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What is Chebyshev’s Bias?

The phenomenon that most of the time, there are more primes of the form 4k+3 than

of the form 4k + 1, up to the same bound. (Chebyshev (1853))

Put π(x; q, a) := #{p ≤ x | p ≡ a (mod q)}.

For all x < 26861, it holds π(x; 4, 3) ≥ π(x; 4, 1). Team 3 is in the lead.

For x = 26861, the inequality “<” holds. Team 1 leads for an instant.

For x = 26863, the equation “=” holds. Team 3 catches up.

For x = 26879, the inequality “>” holds again. Team 3 gets ahead.

For 26879 ≤ x < 616841, the inequality “>” holds. Team 3 maintains a lead.

It seems that π(x; 4, 3) ≥ π(x; 4, 1) more often than not.

Apparently there exists




a bias towards primes of the form 4k + 3.

a bias against primes of the form 4k + 1. 2



Chebyshev’s Bias

x π(x; 4, 3) π(x; 4, 1)

100 13 11 Team 3 leads by 2 points.

1, 000 87 80 Team 3 leads by 7 points.

10, 000 619 609 Team 3 leads by 10 points.

100, 000 4808 4783 Team 3 leads by 25 points.

1, 000, 000 39322 39175 Team 3 leads by 147 points.

2, 000, 000 74516 74416 Team 3 leads by 100 points.

3, 000, 000 108532 108283 Team 3 leads by 249 points.

3



History on Chebyshev’s Bias

Littlewood (1914)

π(x; 4, 3)− π(x; 4, 1) changes its sign infinitely many times.

Knapowski-Turan Conjecture (1962)

The natural density of the set A(X) = {x < X | π(x; 4, 3)− π(x; 4, 1) > 0} is 1.

lim
X→∞

vol(A(X))

X
= 1.

→ This is false under GRH. The limit does not exist. (Kaczorowski 1995)

Rubinstein-Sarnak’s Theorem (1994)

The logarithmic density of the set A(X) exists under “GRH+LI”.

lim
X→∞

1

logX

∫

t∈A(X)

dt

t
= 0.9959....
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A(X) = {x < X | π(x; 4, 3)− π(x; 4, 1) > 0} is insufficient.

Two exterme cases where π(x; 4, 3) ≥ π(x; 4, 1) holds (∀x ≤ p100 = (100th prime)).

Even if we know {x | 0 < x ≤ p100} ⊂ A(X), we cannot distinguish Cases 1 and 2.

The length of the interval A(X) does not lead us to the truth.

We need a method of estimating the “difference”. 5



The key idea for attacking Chebyshev’s bias

Prime number theorem in arithmetic progressions

Team 3 is as big as Team 1.

Reinterpretation of Chebyshev’s bias

We regard Chebyshev’s bias as follows:

There seem to be more members in Team 3 = Members in Team 3 appear earlier

The main idea (zeta parametrization)

In order to regard smaller primes as heavier elements,

we adopt a weighted counting function πs(x; q, a) =
∑

p<x:prime
p≡a (mod q)

1

ps
(s ≥ 0),

which is a generalization of the counting function π(x; q, a) = π0(x; q, a).
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The Deep Riemann Hypothesis (DRH)

K: a (1-dimensional) global field

ρ : an n-dimensional irreducible representation of Gal(K/K) (ρ 6= 1)

LK(s, ρ) :=
∏

v: finite place

det
(
1− ρ(Frobv)N(v)−s

)−1
(ℜ(s) > 1)

(N(v): the norm, Frobv ∈ Gal(K/K): the Frobenius element)

Deep Riemann Hypothesis (DRH)

Put m = mρ = ords= 1
2
LK(s, ρ) and let γ be the Euler constant. If ρ 6= 1, then

lim
x→∞

(
(log x)m

∏

N(v)≤x

det
(
1− ρ(Frobv)N(v)−

1
2

)−1
)

=

√
2
ν(ρ)

L
(m)
K (12 , ρ)

emγm!
,

where ν(ρ) = mult(1, sym2ρ)−mult(1,∧2ρ).

DRH =⇒ CC =
[
EP of LK(s, ρ) converges at s = 1

2

]
. (The limit may be 0.) 7



Euler’s L-function L(s, χ) =
∏

p: odd

(
1− χ(p)p−s

)−1
(
χ(p) = (−1)

p−1
2

)

Since L(12 , χ) 6= 0 (i.e. m = 0), DRH is equivalent to
∑

p≤x: odd

log
(
1− χ(p)p−

1
2

)−1
= L+ o(1) (x → ∞) with L = log

(√
2L(12 , χ)

)
.

Taylor expansion
∑

p≤x

log

(
1− χ(p)

p
1
2

)−1

=
∑

p≤x

χ(p)√
p

+
∑

p≤x

χ(p)2

2p
+
∑

p≤x

∞∑

k=3

χ(p)k

kp
k
2

1st term = π1/2(x; 4, 1)− π1/2(x; 4, 3)

2nd term =
∑

p≤x

χ(p)2

2p
=
∑

p≤x

1

2p
=

1

2
log log x+ c+ o(1) (x → ∞) (∃c ∈ R)

3rd term is absolutely convergent from
∑
p≤x

∞∑
k=3

∣∣∣∣
χ(p)k

kp
k
2

∣∣∣∣ ≤
∞∑
n=1

1

n
3
2
= ζ(32).

Under DRH, we have π1/2(x; 4, 3)− π1/2(x; 4, 1) =
1
2 log log x+C + o(1) (x → ∞).

8



Formulations of Chebyshev Biases (in a global field K)

Definition 1

a(p) ∈ R: a sequence over prime ideals p of K s.t. lim
x→∞

#{p | a(p)>0, N(p)≤x}
#{p | a(p)<0, N(p)≤x} = 1.

We say a(p) has a Chebyshev bias to being positive, if there exists C > 0 such that

∑

N(p)≤x

a(p)√
N(p)

∼ C log log x (x → ∞).

Definition 2

Assume that {p | N(p) ≤ x} = P1(x) ∪ P2(x) (disjoint) and that δ = lim
x→∞

|P1(x)|
|P2(x)| .

We say there exists a Chebyshev bias toward P1 (or Chebyshev bias against P2), if

∑

p∈P1(x)

1√
N(p)

− δ
∑

p∈P2(x)

1√
N(p)

∼ C log log x (x → ∞, ∃C > 0).
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DRH over function fields

Theorem (DRH in char> 0) [Kaneko-Koyama-Kurokawa (2021)]

When K is an algebraic function field (of one variable) with char(K) > 0,

DRH holds for any automorphic L-function over GLn.

In what follows, whenever we say “Under DRH”, it means the following:

In case of char(K) = 0, the theorem holds under the assumption of DRH.

In case of char(K) > 0, the theorem holds unconditionally.
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Overview of the preceding results

πs(x; q, a) =
∑

p<x: prime
p≡a(mod q)

1

ps
(s ≥ 0), As = {x > 0 | πs(x; 4, 3)−πs(x; 4, 1) > 0}

The density of A0 does not exist.

Preceding Results (under DRH for char 0, and unconditionally for char > 0)

The density of A1/2 is equal to 1. More precisely,

πs(x; 4, 3)− πs(x; 4, 1) =





1
2 log log x+O(1) (x → ∞) (s = 1

2)

O(1) (x → ∞) (s > 1
2)

→ A formulation of the Chebyshev bias towards Team 3 (against Team 1).

The Chebyshev bias against splitting ideals in an extension of global fields.

The Chebyshev bias against principal ideals in a global field of class number 2.

Ramanujan’s τ(p) has a Chebyshev bias to being positive.
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Preceding results on abelian extensions

L/K: a finite abelian extension of (one-dimensional) global fields

G := Gal(L/K) ∋ σ, p ⊂ K: a prime ideal

πs(x;σ) :=
∑

p∈Sσ
N(p)≤x

1

N(p)s

(
Sσ :=

{
p

∣∣∣∣ p ∤ DL/K ,

(
L/K

p

)
= σ

})

Theorem 1 (Aoki-Koyama, JNT 2022)(Bias against squares in Gal(L/K))

Under DRH, it holds for any σ ∈ G2 and τ ∈ G \ G2 that as x → ∞

π 1
2
(x; τ)− π 1

2
(x;σ) =

1

[L : K]

( |G/G2|
2

+m(σ)−m(τ)

)
log log x+O(1),

where m(σ) :=
∑

χ∈Ĝ\{1}

ℜ(χ(σ)−1)ords= 1
2
LK(s, χ).
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The case of cyclotomic fields (K = Q, L = Q(ζq) (q ≥ 3))

For q ∈ Z, we have G = Gal(L/Q) ∋
(
L/Q
(a)

)
∼ 7−→a ∈ (Z/qZ)×.

σ ∈ G2 ↔ Rq := {a ∈ (Z/qZ)× | a ∈ (Z/qZ)×2} : quadratic residues

τ 6∈ G2 ↔ Nq := {a ∈ (Z/qZ)× | a ∈ (Z/qZ)× \ (Z/qZ)×2} : quadratic nonresidues

Corollary 1 (Bias against quadratic residues)

Assume DRH for L(s, χ) with χ a nontrivial Dirichlet character mod q.

Assume that L(12 , χ) 6= 0 (Chowla’s Conjecture).

If (a, b) ∈ Rq ×Nq, (q, a, b) = (4, 1, 3), |G/G2|
2ϕ(q) = 1

2 : Chebyshev’s case

π 1
2
(x; q, b)− π 1

2
(x; q, a) = |G/G2|

2ϕ(q) log log x+O(1) (x → ∞).

If either (a, b) ∈ Rq ×Rq or (a, b) ∈ Nq ×Nq,

π 1
2
(x; q, b)− π 1

2
(x; q, a) = O(1) (x → ∞).
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Examples (under DRH)

Example 1 (Bias mod 8)

(Z/8Z)× = {1, 3, 5, 7 (mod 8)}. R8 = {1}, N8 = {3, 5, 7}

For j = 3, 5, 7, it holds that

π 1
2
(x; 8, j)− π 1

2
(x; 8, 1) =

1

2
log log x+O(1) (x → ∞).

For all pairs of j, k ∈ {3, 5, 7}, it holds that
π 1

2
(x; 8, j)− π 1

2
(x; 8, k) = O(1) (x → ∞).
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Bias in the polynomial ring Fq[T ]

Let f ∈ Fq[T ] and put Ff = Fq[T ]/(f). N(f) := qdeg f

Assume that F×
f is a cyclic group of even order.

Rf := {g ∈ F×
f | g ∈ (F×

f )2} (quadratic residues)

Nf := {g ∈ F×
f | g 6∈ (F×

f )2} (quadratic nonresidues)

Corollary 2 (Bias in irreducible polynomials over Fq)

∃Cf > 0
∑

h∈Nf : irreducible
deg h≤n

1√
N(h)

−
∑

h∈Rf : irreducible
deg h≤n

1√
N(h)

∼ Cf log n (n → ∞)

Example 2 (q = 2, f = T 2) F×
f = (F2[T ]/(T

2))× = {1, T + 1}

The bias is towards T + 1 ∈ Nf (against 1 ∈ Rf ). If h(T ) =
n∑

j=0
ajT

j (aj ∈ F2) is

irreducible, then polynomials with a1 = 1 appear “earlier” than those with a1 = 0. 15



Bias against splitting primes

L/K: a finite abelian extension, SD := {p ∈ S | splitting in L}, SN := S \ SD.

πs(x;L)D :=
∑

p∈SD
N(p)≤x

1

N(p)s
, πs(x;L)N :=

∑

p∈SN
N(p)≤x

1

N(p)s
.

If p ∤ DL/K , p splits in L ⇐⇒
(
L/K
p

)
= 1. ∴ πs(x;L)D = πs(x; 1).

Theorem 2 (Aoki-Koyama, JNT 2022) (Bias against splitting primes)

Let L/K be a quadratic extension (for simplicity).

Under DRH, it holds as x → ∞ that

π 1
2
(x;L)N − π 1

2
(x;L)D =

(
1
2 +mχ

)
log log x+O(1).

(In the paper we prove for general abelian extensions.)

There exists a bias towards nonsplitting (i.e. against splitting) primes. 16



Bias against principal prime ideals

IK : the ideal group of K,

PK : the principal ideal group

ClK := IK/PK : hK := |ClK |

K̃: the Hilbert class field of K (i.e. ClK ∋ [a]
∼7→ σa :=

(
K̃/K
a

)
∈ Gal(K̃/K))

Theorem 3 (Aoki-Koyama, JNT 2022) (Bias against principal prime ideals)

Assume hK = 2 (for simplicity). Put Gal(K̃/K )̂ = {1, χ}.
Under DRH, it holds as x → ∞ that

∑
p6∈PK

N(p)≤x

1√
N(p)

− ∑
p∈PK
N(p)≤x

1√
N(p)

∼
(
1
2 +m(χ)

)
log log x (x → ∞).

(In the paper we prove for general class numbers.)

There exists a bias towards nonprincipal (i.e. against principal) prime ideals. 17



Bias of Ramanujan’s τ(p)

L(s,∆) =

∞∑

n=1

τ(n)

ns
, ∆(z) = q

∞∏

k=1

(1−qk)24 =

∞∑

n=1

τ(n)qn (−2p
11
2 ≤ τ(p) ≤ 2p

11
2 ).

Theorem 4 (Koyama-Kurokawa, PJA 2022) (Bias to 0 < τ(p) < 2p
11
2 )

Under DRH of L(s+ 11
2 ,∆), it holds that
∑

p≤x

τ(p)

p6
∼ 1

2
log log x (x → ∞).

In other words, the sequence τ(p)

p11/2
has a Chebyshev bias to being positive.

The distribution of θp is “uniform” in the sense of the Sato-Tate Conjecture

(proved), which corresponds to the PNT in arithmetic progressions.
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Bias of τ(p2)

Theorem 5 (Koyama-Kurokawa, 2022) (Bias of τ(p2) to being negative)

Under DRH for L(s + 17
2 , sym

2∆) =
∏

p

det
(
1−

(
sym2M(p)

)
p−s
)−1

with sym2M(p) =

(
e2iθp 0 0
0 1 0
0 0 e−2iθp

)
, it holds as x → ∞ that

∑
p≤x

τ(p2)

p
23
2

=
∑
p≤x

(
τ(p)−p

11
2

)(
τ(p)+p

11
2

)

p
23
2

=
∑
p≤x

(2 cos θp−1)(2 cos θp+1)√
p ∼ −1

2 log log x

In other words, the sequence τ(p2)
p11

has a Chebyshev bias to being negative.

It also suggests a bias of the Satake parameters θp ∈ [0, π]

towards −1
2 ≤ cos θp ≤ 1

2 (i.e. π
3 ≤ θp ≤ 2

3π), which is compared to

the bias towards 0 ≤ cos θp ≤ 1 (i.e. 0 ≤ θp ≤ π
2 ) in Theorem 4

Other types of biases may be discovered by higher symmetric powers.
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Bias of av for elliptic curves

K: a function field, v: a finite place, kv: the residue field, qv = |kv|.

For an elliptic curve E/K, put av := qv + 1−#Ev(kv).

L(s,E) =
∏

v: good

(1− 2avq
−s
v + q1−2s

v )−1
∏

v: bad

(1− avq
−s
v )−1

Theorem 6 (Kaneko-Koyama, 2023) (Bias of av)

Assume E/K is not isotrivial (⇔ ρE is reducible containing the identity rep).

It holds under the BSD conjecture that

∑

qv≤x

av
qv

=

(
1

2
− rk(E)

)
log log x+O(1) (x → ∞).

Then av√
qv

has a bias to being positive if rk(E) = 0, and negative if rk(E) > 0.

The red part holds unconditionally (without BSD).
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Main Theorem (Bias of av for algebraic curves)

K: a global field, v: a place, kv: the residue field, qv = |kv|.

C/K: an algebraic curve with the Galois representation ρ = ρC

Put av = qv + 1−#C(kv) =
√
qvtr(ρ(Frobv)).

Theorem 7 (Bias of av)

Assume DRH for the Hasse-Weil L-function L(s, C) and put m = ords=1/2L(s, C).

δ(C) = [the order of the pole of L(2)(s, C) at s = 1] with

L(2)(s, C) = the second moment L-function.

Then the following holds

∑

qv≤x

av
qv

= −
(
δ(C)

2
+m

)
log log x+O(1) (x → ∞).
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Proof of Main Theorem

Putting ρ(Frobv) = M(v), the normalized L-functions is given as

L(s,M) = L(s,MC) =
∏

v: good

det
(
I −M(v)q−s

)−1 × (bad factors).

log


(log x)m

∏

qv≤x

det

(
1−M(v)q

− 1
2

v

)−1

 = I(x)+ II(x)+ III(x) = O(1) (x → ∞)

with

I(x) =
∑

qv≤x

tr(M(v))√
q
v

, II(x) =
1

2

∑

qv≤x

tr(M(v)2)

qv
, III(x) =

∑

k≥3

1

k

∑

qv≤x

tr(M(v)k)

q
k/2
v

.
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Proof of Main Theorem

The generalization of Mertens theorem (Kaneko-Koyama-Kurokawa, 2022) gives

II(x) ∼ δ(C)

2
log log x (x → ∞).

On the other hand it is easily seen that III(x) = O(1) (x → ∞).

Therefore

I(x) =
∑

qv≤x

tr(M(v))√
qv

=
∑

qv≤x

av
qv

∼ −
(
m+

δ(C)

2

)
log log x (x → ∞).
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Example (Fermat curves of prime degree)

Theorem 8 (Okumura 2023)

C/Q: the Fermat curve Xℓ + Y ℓ = Zℓ, ℓ an odd prime,

ap(C) := p+ 1−#C(Fp)

Put CF = C ×Q F with F = Q(µℓ), µℓ a primitive ℓ-th root of 1

Assume DRH for the Hasse-Weil L-function L(s, CF ).

Then the following holds

∑

p≤x

ap
p

=
g −m

ℓ− 1
log log x+O(1) (x → ∞),

where g = (ℓ− 1)(ℓ− 2)/2.

Under DRH,
ap√
p has a bias to being positive, if g −m > 0.
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Example (the case ℓ = 4)

C: x4 + y4 = z4

We can calculte #C(Fp) by the Davenport-Hasse theorem:

x 100 200 300 400 500 600 700

#{p | ap > 0} 6 9 13 19 24 27 29

#{p | ap < 0} 5 12 16 18 20 24 30

Sx =
∑
qv≤x

av
qv

0.5567 3.3412 −0.1160 0.2871 5.9287 6.0637 6.0438

The numbers of primes with ap > 0 and ap < 0 are almost equal.

But Sx is positive and increasing.

It suggests the bias of ap to being positive.
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