Quantum Ergodicity of Eisenstein Series for Arithmetic 3-Manifolds

Shin-ya Koyama*

Department of Mathematics, Keio University, 3 Hiyoshi, Kohoku, Yokohama 223-8522, Japan. E-mail: koyama@math.keio.ac.jp

Received: 20 April 2000 / Accepted: 10 July 2000

Abstract: We prove the quantum ergodicity for Eisenstein series for $PSL(2, O_K)$, where O_K is the integer ring of an imaginary quadratic field K of class number one.

1. Introduction

Luo and Sarnak [LS] proved the quantum ergodicity of Eisenstein series for $PSL(2, \mathbb{Z})$. It is stated as follows:

Theorem 1.1. Let A, B be compact Jordan measurable subsets of $PSL(2, \mathbb{Z}) \setminus H^2$, then

$$\lim_{t \to \infty} \frac{\mu_t(A)}{\mu_t(B)} = \frac{\operatorname{Vol}(A)}{\operatorname{Vol}(B)},$$

where $\mu_t = |E(z, \frac{1}{2} + it)|^2 dV$ with E(z, s) being the Eisenstein series for $PSL(2, \mathbb{Z})$, and dV is the volume element of the upper half plane H^2 .

In this paper we will generalize Theorem 1.1 to three dimensional cases $X = PSL(2, O_K) \setminus H^3$, where O_K is the integer ring of an imaginary quadratic field *K* of class number one, and H^3 is the three dimensional upper half space. Our main theorem is analogously described as follows:

Theorem 1.2. Let A, B be compact Jordan measurable subsets of X, then

$$\lim_{t \to \infty} \frac{\mu_t(A)}{\mu_t(B)} = \frac{\operatorname{Vol}(A)}{\operatorname{Vol}(B)},$$

where $\mu_t = |E(v, 1 + it)|^2 dV$ with E(v, s) being the Eisenstein series for X, and dV is the volume element of H^3 .

^{*} Partially supported by Japan Association for Mathematical Sciences

Indeed we show that as $t \to \infty$,

$$\mu_t(A) \sim \frac{2\operatorname{Vol}(A)}{\zeta_K(2)}\log t,$$

where $\zeta_K(s)$ is the Dedekind zeta function.

In two dimensional cases numerical examples [HR] suggested that the quantum ergodicity would hold. For higher dimensional cases no numerical examples are known. Theorem 1.2 is the first result along this direction.

2. Three-Dimensional Settings

In this section we introduce some notation on the three-dimensional hyperbolic space.

A point in the hyperbolic three-dimensional space H^3 is denoted by v = z + yj, $z = x_1 + x_2i \in \mathbb{C}$, y > 0. We fix an imaginary quadratic field *K* whose class number is one. Denote its discriminant by D_K and integer ring $O = O_K$. Put $D = |D_K|$. We often regard *O* as a lattice in \mathbb{R}^2 , which is denoted by *L* with the fundamental domain $F_L \subset \mathbb{R}^2$. Also put $\omega = \omega_K = D^{-1/2}$, the inverse different of *K*. The group $\Gamma = PSL(2, O)$ acts on H^3 and the quotient space $X = \Gamma \setminus H^3$ is a three dimensional arithmetic hyperbolic orbifold. The Laplacian on *X* is defined by

$$\Delta = -y^2 \left(\frac{d^2}{dx_1^2} + \frac{d^2}{dx_2^2} + \frac{d^2}{dy^2} \right) + y \frac{d}{dy}.$$

It has a self-adjoint extension on $L^2(X)$. It is known that the spectra of Δ is composed of both discrete and continuous ones. The eigenfunction for a discrete spectrum is called a cusp form. We denote it by $\phi_j(v)$ with eigenvalue λ_j ($0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots$). We put $\lambda_j = 1 + r_j^2$. We shall assume the $\phi_j(v)$'s to be chosen so that they are eigenfunctions of the ring of Hecke operators and are L^2 -normalized. The Fourier development of $\phi_j(v)$ is given in [S] (2.20):

$$\phi_j(v) = \sum_{n \in O^*/\sim} \rho_j(n) y K_{ir_j}(2\pi |n|y) e(\langle n, z \rangle), \qquad (2.1)$$

where $n \sim m$ means that they generate the same ideal in O, and $\langle n, z \rangle$ is the standard inner product in \mathbf{R}^2 with K_{ν} being the *K*-Bessel function.

For a Maass-Hecke cusp form $\phi_j(v)$ with its Fourier development given by (2.1), we have the Rankin-Selberg convolution *L*-function $L(s, \phi_j \times \phi_j)$ and the second symmetric power *L*-function $L^{(2)}(s, \phi_j)$ which satisfy the following:

$$L(s,\phi_j\times\phi_j) = \zeta_K(2s) \sum_{n\in O^*/\sim} \frac{|\lambda_j(n)|^2}{N(n)^s},$$
$$L^{(2)}(s,\phi_j) = \sum_{n\in O^*/\sim} \frac{c_j(n)}{N(n)^s} = \zeta_K(s)^{-1}L(s,\phi_j\times\phi_j),$$

with $\rho_j(n) = \sqrt{\frac{\sinh \pi r_j}{r_j}} v_j(n)$, $v_j(n) = v_j(1)\lambda_j(n)$ and $c_j(n) = \sum_{l^2k=n} \lambda_j(k^2)$. It is known that the both functions converge in $\operatorname{Re}(s) > 1$. The functional equation of

 $L(s, \phi_j \times \phi_j)$ is inherited from the Eisenstein series by our unfolding the integral. We compute that

$$\int_{X} |\phi_{j}(v)|^{2} E(v, 2s) dv = |\rho_{j}(1)|^{2} \frac{L(s, \phi_{j} \times \phi_{j})}{\zeta_{K}(2s)} \frac{\Gamma(s + ir_{j})\Gamma(s - ir_{j})\Gamma(s)^{2}}{8\pi^{2s}\Gamma(2s)}$$

is invariant under changing the variable s to 1 - s. We normalize such that $\|\phi_j\| = 1$ with respect to the Petersson inner product

$$\langle f, g \rangle = \frac{1}{\operatorname{vol}}(X) \int_X f(v) \overline{g(v)} dv.$$

The residue R_i of $L(s, \phi_i \times \phi_i)$ at its unique simple pole s = 1 is equal to

$$\frac{8\pi\zeta_K(2)}{|v_j(1)|^2}\operatorname{Res}_{s=2}E(v,s) = \frac{8\pi\zeta_K(2)\operatorname{Vol}(F_L)}{|v_j(1)|^2\operatorname{Vol}(X)},$$
(2.2)

where $\operatorname{Res}_{s=2} E(v, s) = \operatorname{Vol}(F_L) / \operatorname{Vol}(X)$ is known by Sarnak [S], Lemma 2.15.

3. Proofs

In this section we prove Theorem 1.2. We first define the Eisenstein series by

$$E(v,s) = \sum_{\Gamma_{\infty} \setminus \Gamma} y(\gamma v)^{s}, \qquad (3.1)$$

where y(v) = y for $v = z + jy \in H^3$ and $\operatorname{Re}(s) > 2$. Here the group Γ_{∞} is given by

$$\Gamma_{\infty} = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in O \right\}.$$

The Fourier development of E(v, s) is known by Asai [A] and Elstrodt et al. [E]:

$$E(v,s) = y^{s} + y^{2-s} \frac{\xi_{K}(s-1)}{\xi_{K}(s)} + \frac{2}{\xi_{K}(s)} \sum_{n \in O^{*}/\sim} |n|^{s-1} \sigma_{2(1-s)}(n) e^{4\pi i \operatorname{Re}(n\omega z)} K_{s-1}(4\pi |n\omega|y)y, \quad (3.2)$$

where $\sigma_s(n) = \sum_{d|n} |d|^s$ and $\xi_K(s) = (\frac{\sqrt{D}}{2\pi})^s \Gamma(s) \zeta_K(s)$.

Our goal is to prove the equidistribution of the measure $\mu_t = |E(v, 1+it)|^2 dV(v)$, where $dV(v) = \frac{dx_1 dx_2 dy}{y^3}$. We consider its inner product with various functions spanning $L^2(X)$. We begin with inner products with Maass cusp forms ϕ_j .

Proposition 3.1. For any fixed ϕ_j ,

$$\lim_{t\to\infty}\int_X\phi_jd\mu_t=0.$$

Proof. Set

$$J_j(t) = \int_X \phi_j d\mu_t = \int_X \phi_j(v) E(v, 1+it) E(v, 1-it) \frac{dx_1 dx_2 dy}{y^3}$$
(3.3)

with $z = x_1 + x_2 i$. To investigate this we first consider

$$I_j(s) = \int_X \phi_j(v) E(v, 1+it) E(v, s) \frac{dx_1 dx_2 dy}{y^3}.$$
 (3.4)

All of the above integrals converge since ϕ_j is a cusp form. We unfold the integral (3.4) to get

$$I_j(s) = \int_0^\infty \int_{F_L} \phi_j(v) E(v, 1+it) y^s \frac{dx_1 dx_2 dy}{y^3}.$$
 (3.5)

Denote the conjugate of $v = z + yj \in H^3$ by $\overline{v} = z - yj$. As is well-known in the two dimensional case, the space of the Maass cusp forms is expressed as a direct sum of spaces of even and odd cusp forms. Here even (resp. odd) cusp forms are ones satisfying $\phi_j(1-\overline{v}) = \epsilon \phi_j(v)$ with $\epsilon = 1$ (resp. -1). Since $E(v, s) = E(1-\overline{v}, s)$, it follows that $I_j(s) \equiv 0$ if ϕ_j odd. So we may assume that ϕ_j is even. In this case the Fourier development (2.1) is written as

$$\phi_j(v) = y \sum_{n \in O^*/\sim} \rho_j(n) K_{ir_j}(2\pi |n|y) \cos(2\pi i \langle n, z \rangle), \tag{3.6}$$

where $1 + r_j^2 = \lambda_j$. Normalizing the coefficients by $\rho_j(n) = \rho_j(1)\lambda_j(n)$, the multiplicative relations are satisfied by $\lambda_j(n)$. These amount to

$$L(\phi_j, s) := \sum_{n \in O^*/\sim} \frac{\lambda_j(n)}{N(n)^s} = \prod_{(p): \text{prime ideal}} \left(1 - \frac{\lambda_j(p)}{N(p)^s} + \frac{1}{N(p)^{2s}} \right)^{-1}.$$
 (3.7)

By substituting (3.2) and (3.6) into (3.5) we have

$$I_{j}(s) = \int_{0}^{\infty} \int_{F_{L}} \left(y \sum_{n \in O^{*}/\sim} \rho_{j}(n) K_{ir_{j}}(2\pi |n|y) \cos(2\pi \langle n, z \rangle) \right) \left(y^{1+it} + y^{1-it} \frac{\xi_{K}(it)}{\xi_{K}(1+it)} + \frac{2y}{\xi_{K}(1+it)} \sum_{m \in O^{*}/\sim} |m|^{it} \sigma_{-2it}(m) e^{4\pi i \operatorname{Re}(m\omega z)} K_{it}(4\pi |m|\omega y) \right) y^{s} \frac{dx_{1} dx_{2} dy}{y^{3}}.$$
 (3.8)

Now we have

$$\int_{F_L} \cos(2\pi i \langle n\omega, z \rangle) dv = \begin{cases} 0 & n \in O - \{0\} \\ 1 & n = 0 \end{cases}$$

In the expansion of (3.8), we appeal to the formula $\cos x \cos y = \frac{1}{2}(\cos(x+y) + \cos(x-y))$. Only the terms with n = m remain as follows:

480

Quantum Ergodicity of Eisenstein Series for Arithmetic 3-Manifolds

$$\begin{split} I_{j}(s) &= \frac{2}{\xi_{K}(1+it)} \int_{0}^{\infty} \sum_{n \in O^{*}/\sim} |n|^{it} \sigma_{-2it}(n) K_{it}(2\pi |n|y) \rho_{j}(n) K_{ir_{j}}(2\pi |n|y) y^{s} \frac{dy}{y} \\ &= \frac{2}{\xi_{K}(1+it)} \sum_{n \in O^{*}/\sim} \frac{|n|^{it} \sigma_{-2it}(n) \rho_{j}(n)}{|n|^{s}} \int_{0}^{\infty} K_{it}(2\pi y) K_{ir_{j}}(2\pi y) y^{s} \frac{dy}{y}. \end{split}$$

An evaluation of the integral involving Bessel functions [GR] yields

$$I_{j}(s) = \frac{2\pi^{-s}}{\xi_{K}(1+it)} \frac{\Gamma(\frac{s+ir_{j}+it}{2})\Gamma(\frac{s+ir_{j}-it}{2})\Gamma(\frac{s-ir_{j}+it}{2})\Gamma(\frac{s-ir_{j}-it}{2})}{\Gamma(s)}R(s)$$

with

$$R(s) = \sum_{n \in O^*/\sim} \frac{|n|^{it} \sigma_{-2it}(n) \rho_j(n)}{|n|^s}.$$

We compute R(s) as follows:

$$\begin{split} R(s) &= \frac{1}{\rho_{j}(1)} \prod_{(p):\text{prime ideal}} \sum_{k=0}^{\infty} \frac{\lambda_{j}(p^{k})|p|^{ikt} \sigma_{-2it}(p^{k})}{|p|^{ks}} \\ &= \frac{1}{\rho_{j}(1)} \prod_{(p)} \sum_{k=0}^{\infty} \frac{\lambda_{j}(p^{k})|p|^{ikt}}{|p|^{ks}} \sum_{l=0}^{k} |p|^{-2itl} \\ &= \frac{1}{\rho_{j}(1)} \prod_{(p)} \sum_{k=0}^{\infty} \frac{\lambda_{j}(p^{k})|p|^{ikt}}{|p|^{ks}} \frac{1 - |p|^{-2it(k+1)}}{1 - |p|^{-2it}} \\ &= \frac{1}{\rho_{j}(1)(1 - |p|^{-2it})} \prod_{(p)} \left(\sum_{k=0}^{\infty} \lambda_{j}(p^{k})|p|^{-k(s-it)} - |p|^{-2it} \sum_{k=0}^{\infty} \lambda_{j}(p^{k})|p|^{-k(s+it)} \right) \\ &= \frac{1}{\rho_{j}(1)(1 - |p|^{-2it})} \prod_{(p)} \left(\frac{1}{1 - \lambda_{j}(p)|p|^{-(s-it)} + |p|^{-2(s-it)}} - \frac{|p|^{-2it}}{1 - \lambda_{j}(p)|p|^{-(s+it)} + |p|^{-2(s+it)}} \right) \\ &= \frac{1}{\rho_{j}(1)} \prod_{(p)} \frac{1 - |p|^{-2s}}{(1 - \lambda_{j}(p)|p|^{-(s-it)} + |p|^{-2(s-it)})(1 - \lambda_{j}(p)|p|^{-(s+it)} + |p|^{-2(s+it)})}{\xi_{K}(s)}. \end{split}$$

$$(3.9)$$

Therefore

$$J_{j}(t) = I_{j}(1 - it)$$

= $\frac{2\pi^{-1+it}}{\xi_{K}(1 + it)} \frac{\Gamma(\frac{1+ir_{j}}{2})\Gamma(\frac{1+ir_{j}-2it}{2})\Gamma(\frac{1-ir_{j}}{2})\Gamma(\frac{1-ir_{j}-2it}{2})}{\Gamma(1 - it)}R(1 - it).$ (3.10)

By Stirling's formula $|\Gamma(\sigma + it)| \sim e^{-\pi t/2} |t|^{\sigma - \frac{1}{2}}$, we see

the gamma factors in $(3.10) \ll |t|^{-1}$ (3.11)

as $t \to \infty$. It is known that the Dedekind zeta function in (3.10) is estimated as

$$t^{-\epsilon} \ll |\zeta_K(1+it)| \ll t^{\epsilon}. \tag{3.12}$$

Estimating the automorphic *L*-functions in (3.10) was recently done successfully by Sarnak and Petridis [SP]. They proved there exists $\delta > 0$ such that for any $\epsilon > 0$,

$$L(\phi_j, \frac{1}{2} + it) \ll_{j,\epsilon} |t|^{1-\delta+\epsilon}$$
(3.13)

as $|t| \rightarrow \infty$. The estimates (3.11)–(3.13) yield

$$J_j(t) \ll |t|^{-\delta + \epsilon}.$$
(3.14)

This implies Proposition 3.1. \Box

We now turn to inner products of μ_t with incomplete Eisenstein series. Let h(y) be a rapidly decreasing function at 0 and ∞ , that is $h(y) = O_N(y^N)$ as $y \to \infty$ or 0 and $N \in \mathbb{Z}$. Let H(s) be its Mellin transform

$$H(s) = \int_0^\infty h(y) y^{-s} \frac{dy}{y}.$$

Clearly H(s) is entire in s and is of Schwartz class in t for each vertical line $\sigma + it$. The inversion formula gives

$$h(y) = \frac{1}{2\pi i} \int_{(\sigma)} H(s) y^s ds$$

for any $\sigma \in \mathbf{R}$. For such an *h* we form the convergent series

$$F_h(v) = \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma} h(y(\gamma v)) = \frac{1}{2\pi i} \int_{(3)} H(s) E(v, s) ds,$$

which we call incomplete Eisenstein series.

Proposition 3.2. For incomplete Eisenstein series F(v), we have

$$\int_X F(v) d\mu_t(v) \sim \frac{2}{\zeta_K(2)} \left(\int_X F(v) dV(v) \right) \log t$$

as $t \to \infty$.

Proof. Incomplete Eisenstein series decrease rapidly as $y \to \infty$ and belong to $C^{\infty}(X)$. Hence

$$\begin{split} \int_X F_h(v) d\mu_t(v) &= \int_X F_h(v) |E(v, 1+it)|^2 \frac{dz dy}{y^3} \\ &= \frac{1}{2\pi i} \int_X \int_{(3)} H(s) E(v, s) ds |E(v, 1+it)|^2 \frac{dz dy}{y^3} \\ &= \frac{1}{2\pi i} \int_0^\infty \int_{(3)} H(s) y^s ds \int_{F_L} |E(v, 1+it)|^2 \frac{dz dy}{y^3} \\ &= \frac{1}{2\pi i} \int_0^\infty \int_{(3)} H(s) y^s ds \left(\left| y^{1+it} + y^{1-it} \frac{\xi_K(it)}{\xi_K(1+it)} \right|^2 \right. \\ &+ \left| \frac{2y}{\xi_K(1+it)} \right|^2 \sum_{n \in O^*/\sim} |\sigma_{-2it}(n) K_{it}(4\pi |n| \omega y)|^2 \right) \frac{dy}{y^3} \\ &= F_1(t) + F_2(t), \end{split}$$

where we put

$$F_1(t) = \frac{1}{2\pi i} \int_0^\infty \int_{(3)} H(s) y^s ds \left| y^{1+it} + y^{1-it} \frac{\xi_K(it)}{\xi_K(1+it)} \right|^2 \frac{dy}{y^3}.$$

Since $\left|\frac{\xi_K(it)}{\xi_K(1+it)}\right| = 1$, we have

$$F_1(t) = 2\int_0^\infty h(y)\frac{dy}{y} + (\text{a rapidly decreasing function of } t), \qquad (3.15)$$

whereas

$$F_{2}(t) = \frac{2}{\pi i |\xi_{K}(1+it)|^{2}} \int_{(3)} H(s) \sum_{n \in O^{*}/\sim} \frac{|\sigma_{-2it}(n)|^{2}}{|n|^{s}} \int_{0}^{\infty} |K_{it}(4\pi\omega y)|^{2} y^{s} \frac{dy}{y} ds.$$
(3.16)

The series is computed as follows:

$$\sum_{n \in O^*/\sim} \frac{|\sigma_a(n)|^2}{|n|^s} = \prod_{(p): \text{ prime ideal } k=0} \sum_{k=0}^{\infty} \frac{\sigma_a(p^k)\sigma_{-a}(p^k)}{|p|^{ks}}$$
$$= \prod_{(p)} \sum_{k=0}^{\infty} \frac{1}{|p|^{ks}} \left(\frac{1-|p|^{a(k+1)}}{1-|p|^a}\right) \left(\frac{1-|p|^{-a(k+1)}}{1-|p|^{-a}}\right)^2$$
$$= \prod_{(p)} \frac{1}{(1-|p|^a)(1-|p|^{-a})}$$
$$\sum_{k=0}^{\infty} \left(2|p|^{-ks} - |p|^{(a-s)k+a} + |p|^{(-a-s)k-a}\right)$$

S. Koyama

$$= \prod_{(p)} \frac{1}{(1 - |p|^{a})(1 - |p|^{-a})}$$
(3.17)
$$\left(\frac{2}{1 - |p|^{-s}} - \frac{|p|^{a}}{1 - |p|^{a-s}} - \frac{|p|^{-a}}{1 - |p|^{-a-s}}\right)$$
$$= \prod_{(p)} \frac{1 + p^{-s}}{(1 - p^{-s})(1 - p^{-(s-a)})(1 - p^{-(s+a)})}$$
$$= \frac{\zeta_{K}(\frac{s}{2})^{2}\zeta_{K}(\frac{s-a}{2})\zeta_{K}(\frac{s+a}{2})}{\zeta_{K}(s)}.$$
(3.18)

The y-integral in (3.16) is evaluated in terms of the Γ function as before. We obtain

$$F_{2}(t) = \frac{2}{\pi i |\xi_{K}(1+it)|^{2}} \int_{(3)} H(s) \sum_{n \in O^{*}/\sim} \frac{|\sigma_{-2it}(n)|^{2}}{|n|^{s}} \int_{0}^{\infty} |K_{it}(4\pi\omega y)|^{2} y^{s} \frac{dy}{y} ds$$

$$= \frac{2}{\pi i |\xi_{K}(1+it)|^{2}} \int_{(3)} \frac{H(s)\zeta_{K}(\frac{s}{2})^{2} |\zeta_{K}(\frac{s}{2}+it)\Gamma(\frac{s}{2}+it)|^{2} \Gamma(\frac{s}{2})^{2}}{(4\pi\omega)^{s} \zeta_{K}(s)\Gamma(s)} ds$$

$$= \frac{2}{\pi i |\xi_{K}(1+it)|^{2}} \int_{(3)} B(s) ds,$$

(3.19)

where we put

$$B(s) = \frac{H(s)\zeta_K(\frac{s}{2})^2 |\zeta_K(\frac{s}{2}+it)\Gamma(\frac{s}{2}+it)|^2 \Gamma(\frac{s}{2})^2}{(4\pi\omega)^s \zeta_K(s)\Gamma(s)}.$$
(3.20)

By Stirling's formula to estimate the gamma factors and from the fact that $H(\sigma + it)$ is rapidly decreasing in *t*, we can shift the integral in (3.18) to Re(s) = 1:

$$F_2(t) = \frac{4\operatorname{Res}_{s=2} B(s)}{|\xi_K(1+it)|^2} + \frac{2}{\pi i |\xi_K(1+it)|^2} \int_{(1)} B(s) ds.$$
(3.21)

The second term in (3.20) is evaluated by Heath-Brown [H] as

$$\zeta_K\left(\frac{1}{2}+it\right)\ll t^{\frac{1}{3}+\epsilon}$$

for any fixed $\epsilon > 0$. We find that

$$\frac{2}{\pi i |\xi_K(1+it)|^2} \int_{(1)} B(s) ds \ll_{\epsilon} t^{-\frac{1}{3}+\epsilon}.$$

This corresponds to the bound (3.14).

Next we deal with the residue term in (3.20), which is more complicated. Write B(s) as $\zeta_K(\frac{s}{2})^2 G(s)$ where G(s) is holomorphic at s = 2. Put

$$\zeta_K(s/2) = \frac{A_{-1}}{s-2} + A_0 + O(s-2) \quad (s \to 2).$$

484

In the expansion of

$$B(s) = \left(\frac{A_{-1}}{s-2} + A_0 + O(s-2)\right)^2 \left(G(2) + G'(2)(s-2) + O(s-2)^3\right),$$

the coefficient of $(s - 2)^{-1}$ gives the residue

$$\operatorname{Res}_{s=2} B(s) = G(2)A_{-1}\left(2A_0 + A_{-1}\frac{G'}{G}(2)\right).$$

A simple calculation gives

$$G(2) = \frac{H(2)|\zeta_K(1+it)\Gamma(1+it)|^2\Gamma(\frac{1}{2})^2}{(4\pi\omega)^2\zeta_K(2)} = \frac{H(2)|\xi_K(1+it)|^2}{4\zeta_K(2)}$$

and

$$\frac{G'}{G}(2) = \frac{H'}{H}(2) + \frac{\zeta'_K(1+it)}{2\zeta_K(1+it)} + \frac{\zeta'_K(1-it)}{2\zeta_K(1-it)} + \frac{\Gamma'(1+it)}{2\Gamma(1+it)} + \frac{\Gamma'(1-it)}{2\Gamma(1-it)} + C$$

with C being independent of t. For the Weyl–Hadamard–De La Vallée Poussin bound [T, (6.15.3)] and its generalization to Dirichlet L-functions by Landau, we have

$$\frac{\zeta_K'(1+it)}{\zeta_K(1+it)} \ll \frac{\log t}{\log \log t}.$$

This together with $\frac{\Gamma'}{\Gamma}(1+it) \sim \log t$ gives

$$\operatorname{Res}_{s=2} B(s) = \frac{H(2)|\xi_K(1+it)|^2}{2\zeta_K(2)}\log t + O\left(\frac{\log t}{\log\log t}\right).$$

Finally the first term of (3.20) is evaluated as

$$\frac{4\operatorname{Res}_{s=2} B(s)}{|\xi_K(1+it)|^2} = \frac{2H(2)}{\zeta_K(2)}\log t + O(1).$$

Taking into account that

$$H(2) = \int_0^\infty h(y) \frac{dy}{y^3} = \int_X F_h(z) \frac{dzdy}{y^3},$$

we reach the conclusion. $\ \ \Box$

Proposition 3.3. Let F be a continuous function of compact support in X. Then

$$\int_X F(v)d\mu_t(v) \sim \frac{2}{\zeta_K(2)} \left(\int_X F(v)dV(v) \right) \log t$$

as $t \to \infty$.

Proof. The space of all incomplete Eisenstein series and cusp forms is dense in the space of continuous functions vanishing in the cusp. For any $\epsilon > 0$, we can find $G = G_1 + G_2$ with G_1 the finite sum of cusp forms and G_2 in the space of incomplete Eisenstein series, such that $||G - F||_{\infty} < \epsilon$. The difference H = G - F is sufficiently small and rapidly decreasing in the cusp. Namely, it is majorized in terms of another incomplete Eisenstein series

$$H_1(v) = \sum_{\gamma \in \Gamma_\infty \setminus \Gamma} h_1(y(\gamma v))$$

as

$$H_1(v) \ge |H(v)|$$

satisfying

$$\int_X H_1(v) dV(v) < C(K)\epsilon$$

with some constant C(K) depending only on the field K. Hence the conclusion. \Box

Propositions 2.3 implies Theorem 1.1 by standard approximation arguments.

Acknowledgements. The author would like to express his thanks to Professor Peter Sarnak, who introduced the author to the subject.

References

- [A] Asai, T.: On a certain function analogous to $\log |\eta(z)|$. Nagoya Math. J. 40, 193–211 (1970)
- [E] Elstrodt, J., Grunewald, F. and Mennicke, J.: Eisenstein series for imaginary quadratic number fields. Contemporary Math. 53, 97–117 (1986)
- [GR] Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products. New York–London: Academic Press, 1994
- [H] Heath-Brown, D.R.: The growth rate of the Dedekind zeta-function on the critical line. Acta Arith. 49, 323–339 (1988)
- [HR] Hejhal, D. and Rackner, B.: On the topography of Maass waveforms for PSL(2, Z). Experimental Math. 1, 275–305 (1992)
- [LS] Luo, W. and Sarnak, P.: Quantum ergodicity of eigenfunction on $PSL_2(Z) \setminus H^2$. To appear
- [S] Sarnak, P.: The arithmetic and geometry of some hyperbolic three manifolds. Acta math. 151, 253–295 (1983)
- [SP] Sarnak, P. and Petridis, Y.: Quantum unique ergodicity for $SL_2(O) \setminus H^3$ and estimates for L-functions. Preprint 2000
- [T] Titchmarsh, E.C.: The theory of the Riemann zeta function. Oxford, 1951

Communicated by P. Sarnak