It suggests the bias of a, to being positive.
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