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Abstract. This work addresses the prime number races for non-constant el-
liptic curves E over function fields. We prove that if rank(E) > 0, then
there exist Chebyshev biases towards being negative, and otherwise there ex-
ist Chebyshev biases towards being positive. The key input is the convergence
of the partial Euler product at the centre, which follows from the Deep Rie-
mann Hypothesis over function fields.

1. Introduction

In 1853, Chebyshev noticed in a letter to Fuss that primes congruent to 3 modulo
4 seem to dominate over those congruent to 1 modulo 4. If π(x; q, a) is the number
of primes p ≤ x such that p ≡ a (mod q), then the inequality π(x; 4, 3) ≥ π(x; 4, 1)
holds for more than 97 % of x < 1011. By a classical theorem of Dirichlet, it is
expected that the number of the primes of the form 4k + 1 and 4k + 3 should be
asymptotically equal. Therefore, the Chebyshev bias indicates that the primes of
the form 4k+3 appear earlier than those of the form 4k+1. Classical triumphs in-
clude the work of Littlewood [12] who established that π(x; 4, 3)−π(x; 4, 1) changes
its sign infinitely often. Knapowski–Turán [9] conjectured that the density of the
numbers x for which π(x; 4, 3) ≥ π(x; 4, 1) holds is 1, but Kaczorowski [7] disproved
their conjecture conditionally on the Generalised Riemann Hypothesis. Note that
they have a logarithmic density via the work of Rubinstein–Sarnak [14], which is
approximately 0.9959 · · · .

In this fundamental scenario, the next layer of methodological depth came with
the introduction of a weighted counting function that allows one to scrutinise the
above phenomenon. The work of Aoki–Koyama [2] introduces the counting function

(1.1) πs(x; q, a) :=
∑
p≤x

p≡a (mod q)

1

ps
, s ≥ 0,

extending π(x; q, a) = π0(x; q, a), where the smaller prime p permits a higher
contribution to πs(x; q, a) as long as s > 0. The function πs(x; q, a) is more
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appropriate than π(x; q, a) to represent the phenomenon, because it reflects the
size of the primes that π(x; q, a) ignores. While the natural density of the set
{x > 0 | πs(x; 4, 3) − πs(x; 4, 1) > 0} does not exist when s = 0 under the Gen-
eralised Riemann Hypothesis, they showed under the Deep Riemann Hypothesis
(DRH) that it would be equal to 1 when s = 1/2. More precisely, the Chebyshev
bias could be realised in terms of the asymptotic formula

(1.2) π 1
2
(x; 4, 3)− π 1

2
(x; 4, 1) =

1

2
log log x+ c+ o(1)

as x → ∞, where c is a constant.
We now formulate the Chebyshev biases for prime ideals p of a global field K.

Definition 1.1 (Aoki–Koyama [2]). Let c(p) ∈ R be a sequence over prime ideals
p of K such that

lim
x→∞

#{p | c(p) > 0,N(p) ≤ x}
#{p | c(p) < 0,N(p) ≤ x} = 1.

We say that c(p) has a Chebyshev bias towards being positive if there exists a
constant C > 0 such that ∑

N(p)≤x

c(p)√
N(p)

∼ C log log x,

where p runs through prime ideals of K. We say that c(p) is unbiased if∑
N(p)≤x

c(p)√
N(p)

= O(1).

Definition 1.2 (Aoki–Koyama [2]). Assume that the set of all prime ideals p of
K with N(p) ≤ x is expressed as a disjoint union P1(x) ∪ P2(x) and that their
proportion converges to

δ = lim
x→∞

|P1(x)|
|P2(x)|

.

We say that there exists a Chebyshev bias towards P1 or a Chebyshev bias against
P2 if there exists a constant C > 0 such that∑

p∈P1(x)

1√
N(p)

− δ
∑

p∈P2(x)

1√
N(p)

∼ C log log x.

We say that there exist no biases between P1 and P2 if∑
p∈P1(x)

1√
N(p)

− δ
∑

p∈P2(x)

1√
N(p)

= O(1).

Definitions 1.1 and 1.2 differ from those in [1,6,14] and formulate an asymptotic
formula for the size of the discrepancy caused by the Chebyshev bias disregarded
in the conventional definitions of the length of the interval in terms of the limiting
distributions. Definitions 1.1 and 1.2 involve little information on the density distri-
butions and both types of formulations appear not to have any logical connections.
They shed some light on the Chebyshev bias from different directions.

Aoki–Koyama [2, Corollary 3.2] proved that the Chebyshev bias (1.2) against the
quadratic residue 1 (mod 4) is equivalent to the convergence of the Euler product
at the centre s = 1/2 for the Dirichlet L-function L(s, χ−4), where χ−4 denotes the
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non-trivial character modulo 4. This pertains to DRH proposed by Kurokawa [8,11]
in 2012.

Aoki–Koyama [2] also observed various instances of Chebyshev biases that cer-
tain prime ideals in Galois extensions of global fields have over others, with an
emphasis on the biases against splitting and principal prime ideals. Koyama–
Kurokawa [10] obtained an analogue of this phenomenon for Ramanujan’s τ -function
τ (p) and showed that DRH for the automorphic L-function L(s+ 11/2,Δ) implies
the bias of τ (p)/p11/2 towards being positive.

This work delves into such phenomena on the prime number races that ellip-
tic curves over function fields give rise to. Let E be an elliptic curve over K, and
let Ev be the reduction of E on the residue field kv at a finite place v of K. If E
has good reduction at v, then we define

av = av(E) := qv + 1−#Ev(kv),

where qv = #kv and #Ev(kv) is the number of kv-rational points on Ev. The
symbol av can be extended to all other finite places v:

av :=

⎧⎪⎨
⎪⎩
1 if E has split multiplicative reduction at v,

−1 if E has non-split multiplicative reduction at v,

0 if E has additive reduction at v.

We prove the following asymptotic corresponding to the case of s = 1/2 in (1.1).

Theorem 1.3. Assume char(K) > 0 and that E is a non-constant elliptic curve
over K in the terminology of Ulmer [17, Definitions 1.1.4]. If rank(E) > 0, then
the sequence av/

√
qv has a Chebyshev bias towards being negative. More precisely,

we have that

(1.3)
∑
qv≤x

av
qv

=

(
1

2
− rank(E)

)
log log x+O(1).

The proof uses the convergence of the Euler product at the centre, which follows
from DRH over function fields due to Conrad [5] and Kaneko–Koyama–Kurokawa [8];
see §2 for further details.

2. Deep Riemann Hypothesis

Let K be a one-dimensional global field that is either a number field or a function
field in one variable over a finite field. For a place v of K, let M(v) denote a unitary
matrix of degree rv ∈ N. We consider an L-function expressed as an Euler product

(2.1) L(s,M) =
∏
v<∞

det(1−M(v)q−s
v )−1,

where qv is the cardinal of the residue field kv at v. The product (2.1) is absolutely
convergent for Re(s) > 1. In this paper, we assume that L(s,M) has an analytic
continuation as an entire function over C and a functional equation relating values
at s and 1− s. Write

δ(M) = − ord
s=1

L(s,M2),

where ords=1 is the order of the zero at s = 1. We here do not presuppose that
M is a representation. The square M2 is interpreted as an Adams operation. Note
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that since

L(s,M2) =
∏
v<∞

det(1−M(v)2q−s
v )−1 =

L(s, Sym2M)

L(s,∧2M)
,

we derive

(2.2) δ(M) = − ord
s=1

L(s, Sym2M) + ord
s=1

L(s,∧2M),

where Sym2 and ∧2 denote the symmetric and the exterior squares, respectively. If
M is an Artin representation

ρ : Gal(Ksep/K) → AutC(V ), ρ �= 1

for a representation space V , then

δ(M) = mult(1, Sym2ρ)−mult(1,∧2ρ),

where mult(1, σ) is the multiplicity of the trivial representation 1 in σ.
We are now in a position to formulate DRH due to Kurokawa [8, 11].

Conjecture 2.1 (Deep Riemann Hypothesis). Keep the assumptions and notation
as above. Let m = ords=1/2 L(s,M). Then the limit

(2.3) lim
x→∞

⎛
⎝(log x)m

∏
qv≤x

det
(
1−M(v)q

− 1
2

v

)−1

⎞
⎠

satisfies the following conditions:

DRH (A): The limit (2.3) exists and is non-zero.
DRH (B): The limit (2.3) satisfies

lim
x→∞

⎛
⎝(log x)m

∏
qv≤x

det
(
1−M(v)q

− 1
2

v

)−1

⎞
⎠ =

√
2
δ(M)

emγm!
· L(m)

(
1

2
,M

)
.

DRH (B) implies DRH (A). Nonetheless, DRH (A) is still meaningful since it is
essentially equivalent to the Chebyshev biases. The following examples clarify this
situation; we direct the reader to the work of Aoki–Koyama [2] for more details.

Example 2.2 (Aoki–Koyama [2]). Let K = Q, and let v = p. If rp = 1 for
any p and M(p) = χ−4(p) is the non-trivial Dirichlet character modulo 4, then
L(s,M) = L(s, χ−4) and δ(M) = 1. DRH (A) for L(s, χ−4) is equivalent to the
original form of the Chebyshev bias (1.2).

Example 2.3 (Koyama–Kurokawa [10]). Let K = Q and rp = 2 for any p, and let
τ (p) ∈ Z be Ramanujan’s τ -function defined for q = e2πiz with Im(z) > 0 by

Δ(z) := q
∞∏
k=1

(1− qk)24 =
∞∑

n=1

τ (n)qn.

If M(p) =

(
eiθp 0
0 e−iθp

)
for the Satake parameters θp ∈ [0, π] ∼= Conj(SU(2))

defined by τ (p) = 2p11/2 cos(θp), then the associated L-function

L(s,M) =
∏
p

(1− 2 cos(θp)p
−s + p−2s)−1
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satisfies a functional equation relating s ↔ 1 − s. If we define Ramanujan’s L-
function by

L(s,Δ) :=

∞∑
n=1

τ (n)

ns
,

which satisfies a functional equation relating s ↔ 12 − s, then L(s,M) = L(s +
11/2,Δ) and δ(M) = −1. DRH (A) for L(s,M) = L(s + 11/2,Δ) implies that
there exists a Chebyshev bias for the sequence τ (p)/p11/2 towards being positive.

Conjecture 2.1 is known to hold when the characteristic is positive. The proof was
given by Conrad [5, Theorems 8.1 and 8.2] under the second moment hypothesis,
and the full proof was given by Kaneko–Koyama–Kurokawa [8, Theorem 5.5]. We
record their result as follows.

Theorem 2.4. Conjecture 2.1 holds for char(K) > 0.

3. Proof of Theorem 1.3

Let E be an elliptic curve over a global field K, and let av be the same as in
the introduction. We define the parameter θv ∈ [0, π] ∼= Conj(SU(2)) by av =
2
√
qv cos(θv). If we write

rv =

{
2 if v is good,

1 if v is bad,

and

M(v) = ME(v) =

⎧⎪⎨
⎪⎩
(
eiθv 0

0 e−iθv

)
if v is good,

av if v is bad,

then the L-function (2.1) is equal to

L(s,M) = L(s,ME) =
∏

v : good

(1− 2 cos(θv)q
−s
v + q−2s

v )−1
∏

v : bad

(1− avq
−s
v )−1.

This Euler product is absolutely convergent for Re(s) > 1 and has a meromorphic
continuation to C with a functional equation relating s ↔ 1− s.

The L-function L(s,ME) is expressed in terms of an Artin-type L-function in the
following fashion. Fixing 	 and K with 	 �= char(K), we obtain the representation

(3.1) ρE : Gal(Ksep/K) → Aut(T�(E)⊗Q�),

where T�(E) = lim←−
n

E[	n] is the 	-adic Tate module of E/K. The Artin L-function

associated to the Galois representation ρE is defined by the Euler product

L(s, ρE) =
∏
v<∞

det(1− q−s
v ρE(Frobv|V Iv ))−1.

The Euler factors of L(s,ME) are in accordance with those of L(s+1/2, ρE) for all
places v at which E has good reduction. In other words, the L-function L(s,ME)
equals L(s+ 1/2, ρE) up to finite factors from bad places.

Conjecture 2.1 originates from the Birch–Swinnerton-Dyer conjecture in the fol-
lowing form.
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Conjecture 3.1 (Birch–Swinnerton-Dyer [3, Page 79 (A)]). Let E be an elliptic
curve E over K. Then there exists a constant A > 0 dependent on E such that

(3.2)
∏
qv≤x

v : good

#E(kv)

qv
∼ A(log x)r,

where r = rank(E). Furthermore, r is equal to the order of vanishing of L(s,ME)
at s = 1/2.

Since the left-hand side of (3.2) matches the Euler product over good places of the
L-function L(s,ME) at s = 1/2, Conjecture 3.1 implies DRH (A) for L(s,ME).

Theorem 3.2. Keep the notation as above. The following conditions are equiva-
lent.

(i) DRH (A) holds for L(s,M).
(ii) There exists a constant c such that∑

qv≤x

tr(M(v))
√
qv

= −
(
δ(M)

2
+m

)
log log x+ c+ o(1),

where m = ords=1/2 L(s,M).

Proof. Define

I(x) :=
∑
qv≤x

tr(M(v))
√
qv

,

II(x) :=
1

2

∑
qv≤x

tr(M(v)2)

qv
,

III(x) :=
∞∑
k=3

1

k

∑
qv≤x

tr(M(v)k)

q
k/2
v

.

Because

I(x) + II(x) + III(x) = log

⎛
⎝ ∏

qv≤x

det
(
1−M(v)q

− 1
2

v

)−1

⎞
⎠ ,

the condition (i) is equivalent to the claim that there exists a constant L such that

(3.3) m log log x+ I(x) + II(x) + III(x) = L+ o(1).

The generalised Mertens theorem (see [13, Theorem 5] and [8, Lemma 5.3]) gives

(3.4) II(x) =
δ(M)

2
log log x+ C1 + o(1)

for some constant C1. It is straightforward to see that there exists a constant C2

such that

(3.5) III(x) = C2 + o(1).

Therefore, the estimates (3.3)–(3.5) lead to

I(x) = −
(
δ(M)

2
+m

)
log log x+ L− C1 − C2 + o(1).
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If we assume (i), then the condition (ii) holds with c = L−C1 −C2. Conversely, if
we assume (ii), then (3.3) holds with L = c+C1 +C2. This completes the proof of
Theorem 3.2. �

To study the asymptotic behaviour of a sum over v with qv ≤ x as x → ∞, it
suffices to restrict ourselves to places v at which E has good reduction. When v is
good, the n-th symmetric power matrix SymnM of size n+ 1 is given by

(SymnM)(v) = diag(einθv , ei(n−2)θv , · · · , e−i(n−2)θv , e−inθv ).

We calculate

tr(SymnM)(v) =
sin((n+ 1)θv)

sin θv
.

Extending the definition of (SymnM)(v) to all places v by setting (SymnM)(v) = anv
for bad places v, we can define the n-th symmetric power L-function L(s, SymnM).
With the standard notation for the Galois representation ρ = ρE in (3.1), we have
the normalisation

(3.6) L(s, SymnM) = L
(
s+

n

2
, Symnρ

)
.

If E is a non-constant elliptic curve in the terminology of Ulmer [17, Definitions
1.1.4], then L(s, SymnM) is a polynomial in q−n/2−s (see [4, 16]) and the absolute
values of its roots are equal to q−(n+1)/2 with the normalisation (3.6) in mind.
Therefore, all the zeros of (3.6) lie on the critical line Re(s) = 1/2 and there holds

(3.7) ord
s=1

L(s, SymnM) = 0, n ∈ N.

Lemma 3.3. If char(K) > 0 and E is a non-constant elliptic curve over K, then
δ(M) = −1 for M = ME.

Proof. Because M is a unitary matrix of size 2, the exterior square matrix ∧2M is
trivial. Thus ords=1 L(s,∧2M) = −1. The claim follows from (2.2) and (3.7). �

In what follows, we abbreviate mn = ords=1/2 L(s, Sym
nM).

Theorem 3.4. If char(K) > 0 and E is a non-constant elliptic curve over K, then
we have that

(3.8)
∑
qv≤x

av
qv

=

(
1

2
−m1

)
log log x+O(1).

In particular, if rank(E) > 0, then the sequence av/
√
qv has a Chebyshev bias

towards being negative.

Proof. In [16, §3.1.7] and [17, Theorem 9.3], Ulmer proved that L(s,ME) is a poly-
nomial in q−s for any non-constant elliptic curve E, and thus it is entire and satisfies
the assumption of Conjecture 2.1. By Theorem 2.4, DRH holds for L(s,ME). Now
(3.8) follows from Theorem 3.2 and Lemma 3.3. To justify the second assertion, we
use [17, Theorem 12.1 (1)], which states that rank(E) ≤ m1. This yields m1 ≥ 1,
and hence C < 0. This completes the proof of Theorem 3.4. �

Theorem 3.4 is in harmony with the prediction of Sarnak [15, page 5] that
rank(E) > 0 implies the existence of a bias towards being negative, although he
considered av instead of av/

√
qv. He also stated that rank(E) = 0 implies the ex-

istence of a bias towards being positive. We verify this phenomenon conditionally
on the Birch–Swinnerton-Dyer conjecture.
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Corollary 3.5. Assume that L(1,ME) �= 0. If char(K) > 0 and E is a non-
constant elliptic curve over K such that rank(E) = 0, then we have that

(3.9)
∑
qv≤x

av
qv

=
1

2
log log x+O(1).

In other words, the sequence av/
√
qv has a Chebyshev bias towards being positive.

Proof. The Birch–Swinnerton-Dyer conjecture asserts thatm1 = rank(E), implying
m1 = 0. Hence, the asymptotic formula (3.8) gives the desired result. �
Remark 1. Cha–Fiorilli–Jouve [4, Theorem 1.7] proved that there exist infinitely
many elliptic curves E/Fq(T ) such that the sequence av is unbiased in that

lim
X→∞

1

X

∑
x≤X

TE(x)>0

1 =
1

2

with
TE(x) = − x

qx/2

∑
deg(v)≤x
v : good

2 cos θv = − x

qx/2

∑
deg(v)≤x
v : good

av
qdeg(v)/2

.

Their work discusses the Chebyshev bias for the sequence av, which is different
from the sequence av/

√
qv in Theorem 3.4, and we strongly believe that these are

constant elliptic curves whose L-functions have a pole at s = 1 and do not obey
DRH.

We obtain other types of biases for the Satake parameters θv by considering the
symmetric square L-function.

Theorem 3.6. If char(K) > 0 and E is a non-constant elliptic curve over K, then
we have that

(3.10)
∑
qv≤x

(2 cos θv − 1)(cos θv + 1)
√
qv

= (1−m1 −m2) log log x+O(1).

In particular, if both L(1/2,M) �= 0 and L(1/2, Sym2M) �= 0 are true, then the
sequence (2 cos θv − 1)(cos θv + 1) has a Chebyshev bias towards being positive.

Proof. Applying Theorem 3.2 to L(s,M) and L(s, Sym2M) yields

(3.11)
∑
qv≤x

2 cos θv√
qv

=

(
1

2
−m1

)
log log x+O(1)

and

(3.12)
∑
qv≤x

2 cos 2θv√
qv

=

(
1

2
−m2

)
log log x+O(1).

It follows that (3.12) + (3.11) equals∑
qv≤x

2(cos θv + cos 2θv)√
qv

=
∑
qv≤x

2(2 cos θv − 1)(cos θv + 1)
√
qv

= (1−m1 −m2) log log x+O(1).

This completes the proof of Theorem 3.6. �
We also adduce unbiased sequences constructed from the Satake parameters θv.
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Theorem 3.7. If char(K) > 0 and E is a non-constant elliptic curve over K, then
we have that

(3.13)
∑
qv≤x

2(2 cos θv + 1)(cos θv − 1)
√
qv

= (m1 −m2) log log x+O(1).

In particular, if m1 = m2, then the sequence (2 cos θv + 1)(cos θv − 1) is unbiased.

Proof. It follows that (3.12)− (3.11) equals∑
qv≤x

2(cos 2θv − cos θv)√
qv

=
∑
qv≤x

2(2 cos θv + 1)(cos θv − 1)
√
qv

= (m1 −m2) log log x+O(1).

This completes the proof of Theorem 3.7. �
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