Chebyshev's Bias for Algebraic Curves

Shin-ya Koyama (Toyo University)

What is Chebyshev's Bias?

The phenomenon that most of the time, there are more primes of the form $4 k+3$ than of the form $4 k+1$, up to the same bound.

$$
\text { Put } \pi(x ; q, a):=\#\{p \leq x \mid p \equiv a(\bmod q)\} .
$$

- For all $x<26861$, it holds $\pi(x ; 4,3) \geq \pi(x ; 4,1)$.
- For $x=26861$, the inequality " $<$ " holds.
- For $x=26863$, the equation " $=$ " holds.
- For $x=26879$, the inequality " $>$ " holds again.
- For $26879 \leq x<616841$, the inequality " $>$ " holds.

Team 3 is in the lead.
Team 1 leads for an instant.
Team 3 catches up.
Team 3 gets ahead. Team 3 maintains a lead.

It seems that $\pi(x ; 4,3) \geq \pi(x ; 4,1)$ more often than not.
Apparently there exists $\left\{\begin{array}{l}\text { a bias towards primes of the form } 4 k+3 . \\ \text { a bias against primes of the form } 4 k+1 .\end{array}\right.$

Chebyshev's Bias

x	$\pi(x ; 4,3)$	$\pi(x ; 4,1)$	
100	13	11	Team 3 leads by 2 points.
1,000	87	80	Team 3 leads by 7 points.
10,000	619	609	Team 3 leads by 10 points.
100,000	4808	4783	Team 3 leads by 25 points.
$1,000,000$	39322	39175	Team 3 leads by 147 points.
$2,000,000$	74516	74416	Team 3 leads by 100 points.
$3,000,000$	108532	108283	Team 3 leads by 249 points.

History on Chebyshev's Bias

Littlewood (1914)

$\pi(x ; 4,3)-\pi(x ; 4,1)$ changes its sign infinitely many times.

Knapowski-Turan Conjecture (1962)

The natural density of the set $A(X)=\{x<X \mid \pi(x ; 4,3)-\pi(x ; 4,1)>0\}$ is 1 .

$$
\lim _{X \rightarrow \infty} \frac{\operatorname{vol}(A(X))}{X}=1
$$

$\rightarrow \quad$ This is false under GRH. The limit does not exist. (Kaczorowski 1995)

Rubinstein-Sarnak's Theorem (1994)

The logarithmic density of the set $A(X)$ exists under " $\mathrm{GRH}+\mathrm{LI}$ ".

$$
\lim _{X \rightarrow \infty} \frac{1}{\log X} \int_{t \in A(X)} \frac{d t}{t}=0.9959 \ldots
$$

$A(X)=\{x<X \mid \pi(x ; 4,3)-\pi(x ; 4,1)>0\}$ is insufficient.

Two exterme cases where $\pi(x ; 4,3) \geq \pi(x ; 4,1)$ holds $\left(\forall x \leq p_{100}=\left(100^{\text {th }}\right.\right.$ prime $\left.)\right)$.
1.Everyone from Team 3 comes first. Team 1 comes up later.

2.Both teams appear alternatively.

Even if we know $\left\{x \mid 0<x \leq p_{100}\right\} \subset A(X)$, we cannot distinguish Cases 1 and 2.
The length of the interval $A(X)$ does not lead us to the truth.
We need a method of estimating the "difference".

The key idea for attacking Chebyshev's bias

Prime number theorem in arithmetic progressions
Team 3 is as big as Team 1.

Reinterpretation of Chebyshev's bias

We regard Chebyshev's bias as follows:
There seem to be more members in Team $3=$ Members in Team 3 appear earlier

The main idea (zeta parametrization)

In order to regard smaller primes as heavier elements, we adopt a weighted counting function $\pi_{s}(x ; q, a)=\sum_{\substack{p<x: \operatorname{prime} \\ p \equiv a(\bmod q)}} \frac{1}{p^{s}}(s \geq 0)$,
which is a generalization of the counting function $\pi(x ; q, a)=\pi_{0}(x ; q, a)$.

The Deep Riemann Hypothesis (DRH)

K : a (1-dimensional) global field
$\rho:$ an n-dimensional irreducible representation of $\operatorname{Gal}(\bar{K} / K) \quad(\rho \neq \mathbf{1})$

$$
L_{K}(s, \rho):=\prod_{v: \text { finite place }} \operatorname{det}\left(1-\rho\left(\operatorname{Frob}_{v}\right) N(v)^{-s}\right)^{-1} \quad(\Re(s)>1)
$$

$\left(N(v):\right.$ the norm, $\operatorname{Frob}_{v} \in \operatorname{Gal}(\bar{K} / K):$ the Frobenius element)

Deep Riemann Hypothesis (DRH)

Put $m=m_{\rho}=\operatorname{ord}_{s=\frac{1}{2}} L_{K}(s, \rho)$ and let γ be the Euler constant. If $\rho \neq \mathbf{1}$, then
$\lim _{x \rightarrow \infty}\left((\log x)^{m} \prod_{N(v) \leq x} \operatorname{det}\left(1-\rho\left(\operatorname{Frob}_{v}\right) N(v)^{-\frac{1}{2}}\right)^{-1}\right)=\frac{\sqrt{2}^{\nu(\rho)} L_{K}^{(m)}\left(\frac{1}{2}, \rho\right)}{e^{m \gamma} m!}$,
where $\nu(\rho)=\operatorname{mult}\left(\mathbf{1}, \operatorname{sym}^{2} \rho\right)-\operatorname{mult}\left(1, \wedge^{2} \rho\right)$.

$$
\mathrm{DRH} \Longrightarrow \mathrm{CC}=\left[\mathrm{EP} \text { of } L_{K}(s, \rho) \text { converges at } s=\frac{1}{2}\right] \text {. (The limit may be } 0 \text {.) }
$$

Euler's L-function $\quad L(s, \chi)=\prod\left(1-\chi(p) p^{-s}\right)^{-1} \quad\left(\chi(p)=(-1)^{\frac{p-1}{2}}\right)$

Since $L\left(\frac{1}{2}, \chi\right) \neq 0$ (i.e. $m=0$), DRH is equivalent to

$$
\sum_{p \leq x: \text { odd }} \log \left(1-\chi(p) p^{-\frac{1}{2}}\right)^{-1}=L+o(1) \quad(x \rightarrow \infty) \quad \text { with } L=\log \left(\sqrt{2} L\left(\frac{1}{2}, \chi\right)\right)
$$

Taylor expansion $\sum_{p \leq x} \log \left(1-\frac{\chi(p)}{p^{\frac{1}{2}}}\right)^{-1}=\sum_{p \leq x} \frac{\chi(p)}{\sqrt{p}}+\sum_{p \leq x} \frac{\chi(p)^{2}}{2 p}+\sum_{p \leq x} \sum_{k=3}^{\infty} \frac{\chi(p)^{k}}{k p^{\frac{k}{2}}}$

- 1st term $=\pi_{1 / 2}(x ; 4,1)-\pi_{1 / 2}(x ; 4,3)$
- 2nd term $=\sum_{p \leq x} \frac{\chi(p)^{2}}{2 p}=\sum_{p \leq x} \frac{1}{2 p}=\frac{1}{2} \log \log x+c+o(1) \quad(x \rightarrow \infty) \quad(\exists c \in \mathbb{R})$
- 3rd term is absolutely convergent from $\sum_{p \leq x} \sum_{k=3}^{\infty}\left|\frac{\chi(p)^{k}}{k p^{\frac{k}{2}}}\right| \leq \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}=\zeta\left(\frac{3}{2}\right)$.

Under DRH, we have $\pi_{1 / 2}(x ; 4,3)-\pi_{1 / 2}(x ; 4,1)=\frac{1}{2} \log \log x+C+o(1)(x \rightarrow \infty)$.

Formulations of Chebyshev Biases (in a global field K)

Definition 1

$a(\mathfrak{p}) \in \mathbb{R}$: a sequence over prime ideals \mathfrak{p} of K s.t. $\quad \lim _{x \rightarrow \infty} \frac{\#\{\mathfrak{p} \mid a(\mathfrak{p})>0, N(\mathfrak{p}) \leq x\}}{\#\{\mathfrak{p} \mid a(\mathfrak{p})<0, N(\mathfrak{p}) \leq x\}}=1$.
We say $a(\mathfrak{p})$ has a Chebyshev bias to being positive, if there exists $C>0$ such that

$$
\sum_{N(\mathfrak{p}) \leq x} \frac{a(\mathfrak{p})}{\sqrt{N(\mathfrak{p})}} \sim C \log \log x \quad(x \rightarrow \infty)
$$

Definition 2

Assume that $\{\mathfrak{p} \mid N(\mathfrak{p}) \leq x\}=P_{1}(x) \cup P_{2}(x)$ (disjoint) and that $\delta=\lim _{x \rightarrow \infty} \frac{\left|P_{1}(x)\right|}{\left|P_{2}(x)\right|}$. We say there exists a Chebyshev bias toward P_{1} (or Chebyshev bias against P_{2}), if

$$
\sum_{p \in P_{1}(x)} \frac{1}{\sqrt{N(\mathfrak{p})}}-\delta \sum_{p \in P_{2}(x)} \frac{1}{\sqrt{N(\mathfrak{p})}} \sim C \log \log x \quad(x \rightarrow \infty, \exists C>0)
$$

DRH over function fields

Theorem (DRH in char> 0) [Kaneko-Koyama-Kurokawa (2021)]

When K is an algebraic function field (of one variable) with $\operatorname{char}(K)>0$, DRH holds for any automorphic L-function over $G L_{n}$.

In what follows, whenever we say "Under DRH", it means the following:

- In case of $\operatorname{char}(K)=0$, the theorem holds under the assumption of DRH.
- In case of $\operatorname{char}(K)>0$, the theorem holds unconditionally.

Overview of the preceding results

$$
\begin{array}{r}
\pi_{s}(x ; q, a)=\sum_{\substack{p<x: \operatorname{prime} \\
p \equiv a(\bmod q)}} \frac{1}{p^{s}}(s \geq 0), \quad A_{s}=\left\{x>0 \mid \pi_{s}(x ; 4,3)-\pi_{s}(x ; 4,1)>0\right\} \\
\text { The density of } A_{0} \text { does not exist. }
\end{array}
$$

Preceding Results (under DRH for char 0, and unconditionally for char >0)

- The density of $A_{1 / 2}$ is equal to 1 . More precisely,

$$
\pi_{s}(x ; 4,3)-\pi_{s}(x ; 4,1)=\left\{\begin{array}{lll}
\frac{1}{2} \log \log x+O(1) & (x \rightarrow \infty) & \left(s=\frac{1}{2}\right) \\
O(1) \quad(x \rightarrow \infty) & \left(s>\frac{1}{2}\right)
\end{array}\right.
$$

\rightarrow A formulation of the Chebyshev bias towards Team 3 (against Team 1).

- The Chebyshev bias against splitting ideals in an extension of global fields.
- The Chebyshev bias against principal ideals in a global field of class number 2.
- Ramanujan's $\tau(p)$ has a Chebyshev bias to being positive.

Preceding results on abelian extensions

L / K : a finite abelian extension of (one-dimensional) global fields
$G:=\operatorname{Gal}(L / K) \ni \sigma, \quad \mathfrak{p} \subset K:$ a prime ideal

$$
\pi_{s}(x ; \sigma):=\sum_{\substack{\mathfrak{p} \in S_{\sigma} \\ N(\mathfrak{p}) \leq x}} \frac{1}{N(\mathfrak{p})^{s}} \quad\left(S_{\sigma}:=\left\{\mathfrak{p} \mid \mathfrak{p} \nmid D_{L / K}, \quad\left(\frac{L / K}{\mathfrak{p}}\right)=\sigma\right\}\right)
$$

Theorem 1 (Aoki-Koyama, JNT 2022)(Bias against squares in $\mathbf{G a l}(L / K)$)

Under DRH, it holds for any $\sigma \in G^{2}$ and $\tau \in G \backslash G^{2}$ that as $x \rightarrow \infty$

$$
\begin{aligned}
& \pi_{\frac{1}{2}}(x ; \tau)-\pi_{\frac{1}{2}}(x ; \sigma)=\frac{1}{[L: K]}\left(\frac{\left|G / G^{2}\right|}{2}+m(\sigma)-m(\tau)\right) \log \log x+O(1) \\
& \text { where } m(\sigma):=\sum_{\chi \in \widehat{G} \backslash\{1\}} \Re\left(\chi(\sigma)^{-1}\right) \operatorname{ord}_{s=\frac{1}{2}} L_{K}(s, \chi) .
\end{aligned}
$$

The case of cyclotomic fields $\left(K=\mathbb{Q}, L=\mathbb{Q}\left(\zeta_{q}\right)(q \geq 3)\right)$

For $\quad q \in \mathbb{Z}$, we have $G=\operatorname{Gal}(L / \mathbb{Q}) \ni\left(\frac{L / \mathbb{Q}}{(a)}\right) \underset{\longleftrightarrow}{\sim} a \in(\mathbb{Z} / q \mathbb{Z})^{\times}$.

$$
\begin{array}{ll}
\sigma \in G^{2} \leftrightarrow R_{q}:=\left\{a \in(\mathbb{Z} / q \mathbb{Z})^{\times} \mid a \in(\mathbb{Z} / q \mathbb{Z})^{\times 2}\right\} & \text { : quadratic residues } \\
\tau \notin G^{2} \leftrightarrow N_{q}:=\left\{a \in(\mathbb{Z} / q \mathbb{Z})^{\times} \mid a \in(\mathbb{Z} / q \mathbb{Z})^{\times} \backslash(\mathbb{Z} / q \mathbb{Z})^{\times 2}\right\} & \text { : quadratic nonresidues }
\end{array}
$$

Corollary 1 (Bias against quadratic residues)

Assume DRH for $L(s, \chi)$ with χ a nontrivial Dirichlet character $\bmod q$. Assume that $L\left(\frac{1}{2}, \chi\right) \neq 0$ (Chowla's Conjecture).

- If $(a, b) \in R_{q} \times N_{q}, \quad(q, a, b)=(4,1,3), \frac{\left|G / G^{2}\right|}{2 \varphi(q)}=\frac{1}{2}$: Chebyshev's case

$$
\pi_{\frac{1}{2}}(x ; q, b)-\pi_{\frac{1}{2}}(x ; q, a)=\frac{\left|G / G^{2}\right|}{2 \varphi(q)} \log \log x+O(1) \quad(x \rightarrow \infty)
$$

- If either $(a, b) \in R_{q} \times R_{q}$ or $(a, b) \in N_{q} \times N_{q}$,

$$
\pi_{\frac{1}{2}}(x ; q, b)-\pi_{\frac{1}{2}}(x ; q, a)=O(1) \quad(x \rightarrow \infty)
$$

Examples (under DRH)

Example 1 (Bias mod 8)

$$
(\mathbb{Z} / 8 \mathbb{Z})^{\times}=\{1,3,5,7(\bmod 8)\} . \quad R_{8}=\{1\}, \quad N_{8}=\{3,5,7\}
$$

For $j=3,5,7$, it holds that

$$
\pi_{\frac{1}{2}}(x ; 8, j)-\pi_{\frac{1}{2}}(x ; 8,1)=\frac{1}{2} \log \log x+O(1) \quad(x \rightarrow \infty)
$$

For all pairs of $j, k \in\{3,5,7\}$, it holds that

$$
\pi_{\frac{1}{2}}(x ; 8, j)-\pi_{\frac{1}{2}}(x ; 8, k)=O(1) \quad(x \rightarrow \infty)
$$

Bias in the polynomial ring $\mathbb{F}_{q}[T]$

Let $f \in \mathbb{F}_{q}[T]$ and put $F_{f}=\mathbb{F}_{q}[T] /(f) . \quad N(f):=q^{\operatorname{deg} f}$
Assume that F_{f}^{\times}is a cyclic group of even order.

$$
\begin{array}{ll}
R_{f}:=\left\{g \in F_{f}^{\times} \mid g \in\left(F_{f}^{\times}\right)^{2}\right\} & \text { (quadratic residues) } \\
N_{f}:=\left\{g \in F_{f}^{\times} \mid g \notin\left(F_{f}^{\times}\right)^{2}\right\} & \text { (quadratic nonresidues) }
\end{array}
$$

Corollary 2 (Bias in irreducible polynomials over \mathbb{F}_{q})

$$
\exists C_{f}>0 \quad \sum_{\substack{h \in N_{f}: \text { irreducible } \\ \operatorname{deg} h \leq n}} \frac{1}{\sqrt{N(h)}}-\sum_{\substack{h \in R_{f}: \text { irreducible } \\ \operatorname{deg} h \leq n}} \frac{1}{\sqrt{N(h)}} \sim C_{f} \log n \quad(n \rightarrow \infty)
$$

$$
\text { Example } 2\left(q=2, f=T^{2}\right) \quad F_{f}^{\times}=\left(\mathbb{F}_{2}[T] /\left(T^{2}\right)\right)^{\times}=\{1, T+1\}
$$

The bias is towards $T+1 \in N_{f}$ (against $1 \in R_{f}$). If $h(T)=\sum_{j=0}^{n} a_{j} T^{j}\left(a_{j} \in \mathbb{F}_{2}\right)$ is irreducible, then polynomials with $a_{1}=1$ appear "earlier" than those with $a_{1}=0$.

Bias against splitting primes

L / K : a finite abelian extension, $S_{D}:=\{\mathfrak{p} \in S \mid$ splitting in $L\}, S_{N}:=S \backslash S_{D}$.

$$
\pi_{s}(x ; L)_{D}:=\sum_{\substack{\mathfrak{p} \in S_{D} \\ N(\mathfrak{p}) \leq x}} \frac{1}{N(\mathfrak{p})^{s}}, \quad \pi_{s}(x ; L)_{N}:=\sum_{\substack{\mathfrak{p} \in S_{N} \\ N(\mathfrak{p}) \leq x}} \frac{1}{N(\mathfrak{p})^{s}} .
$$

If $\mathfrak{p} \nmid D_{L / K}, \quad \mathfrak{p}$ splits in $L \Longleftrightarrow\left(\frac{L / K}{\mathfrak{p}}\right)=1 . \quad \therefore \pi_{s}(x ; L)_{D}=\pi_{s}(x ; 1)$.

Theorem 2 (Aoki-Koyama, JNT 2022) (Bias against splitting primes)

Let L / K be a quadratic extension (for simplicity).
Under DRH, it holds as $x \rightarrow \infty$ that

$$
\pi_{\frac{1}{2}}(x ; L)_{N}-\pi_{\frac{1}{2}}(x ; L)_{D}=\left(\frac{1}{2}+m_{\chi}\right) \log \log x+O(1)
$$

(In the paper we prove for general abelian extensions.)

There exists a bias towards nonsplitting (i.e. against splitting) primes.

Bias against principal prime ideals

I_{K} : the ideal group of K,
P_{K} : the principal ideal group
$C l_{K}:=I_{K} / P_{K}: \quad h_{K}:=\left|C l_{K}\right|$
\widetilde{K} : the Hilbert class field of $K \quad$ (i.e. $\left.C l_{K} \ni[\mathfrak{a}] \stackrel{\sim}{\mapsto} \sigma_{\mathfrak{a}}:=\left(\frac{\widetilde{K} / K}{\mathfrak{a}}\right) \in \operatorname{Gal}(\widetilde{K} / K)\right)$

Theorem 3 (Aoki-Koyama, JNT 2022) (Bias against principal prime ideals)

Assume $h_{K}=2$ (for simplicity). Put $\operatorname{Gal}(\widetilde{K} / K)^{\wedge}=\{1, \chi\}$.
Under DRH, it holds as $x \rightarrow \infty$ that

$$
\sum_{\substack{\mathfrak{p} \notin P_{K} \\ N(\mathfrak{p}) \leq x}} \frac{1}{\sqrt{N(\mathfrak{p})}}-\sum_{\substack{\mathfrak{p} \in P_{K} \\ N(\mathfrak{p}) \leq x}} \frac{1}{\sqrt{N(\mathfrak{p})}} \sim\left(\frac{1}{2}+m(\chi)\right) \log \log x \quad(x \rightarrow \infty) .
$$

(In the paper we prove for general class numbers.)

Bias of Ramanujan's $\tau(p)$

$$
L(s, \Delta)=\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s}}, \quad \Delta(z)=q \prod_{k=1}^{\infty}\left(1-q^{k}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) q^{n} \quad\left(-2 p^{\frac{11}{2}} \leq \tau(p) \leq 2 p^{\frac{11}{2}}\right)
$$

Theorem 4 (Koyama-Kurokawa, PJA 2022) (Bias to $0<\tau(p)<2 p^{\frac{11}{2}}$)
Under DRH of $L\left(s+\frac{11}{2}, \Delta\right)$, it holds that

$$
\sum_{p \leq x} \frac{\tau(p)}{p^{6}} \sim \frac{1}{2} \log \log x \quad(x \rightarrow \infty)
$$

In other words, the sequence $\frac{\tau(p)}{p^{11 / 2}}$ has a Chebyshev bias to being positive.

- The distribution of θ_{p} is "uniform" in the sense of the Sato-Tate Conjecture (proved), which corresponds to the PNT in arithmetic progressions.

Bias of $\tau\left(p^{2}\right)$

Theorem 5 (Koyama-Kurokawa, 2022) (Bias of $\tau\left(p^{2}\right)$ to being negative)

Under DRH for $L\left(s+\frac{17}{2}, \operatorname{sym}^{2} \Delta\right)=\prod \operatorname{det}\left(1-\left(\operatorname{sym}^{2} M(p)\right) p^{-s}\right)^{-1}$
with $\operatorname{sym}^{2} M(p)=\left(\begin{array}{ccc}e^{2 i \theta_{p}} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-2 i \theta_{p}}\end{array}\right)$, it holds as $x \rightarrow \infty$ that

$$
\sum_{p \leq x} \frac{\tau\left(p^{2}\right)}{p^{\frac{23}{2}}}=\sum_{p \leq x} \frac{\left(\tau(p)-p^{\frac{11}{2}}\right)\left(\tau(p)+p^{\frac{11}{2}}\right)}{p^{\frac{23}{2}}}=\sum_{p \leq x} \frac{\left(2 \cos \theta_{p}-1\right)\left(2 \cos \theta_{p}+1\right)}{\sqrt{p}} \sim-\frac{1}{2} \log \log x
$$

In other words, the sequence $\frac{\tau\left(p^{2}\right)}{p^{11}}$ has a Chebyshev bias to being negative.

- It also suggests a bias of the Satake parameters $\theta_{p} \in[0, \pi]$ towards $-\frac{1}{2} \leq \cos \theta_{p} \leq \frac{1}{2}$ (i.e. $\frac{\pi}{3} \leq \theta_{p} \leq \frac{2}{3} \pi$), which is compared to the bias towards $0 \leq \cos \theta_{p} \leq 1$ (i.e. $0 \leq \theta_{p} \leq \frac{\pi}{2}$) in Theorem 4
- Other types of biases may be discovered by higher symmetric powers.

Bias of a_{v} for elliptic curves

K : a function field, $\quad v$: a finite place, k_{v} : the residue field, $\quad q_{v}=\left|k_{v}\right|$.
For an elliptic curve E / K, put $a_{v}:=q_{v}+1-\# E_{v}\left(k_{v}\right)$.

$$
L(s, E)=\prod_{v: \text { good }}\left(1-2 a_{v} q_{v}^{-s}+q_{v}^{1-2 s}\right)^{-1} \prod_{v: \text { bad }}\left(1-a_{v} q_{v}^{-s}\right)^{-1}
$$

Theorem 6 (Kaneko-Koyama, 2023) (Bias of a_{v})

Assume E / K is not isotrivial ($\Leftrightarrow \rho_{E}$ is reducible containing the identity rep).
It holds under the BSD conjecture that

$$
\sum_{q_{v} \leq x} \frac{a_{v}}{q_{v}}=\left(\frac{1}{2}-\operatorname{rk}(E)\right) \log \log x+O(1) \quad(x \rightarrow \infty) .
$$

Then $\frac{a_{v}}{\sqrt{q_{v}}}$ has a bias to being positive if $\operatorname{rk}(E)=0$, and negative if $\operatorname{rk}(E)>0$.

Main Theorem (Bias of a_{v} for algebraic curves)

K : a global field, $\quad v$: a place, $\quad k_{v}$: the residue field, $\quad q_{v}=\left|k_{v}\right|$.
C / K : an algebraic curve with the Galois representation $\rho=\rho_{C}$
Put $a_{v}=q_{v}+1-\# C\left(k_{v}\right)=\sqrt{q_{v}} \operatorname{tr}\left(\rho\left(\operatorname{Frob}_{v}\right)\right)$.

Theorem 7 (Bias of a_{v})

Assume DRH for the Hasse-Weil L-function $L(s, C)$ and put $m=\operatorname{ord}_{s=1 / 2} L(s, C)$.
$\delta(C)=\left[\right.$ the order of the pole of $L^{(2)}(s, C)$ at $\left.s=1\right]$ with
$L^{(2)}(s, C)=$ the second moment L-function.
Then the following holds

$$
\sum_{q_{v} \leq x} \frac{a_{v}}{q_{v}}=-\left(\frac{\delta(C)}{2}+m\right) \log \log x+O(1) \quad(x \rightarrow \infty)
$$

Proof of Main Theorem

Putting $\rho\left(\operatorname{Frob}_{v}\right)=M(v)$, the normalized L-functions is given as

$$
\begin{gathered}
L(s, M)=L\left(s, M_{C}\right)=\prod_{v: \text { good }} \operatorname{det}\left(I-M(v) q^{-s}\right)^{-1} \times(\text { bad factors }) \\
\log \left((\log x)^{m} \prod_{q_{v} \leq x} \operatorname{det}\left(1-M(v) q_{v}^{-\frac{1}{2}}\right)^{-1}\right)=\mathrm{I}(x)+\mathrm{II}(x)+\mathrm{III}(x)=O(1) \quad(x \rightarrow \infty)
\end{gathered}
$$

with

$$
\mathbf{I}(x)=\sum_{q_{v} \leq x} \frac{\operatorname{tr}(M(v))}{\sqrt{q}_{v}}, \quad \Pi(x)=\frac{1}{2} \sum_{q_{v} \leq x} \frac{\operatorname{tr}\left(M(v)^{2}\right)}{q_{v}}, \quad \| I(x)=\sum_{k \geq 3} \frac{1}{k} \sum_{q_{v} \leq x} \frac{\operatorname{tr}\left(M(v)^{k}\right)}{q_{v}^{k / 2}} .
$$

Proof of Main Theorem

The generalization of Mertens theorem (Kaneko-Koyama-Kurokawa, 2022) gives

$$
\|(x) \sim \frac{\delta(C)}{2} \log \log x \quad(x \rightarrow \infty) .
$$

On the other hand it is easily seen that $\mathrm{III}(x)=O(1)(x \rightarrow \infty)$.
Therefore

$$
\begin{aligned}
\mathrm{I}(x)=\sum_{q_{v} \leq x} \frac{\operatorname{tr}(M(v))}{\sqrt{q_{v}}} & =\sum_{q_{v} \leq x} \frac{a_{v}}{q_{v}} \\
& \sim-\left(m+\frac{\delta(C)}{2}\right) \log \log x \quad(x \rightarrow \infty) .
\end{aligned}
$$

Example (Fermat curves of prime degree)

Theorem 8 (Okumura 2023)

C / \mathbb{Q} : the Fermat curve $X^{\ell}+Y^{\ell}=Z^{\ell}, \quad \ell$ an odd prime,
$a_{p}(C):=p+1-\# C\left(\mathbb{F}_{p}\right)$
Put $C_{F}=C \times_{\mathbb{Q}} F$ with $F=\mathbb{Q}\left(\mu_{\ell}\right), \mu_{\ell}$ a primitive ℓ-th root of 1
Assume DRH for the Hasse-Weil L-function $L\left(s, C_{F}\right)$.
Then the following holds

$$
\sum_{p \leq x} \frac{a_{p}}{p}=\frac{g-m}{\ell-1} \log \log x+O(1) \quad(x \rightarrow \infty)
$$

where $g=(\ell-1)(\ell-2) / 2$.
Under DRH, $\frac{a_{p}}{\sqrt{p}}$ has a bias to being positive, if $g-m>0$.

Example (the case $\ell=4$)

$$
C: x^{4}+y^{4}=z^{4}
$$

We can calculte $\# C\left(\mathbb{F}_{p}\right)$ by the Davenport-Hasse theorem:

x	100	200	300	400	500	600	700
$\#\left\{p \mid a_{p}>0\right\}$	6	9	13	19	24	27	29
$\#\left\{p \mid a_{p}<0\right\}$	5	12	16	18	20	24	30
$S_{x}=\sum_{q_{v} \leq x} \frac{a_{v}}{q_{v}}$	0.5567	3.3412	-0.1160	0.2871	5.9287	6.0637	6.0438

- The numbers of primes with $a_{p}>0$ and $a_{p}<0$ are almost equal.
- But S_{x} is positive and increasing.

It suggests the bias of a_{p} to being positive.

