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Abstract: We prove the quantum ergodicity for Eisenstein seriesHSIL (2, Ok),
whereOk is the integer ring of an imaginary quadratic fi&dof class number one.

1. Introduction

Luo and Sarnak [LS] proved the quantum ergodicity of Eisenstein seri¢sStb(2, Z).
It is stated as follows:

Theorem 1.1. Let A, B be compact Jordan measurable subsetsof PSL(2, Z)\ H?, then

i we(A) _ Vol
im = ,
=20 11,(B) ~ Vol(B)

where y, = |E(z, 3 +i)|2dV with E(z, 5) being the Eisenstein seriesfor PSL(2, Z),
and dV isthe volume element of the upper half plane H2.

In this paper we will generalize Theorem 1.1 to three dimensional cases
X = PSL(2, Ox)\H?3, whereOy is the integer ring of an imaginary quadratic field

K of class number one, anli® is the three dimensional upper half space. Our main
theorem is analogously described as follows:

Theorem 1.2. Let A, B be compact Jordan measurable subsets of X, then

im Hi(A) _ Vol(a)
=00 1,(B) ~ Vol(B)’

where i, = |E(v, 1+ i1)|2dV with E(v, s) being the Eisenstein series for X, and dV
is the volume element of H3.
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Indeed we show that as— oo,

2\ol(A)
tk (2

wherezk (s) is the Dedekind zeta function.

In two dimensional cases numerical examples [HR] suggested that the quantum er-
godicity would hold. For higher dimensional cases no numerical examples are known.
Theorem 1.2 is the first result along this direction.

i (A) ~

logt,

2. Three-Dimensional Settings

In this section we introduce some notation on the three-dimensional hyperbolic space.
A point in the hyperbolic three-dimensional spakié is denoted by = z + yj,

z =x1+x2i € C, y > 0. We fix an imaginary quadratic fielkl whose class number is

one. Denote its discriminant lyx and integer ring) = Ok . PutD = |Dg|. We often

regardO as a lattice ilRZ, which is denoted by, with the fundamental domaif;, c RZ.

Also putew = wxg = D~/2, the inverse different ok . The groupl” = PSL(2, O) acts

on H* and the quotient space = I'\ H3 is a three dimensional arithmetic hyperbolic

orbifold. The Laplacian oiX is defined by

A 2 (L + @ - i 1y
= \-zt 5t 3|ty
dx? = dx3 = dy? dy

It has a self-adjoint extension d@rf(X). Itis known that the spectra @ is composed of

both discrete and continuous ones. The eigenfunction for a discrete spectrum is called a
cusp form. We denote it by; (v) with eigenvalue.; (0= 1p < A1 < 12 <---).We put

A= 1+r]?. We shall assume thg; (v)’s to be chosen so that they are eigenfunctions of
the ring of Hecke operators and até-normalized. The Fourier developmentg@f(v)

is given in [S] (2.20):

¢iw)= Y pjmyKir, (2x|n|y)e(in, 2)), (2.1)

neO*/~

wheren ~ m means that they generate the same ided}jmand(n, z) is the standard
inner product irR?2 with K, being thek -Bessel function.

For a Maass-Hecke cusp forn (v) with its Fourier development given by (2.1), we
have the Rankin-Selberg convolutibrfunctionL (s, ¢; x ¢ ;) and the second symmetric
power L-function L? (s, ¢;) which satisfy the following:

|4, ()2
Ls,¢j x ¢j) =k (25) Y .
J J neoTm N(n)
cj(n) _
LPG.¢)= Y N’(n)s =tk (9) " L(s. ¢; % ¢)).

neo*/~
with p;(n) = /S5 n), vj(n) = v (DA;0n) andej(n) = Xz, bj (K2, I
is known that the both functions converge in(Re> 1. The functional equation of
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L(s, ¢; x ¢;) is inherited from the Eisenstein series by our unfolding the integral. We
compute that

oL(s,¢j x ;) T(s +ir))T(s —ir;)T(s)?
Lk (2s) 87T (2s)

/X 16,0 2E (v, 25)dv = |p; (D)

is invariant under changing the variabléo 1 — s. We normalize such thafip; || = 1
with respect to the Petersson inner product

1 .
(:8) = oo () fx F0)2@)dv.

The residueR; of L(s, ¢; x ¢;) at its unique simple pole = 1 is equal to

8k (2) _ 8m¢k (2 Vol (F1)
o (D es=2 WD) =1 el x)

2.2)

where Res_» E(v, s) = Vol(Fr)/ Vol(X) is known by Sarnak [S], Lemma 2.15.

3. Proofs

In this section we prove Theorem 1.2. We first define the Eisenstein series by

E@,s)= Y yyv)’, (3.)

Too\I"

wherey(v) = y forv =z + jy € H% and Rés) > 2. Here the grouf's, is given by

re={(5%) i neof.

The Fourier development df (v, s) is known by Asai [A] and Elstrodt et al. [E]:
256k (s —1)
§k (s)

Y Il roaa g (e REOIK (A noly)y,  (3.2)
neO*/~

E(,s)=y"+y
N 2
£k (s)

whereo, (n) = dZ |d|* andék (s) = (*z/—f)fr(s)gK(s).
n

Our goal is to prove the equidistribution of the measure= |E (v, 1+ i1)|2dV (v),
wheredV (v) = % . We consider its inner product with various functions spanning

L?(X). We begin with inner products with Maass cusp foumns
Proposition 3.1. For any fixed ¢;,

Hm/¢ﬂm=0
—00 X
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Proof. Set
dxidxod
Jj(t)=/ ¢jd,u,t=/qu(v)E(v,l—i—it)E(v,l—it)xl—;Czy (3.3)

X X y

with z = x1 + x2i. To investigate this we first consider
dxidxod
Ij(s)=/ ¢j(v)E(v,1+iz)E(v,s)%. (3.4)
X

All of the above integrals converge singgis a cusp form. We unfold the integral (3.4)
to get

dxidxody
—

Ij(S)Z/ f¢j(v)E(v,l+it)y“ (3.5)
0 Fr

Denote the conjugate af = z + yj € H3 by = z — yj. As is well-known in the

two dimensional case, the space of the Maass cusp forms is expressed as a direct sum of
spaces of even and odd cusp forms. Here even (resp. odd) cusp forms are ones satisfying
¢;(1—v) = €¢;(v) with e = 1 (resp.—1). SinceE(v,s) = E(1 -7, s), it follows
that7;(s) = 0 if ¢; odd. So we may assume that is even. In this case the Fourier
development (2.1) is written as

¢iw)=y > pjm)Ki,(2rIn|y)cos2ri(n, z)), (3.6)
neo* ~

where 1+ rJ? = A;. Normalizing the coefficients by;(n) = p;(1)A;(n), the multi-
plicative relations are satisfied y (n). These amount to

Aj(n) xi(p) 1 -1
Ligj.s) = = (1—’—s+ ) . @)
: "6;:/~ N (p):prli;[e ideal N(p) N(p)25

By substituting (3.2) and (3.6) into (3.5) we have

Ii(s) = /O fF (y >, p,-(n)Kir,.(zmmy)cos<2n<n,z>>)
L

neo*/~
<y1+n_|_ 1-it SK(”).
Ex(L+ir)
2y

n cdxidxody
Ex(1+i1)

> |m|”a_z,~,<m>e4”"R“’"W)K,»t(4n|m|wy)>y —3 - @9

meO*/~

Now we have
0 ne 0 —{0}

/FL co2ri{nw, z))dv = {1 W0

In the expansion of (3.8), we appeal to the formulaxossy = %(cos(x +y)+cogx —
y)). Only the terms witlh = m remain as follows:
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Ij(s) = —/ > Inlo i (n)Kis(2|nly) pj () Kir; (27 |n|y)y* — &
J Ex(1+it) e/ it it J irj y
2 In|""o_zi;(n)p;j (n) /Oo dy
=—— Ki(2Quy)Kir. (2my)y* —
G+ iD) OZ/N nl o i@ Kir (TN

An evaluation of the integral involving Bessel functions [GR] yields

_s s+ir;+it s+ir;—it §— zr +it s— lrj—lt
2r ' NI TC )I( )R(s)
Ex(1+i1) I (s)

]j(S)Z

with

We computeR(s) as follows:

R(s) =

I ZA (PO pI™M oz (pF)

ks
(p):prime ideal k=0 I

PO K i
= (1) [1 Z ZO |

i pl®

pi (D)

HZ 3j (PO pI™ 1 — |p| =21 *HD
ks _ —2it
i Pl 1-1pl

p/()

1 s e . e
- p~(1)(1—|p|—z,-z)H<ZAf(Pk)'P| T =1 ) AN k(w))
/ (P

k=0 k=0
1

pj (DL — [p|=21)
1 |p|—2it
g <1 — A (P)Ipl=6=0 [ p|726=I0 T 1= & (p)[p|~HD + |p|2(s+it))
_ 1
I

1—[ ‘ 1._ lp|=%

() E= 2 (PIpI7C0 4 [p| 2070 (L= 2 (p) | p|=(HD 4 | p| ~26+0)
1 L(gj, FHL(gj, 1)

ITey 70
(3.9)
Therefore
Ti(t) = I;(1—it)
2 =Yt (P (A p A p (AR (3.10)

= R —it).
§x(L+it) r'a—ir)
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By Stirling’s formula|T" (o + it)| ~ e"”/2|t|‘"%, we see

the gamma factors in (3.1@ |¢|~* (3.11)
ast — oo. It is known that the Dedekind zeta function in (3.10) is estimated as

7L ek A+ in] < 1€ (3.12)

Estimating the automorphit-functions in (3.10) was recently done successfully by
Sarnak and Petridis [SP]. They proved there exXistsO such that for any > 0,

L@, 5 Ly Kje lt]Fote (3.13)
as|t| — oo. The estimates (3.11)—(3.13) yield
Jj(t) < |70, (3.14)
This implies Proposition 3.1.0
We now turn to inner products @f, with incomplete Eisenstein series. Lgty) be

a rapidly decreasing function at 0 and, that ish(y) = Oy (y") asy — oo or 0 and
N € Z. Let H(s) be its Mellin transform

> d
He) = [ o
0 y

Clearly H (s) is entire ins and is of Schwartz class irfor each vertical line +it. The
inversion formula gives

1
h(y) = i H(s)y'ds
Tl (o)

for anyo € R. For such amk we form the convergent series

Fuw)= Y h(y(yv))——/ H(s)E (v, s)ds,

Y €L\l
which we call incomplete Eisenstein series.

Proposition 3.2. For incomplete Eisenstein series F (v), we have

f F)du;(v) ~ {—2(2) (/ F(v)dV(v)> logt?

ast — oQ.
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Proof. Incomplete Eisenstein series decrease rapidly-as oo and belong ta"° (X).
Hence

/XFh(v)dut(v)=/ Fh)|E(v, 1+in)P—5= Zdy

2ZY

/f H()E, s)ds|E(v, 1+ it)]
2711

d
/ H(s)y*ds/ |E(v, 1+ i1)] —y
27Tl 3) Fr. y

=5 / 3) H(s)y’ds (

2
l+lt+ 1-it SK(”)

EK(1+it)
=2 S Jo g Ki@rlnloy)? | 2
A N —2i it _3
Ex(1+i1) neO/~
= F1(t) + F2(1),
where we put
_Ex(in [Pdy
Fl(t)_ _./ H(s)ysds l+lt+ 1—it : ey
3 Ex(A+ir)| »3
i k(i) | _
Since EK’fljﬂ.t) =1, we have
o dy . . .
Fi(t) = 2/ h(y)— + (a rapidly decreasing function of, (3.15)
0 y
whereas

2 |U—21t(n)|
Fo(t) = —f H(s) s
milEx (1+inf? J) ne;:/~ Il (3.16)

o0
d
/ Koy oy 2y 2 ds.
0 y

The series is computed as follows:

loa (n)]? W (PMo_a(PF)
O o || z‘”’l,jkﬂ

neo*/~ (p): prime idealk=0

|a(k+1) 1— |p|fa(k+l) 2
= l_[ Z |kv 1—

a —a
(o k=0 | = |pl Pl

-T1 1
A= 1P —1pl

oo

Z <2|p|—ks _ |p|(a—s)k+a + |p|(—a—s)k—a>
k=0
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3.17
!_[ — |pl® )(1 pI=%) G40
( 2 ptpl )
1= pl~  1-|pl*° 1—|p|o
_1_[ 1+p~*
= N _ —(s—a) — p—(s+a)
() L= P = p= =)A= p=(F)
RO ) (3.18)

Sk (s)

The y-integral in (3.16) is evaluated in terms of thidunction as before. We obtain

__ 2 lo—air(n)|? ’ de
Fzm‘m|sk(1+m|2/( 7O 2 = ), IRty

neo* /~

2
T milEk A+ in)2 /@ Bs)ds.

(3.19)

where we put
H(s)¢k (5)|¢x (5 +inDT (5 +i1)]°T(5)?
(4rw)S ¢k ()T (s) '

By Stirling’s formula to estimate the gamma factors and from the factfiliat+ iz) is
rapidly decreasing in, we can shift the integral in (3.18) to Re = 1.

4 Res—_2 B(s) 2
= . 21
PO = fecdrin? T milgr@rin? /m Bds (3.2)

B(s) = (3.20)

The second term in (3.20) is evaluated by Heath-Brown [H] as
1
§K< + zt) < 13%¢
for any fixede > 0. We find that

1
— — | B(s)ds < t737€,
milkg (14 i1)]2 /<1> ‘

This corresponds to the bound (3.14).
Next we deal with the residue term in (3.20), which is more complicated. \B(ite
as¢k (5)?G(s) whereG (s) is holomorphic ak = 2. Put

(k(s/2) = A—2+Ao+0(s—2) (s — 2.
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In the expansion of

2
B(s) = (sA‘lz +Ag+ O(s — 2)) (G(z) LG (s —2) + O(s — 2)3) ,

the coefficient ofs — 2)~1 gives the residue

G/
Res_2 B(s) = G(2)A_1 <2A0 + AlE(Z)) .
A simple calculation gives

HQ)Ieg A+inTA+inPl(3)° _ H@)lsx(L+in)?

G(2) =
@ @102k (2 45 2)

and

G~ H +2;1<(1+iz) 2tk (L—ir) | 2F(L+in © 2Fr(A—in)

with C being independent af For the Weyl-Hadamard-De La Vallée Poussin bound
[T, (6.15.3)] and its generalization to Dirichlétfunctions by Landau, we have

L +in) < logt
{k(1+ir) " loglogr

This together withrr/(1+ it) ~ logt gives

L2
Res,_zB(s)zH(2)|2$§K((12;r”)| Iogt+0< log¢ )

Finally the first term of (3.20) is evaluated as

4Res—2 B(s) 2H(2)
lEx (L+in]2 ¢k (2)

Taking into account that
o0 dy dzdy
H(2)=/ h(y)—3 =/ Fr(2)—=—,
0 y X y

we reach the conclusion.o

logr + O(1).

Proposition 3.3. Let F' be a continuous function of compact support in X. Then

2
/x F)du;(v) ~ % (/x F(v)dV(v)) logt

ast — oQ.
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Proof. The space of allincomplete Eisenstein series and cusp forms is dense in the space
of continuous functions vanishing in the cusp. For any 0, we can finds = G1+ G2
with G1 the finite sum of cusp forms arte, in the space of incomplete Eisenstein series,
such thal|G — F|« < €. The differenceH = G — F is sufficiently small and rapidly
decreasing in the cusp. Namely, itis majorized in terms of another incomplete Eisenstein
series
Hiw) = Y h(@v)
yels\I
as
Hi(v) = [H(v)]

satisfying
/ H1(v)dV (v) < C(K)e
X
with some constanf' (K) depending only on the fiel@ . Hence the conclusion.o

Propositions 2.3 implies Theorem 1.1 by standard approximation arguments.
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